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ABSTRACT 

The value of smart environments in understanding and monitoring human behavior has become 
increasingly obvious in the past few years. Using data collected from sensors in these environments, 
scientists have been able to recognize activities that residents perform and use the information to provide 
context-aware services and information.  However, less attention has been paid to monitoring and 
analyzing energy usage in smart homes, despite the fact that electricity consumption in homes has grown 
dramatically. In this chapter we demonstrate how energy consumption relates to human activity through 
verifying that energy consumption can be predicted based on the activity that is being performed.  We 
then automatically identify novelties in human behavior by recognizing outliers in energy consumption 
generated by the residents in a smart environment the reasons for these abnormalities. To validate these 
approaches, we use real energy data collected in our CASAS smart apartment testbed and analyze the 
results for three different data sets collected in this smart home.   
 
INTRODUCTION 

Smart homes have become a very popular research area. One of the most exciting applications of this 
work is activity recognition and health monitoring for homes.  Smart homes provide a forum for 
observing how these activities are performed, how they are affected by a variety of conditions, and for 
better understanding the nature of human behavior.  Most of the analyzed sensors are used to identify the 
location of the environment residents as well as the objects with which they are interacting. 
In this book chapter we focus on a different type of information that can be gathered and analyzed in 
smart environments.  In particular, we gather and analyze electricity usage that is generated in a smart 
environment.  By observing energy consumption in a smart environment we can perform novel types of 
analyses that correlate activity performance with energy consumption.  We can also analyze energy 
consumption by itself to detect anomalies in the data and see if they correlate back to abnormalities in 
resident behavior. 
 
The long-term vision for this project is to enhance understanding of human resource consumption and to 
provide resource efficiency in smart homes. We envision this as a three step process: 1) predict the energy 
that will is used to support specific daily activities, 2) analyze electricity usage to identify trends and 
anomalies, and 3) automate activity support in a more energy-efficient manner. This chapter addresses the 
first two steps in the process.  We hypothesize that energy consumption is correlated with the type of 
activities that are performed and can therefore be predicted based on the automatically-recognized 
activities that occur in a smart environment.  We further postulate that anomalies can be automatically 
detected and that these outliers can provide inside on novelties that occur in the behavior of residents in 
the space. We validate these hypotheses by implementing algorithms to perform these steps and 
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evaluating the algorithms using data collected in the CASAS smart apartment testbed.  The result of this 
work can be used to give smart home residents feedback on energy consumption. 
In the next section of the chapter we summarize related work in the area of smart homes and activity 
recognition. In the following section we introduce our CASAS smart environment architecture and 
describe our data collection modules as well as the smart apartment testbed. We next describe our method 
of predicting energy consumption based on the activity that is performed in the smart environment and 
evaluate the algorithm using CASAS datasets.  After this, we describe the main statistical methods we 
utilize to detect outliers in energy usage and validate the approach using two different smart home energy 
data sets.  
 
BACKGROUND 

Given the recent progress in computing power, networking, and sensor technology, we are steadily 
moving into the world of ubiquitous computing where technology recedes into the background of our 
lives.  Using sensor technology combined with the power of data mining and machine learning, many 
researchers are now working on smart environments which can discover and recognize residents’ 
activities and respond to resident needs in a context-aware way. 
 
A core technology component in this research is the ability to automatically recognize and identify 
activities performed by residents in smart environments.  A variety of approaches have been used to 
achieve this goal.  For example, Hu et al. [1] find common trends in Activities of Daily Living (ADLs) to 
see whether the inhabitants perform multiple concurrent and interleaved activities or single activities. Gao 
et al. [2] use hidden Markov models to characterize different stages in dining activities. The smart 
hospital project [3] develops a robust approach for recognizing user’s activities and estimating hospital-
staff activities by employing a hidden Markov model with contextual information in the smart hospital 
environment. The Georgia Tech Aware Home [4] identifies people based on pressure sensors embedded 
into the smart floor in strategic locations. The CASAS smart home project [5] builds probabilistic models 
of activities and uses them to recognize activities in complex situations where multiple residents perform 
activities in parallel in the same environment. A new idea of transfer learning [6] is gaining popularity in 
smart home research due to its ability to use the knowledge gained from one domain to a different but 
related domain, making the learning problem more generalized for similar environments, activities, or 
inhabitants. 
 
We note that these projects focus primarily on activity recognition using sensors for motion and object 
interaction.  However, very few projects are expanding their scope to consider the resource utilization of 
smart home residents. Based on a recent report [7], buildings are responsible for at least 40% of energy 
use in most countries. Furthermore, household consumption of electricity has been growing dramatically. 
Thus, the need to develop technologies that improve energy efficiency and monitor the energy usage of 
inhabitants in a household is emerging as a critical research area. The BeAware project [8] makes use of 
an iPhone application to give users alerts and to provide information on the energy consumption of the 
entire house. This mobile application can detect the electricity consumption of different devices and 
notify the user if the devices use more energy than expected. The PowerLine Positioning (PLP) indoor 
location system [9] is able to localize to sub-room level precision by using fingerprinting of the amplitude 
of tones produced by two modules installed in extreme locations of the home. Patel et al [10] records and 
analyzes electrical noise on the power line caused by the switching of significant electrical loads by a 
single, plug-in module, which can connect to a personal computer, then uses machine learning techniques 
to identify unique occurrences of switching events (events which denote a change in the status of an 
electrical device) by tracking the patterns of electrical noise. The MITes platform [11] monitors changes 
of various appliances in current electricity flow for the appliance, such as a switch from on to off by 
installing current sensors for each appliance. Other similar work [12] also proposes several approaches to 



 3 

recognize the energy usage of electrical devices by the analysis of a power line current. These can detect 
whether the appliance is used and how it is used. 
 
CASAS SMART ENVIRONMENT 

 

 
 

Figure 1. Three-bedroom smart apartment used for our data collection (motion (M), temperature (T), 
water (W), burner (B), telephone (P),and item (I)). 

 
The smart home environment test bed that we are using to recognize the status of each device is a three 
bedroom apartment located on the Washington State University campus. As shown in Figure 1, the smart 
home apartment testbed consists of three bedrooms, one bathroom, a kitchen, and a living/dining room. 
To track people’s mobility, we use motion sensors placed on the ceilings. The circles in the figure stand 
for the positions of motion sensors. They facilitate tracking the residents who are moving through the 
space. In addition, the test bed also includes temperature sensors as well as custom-built analog sensors to 
provide temperature readings and hot water, cold water and stove burner use. A power meter records the 
amount of instantaneous power usage and the total amount of power which is used. An in-house sensor 
network captures all sensor events and stores them in a SQL database in real time. 
 
The sensor data gathered for our SQL database is expressed by several features, summarized in Table 1. 
These four fields (Date, Time, Sensor, ID and Message) are generated by the CASAS data collection 
system automatically. 
 

Table 1. Raw Data from Sensors 

 Date     Time Sensor ID Message 
2009-02-06 
2009-02-06 
2009-02-06 
2009-02-06 

17:17:36 
17:17:40 
11:13:26 
11:18:37 

M45 
M45 
T004 
P001 

ON 
OFF 
21.5 

747W 
2009-02-09 21:15:28 P001 1.929kWh 
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To provide real training data, we have collected data while two students in good health were living in the 
smart apartment. Our training data was gathered during several months and more than 100,000 sensor 
events were generated during this time. Each student had a separate bedroom and shared the downstairs 
living areas in the smart apartment. All of our experimental data are produced by the day to day lives of 
these students, which guarantee that the results of this analysis are real and useful. 
 
After collecting data from the CASAS smart apartment, we annotated the sensor events with the 
corresponding activities that were being performed while the sensor events were generated.  Because the 
annotated data is used to train the machine learning algorithms, the quality of the annotated data is very 
important for the performance of the learning algorithms.  As a large number of sensor data events are 
generated in a smart home environment, it becomes difficult for researchers and users to convert sequence 
of sensor events into descriptions of resident activities [20] without the use of visualization tools. 
 
To improve the quality of the annotated data, we built an open source Python-based sensor event 
visualize, called PyViz, to graphically display the sensor events.  Figure 2 shows a screenshot of PyViz as 
it shows sensor events occurring in the CASAS smart apartment.  We also make use of PyViz’s 
Annotation Visualizer to graph recognized resident activities, as shown in Figure 3. 
 

 
 

Figure 2.  PyViz visualizer. 
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Figure 3.  Visualizing activities in a smart home environment. 

 

With the help of PyViz, activity labels are optionally added to each sensor event, providing a label for 
the current activity. For our experiment, we selected six activities that the two volunteer participants 
regularly perform in the smart apartment to predict energy use. These activities are as follows: 

1. Work at computer  

2. Sleep 

3. Cook 

4. Watch TV 

5. Shower 

6. Groom 

All of the activities that the participants perform have some relationship with measurable features 
such as the time of day, the participants’ movement patterns throughout the space, and the on/off 
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status of various electrical appliances. These activities are either directly or indirectly associated with 
a number of electrical appliances and thus have a unique pattern of power consumption. Table 2 gives 
a list of appliances associated with each activity. It should be noted that, there are some appliances 
which are in “always on” mode, such as the heater (in winter), refrigerator, phone charger, etc. Thus, 
we postulate that the activities will have a measurable relationship with the energy usage of these 
appliances as well. 

Table 2. Electrical appliances associated with each activity. 

Activity 
Appliances 

Directly 
Associated 

Appliances 
Indirectly 

Associated 

Work at 
computer 

Computer, 
printer 

Localized 
lights 

Sleep None None 

Cook 
Microwave, 
oven, stove 

Kitchen lights 

Watch TV 
TV, DVD 

player 
Localized 

lights 

Shower Water heater 
Localized 

lights 

Groom Blow drier 
Localized 

lights 

 

 

ENERGY ANALYSIS 

 

 

Figure 4.  Energy usage for a single day. 
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Figure 4 shows the energy fluctuation that occurred during a single day on June 2nd, 2009. The 
activities have been represented by red arrows. The length of the arrows indicates the duration of 
time (not to scale) for different activities. Note that there are a number of peaks in the graph even 
though these peaks do not always directly correspond to a known activity. These peaks are due to 
the water heater, which has the highest energy consumption among all appliances, even though it 
was not used directly. The water heater starts heating by itself whenever the temperature of water 
falls below a certain threshold. 
 

 

 

 

 

Figure 5.  Energy data curve fitting for each activity.  There is a separate graph for each activity:  
A=shower, B=cook, C=work on computer, D=groom, E=sleep, and F=watch TV.  The x axis in the 
graphs represents wattage and the y axis represents time of the activity in seconds. 

 

Figure 5 plots typical energy data for each activity together with the result of applying curve fitting to the 
data. Curve fitting [14] is the process of building a mathematical function model that can best fit to a 
series of data points. It serves as an aid for data visualization, to approximate the values when no data are 
available, and to express the relationships between different data points. From the figure, we see that each 
resident's activity generates different energy patterns. The “cook” activity consumes the highest energy 
because the participants may open the refrigerator and use the stove or microwave oven, which need a 
relatively high power. Meantime, when the participants were sleeping, the energy consumption was the 
lowest because most appliances were idle. 
 
ENERGY PREDICTION 

In the first step of our goal, we use machine learning techniques to predict energy consumption given 
information about an activity that inhabitants perform in a smart environment.  We use the following 
features to describe an activity performed by an inhabitant in a smart home: 
 
 

A B C 

D E F 
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1. Activity label 

2. Activity length, measured in seconds 

3. Previous activity 

4. Next activity 

5. Number of different motion sensors fired during activity 

6. Total number of motion sensor events 

7. Motion sensor On/Off settings for each motion sensor in the space 

 
We use several machine learning algorithms to map these activity features onto a label indicating the 
amount of energy that is consumed in the smart environment while the activity was performed.  In this 
study, we make use of four popular machine learning methods:  a naïve Bayes classifier (NBC), a Bayes 
net classifier (BNC), a neural network (NN), and a support vector machine (SVM).  A naïve Bayes 
classifier is a probabilistic classifier that assumes the presence of a particular input feature is unrelated to 
any of the other features given the target label.  This classifier applies Bayes theorem to learn a mapping 
from the input features to the classification label. 

argmax EP e |F P F| P

P F
      (1) 

In Equation 1, E represents the energy class label and F represents the input features described 
above.  The value of P(ei) is estimated based on the relative frequency with which each target 
value ei occurs in the training data. Based on the simplifying assumption that feature values are 
independent given the target value, the probabilities of observing the particular data point 
(activity) is the product of the probabilities of the individual features describing the activity, 
calculated using Equation 2. 

P F e ∏ P f |e       (2) 

Bayes belief networks [20] belong to the family of probabilistic graphical models. They represent a set of 
conditional independence assumptions by a directed acyclic graph, whose nodes represent random 
variables and edges represent direct dependence among the variables and are drawn by arrows by the 
variable name. Unlike the naïve Bayes classifier, which assumes that the values of all the attributes are 
conditionally independent given the target value, Bayesian belief networks apply conditional 
independence assumptions only to the subset of the variables. They can be suitable for small and 
incomplete data sets and they incorporate knowledge from different sources. After the model is built, they 
can also provide fast responses to queries. 
 
Artificial Neural Networks (ANNs) [21] are abstract computational models based on the organizational 
structure of the human brain. ANNs provide a general and robust method to learn a target function from 
input examples. The most common learning method for ANNs, called Backpropagation, which performs a 
gradient descent within the solution’s vector space to attempt to minimize the squared error between the 
network output values and the target values for these outputs. Although there is no guarantee that an ANN 
will find the global minimum and the learning procedure may be quite slow, ANNs can be applied to 
problems where the relationships are dynamic or non- linear and capture many kinds of relationships that 
may be difficult to model by other machine learning methods. In our experiment, we choose the 
Multilayer-Perceptron algorithm with Backpropagation to predict electricity usage. 
 
Super Vector Machines (SVMs) were first introduced in 1992 [22]. This is a training algorithm for data 
classification, which maximizes the margin between the training examples and the class boundary. The 
SVM learns a hyperplane which separates instances from multiple activity classes with maximum margin. 
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Each training data instance should contain one class label and several features. The goal of a SVM is to 
generate a hyperplane which provides a class label for each data point described by a set of feature values. 

 
Experimental Results 

We performed two series of energy prediction experiments. The first experiment uses the sensor data 
collected during two summer months in the testbed. In the second experiment, we collected data of three 
winter months in the testbed. The biggest difference between these two groups of data is that some high 
energy consuming devices like room heaters were only used during the winter, which are not directly 
controlled by the residents and are therefore difficult to monitor and predict. Using the Weka machine 
learning toolset [23], we assessed the classification accuracy of our four selected machine learning 
algorithms and reported the predictive accuracy results based on a 3-fold cross validation. 

 

 

Figure 6. Comparison of the accuracy for summer dataset. 
 

 

Figure 7. Comparison of the accuracy for winter dataset. 
 

Figures 6 and 7 plot the accuracies of the two different group experiments, respectively. As shown in 
these two figures, the highest accuracy is around 90% for both datasets to predict the two-class energy 
usage and the lowest accuracy is around 60% for the six-class case in both datasets. These results also 
show that the higher accuracy will be found when the precision was lower because the accuracy of all 
four methods will drop from about 90% to around 60% with an increase in the number of energy class 
labels. 



 10

From the figures we see that the Naïve Bayes Classifier performs worse than the other three classifiers. 
This is because it is based on the simplified assumption that the feature values are conditionally 
independent given the target value. On the contrary, the features that we use, are not conditionally 
independent. For example, the motion sensors associated with an activity is used to find the total number 
of times motion sensor events were triggered and also the kinds of motion sensors involved. 

To analyze the effectiveness of decision tree feature selection, we apply the ANN algorithm to both 
datasets with and without feature selection. From Figure 8, we can see the time efficiency has been 
improved greatly using feature selection. The time for building the training model drops from around 13 
seconds to 4 seconds after selecting the features with high information gain. However, as seen in Figure 9, 
the classification accuracy is almost the same or a slight better than the performance without feature 
selection. The use of feature selection can improve the time performance without reducing the accuracy 
performance in the original data set. 

 

   

Figure 8. Comparison of time efficiency. (1:2-class; 2:3-class; 3:4-class; 4:5-class; 5:6-class; Y-
axis: second; Red: with feature selection; Blue: without feature selection).  Time is plotted in 
seconds. 

 

Figure 9. Comparison of prediction accuracy. (1:2-class; 2:3-class; 3:4-class; 4:5-class; 5:6-class; Red: 
with feature selection; Blue: without feature selection).  

 
Figure 10 compares the performance of the ANN applied to the winter and summer data sets. From the 
graph, we see that the performance for the summer data set is shade better than the performance for the 
winter dataset. This is likely due to the fact that the room and floor heater appliances are used during the 
winter season, which consume a large amount of energy and are less predictable than the control of other 
electrical devices in the apartment. 
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Figure 10. Comparison of the accuracy between two datasets. 
 
Analyzing these results, we see that machine learning methods can be used as a tool to predict energy 
usage in smart home environments based on the human's activity and mobility. However, the accuracy of 
these methods is not as high as we anticipated when the energy data is divided into more than three 
classes. There are several reasons that lead to low performance of these algorithms. One reason is that 
some of the major devices are difficult to monitor and predict, such as the floor heater, which may rely on 
the outdoor temperature of the house. Another reason is that there is no obvious cycle of people’s 
activities. An additional factor we can't ignore is that there is some noise and perturbation motion when 
the sensors record data and transfer them into the database. Finally, the sensor data we collect is not 
enough to predict energy precisely. As a result, we intend to collect more kinds of sensor data to improve 
the prediction performance. 
 
ENERGY TREND AND ANOMALY DETECTION 

To achieve the second step of our goal, we employ statistical methods to analyze trends and look for 
anomalies in energy data that is collected in the CASAS testbeds. In this chapter, the energy data 
generated by smart environment residents is modeled as a random process with corresponding mean and 
variation. Here, we make use of three different statistical methods to automatically detect and analyze 
energy data anomalies and trends in smart home environments. These statistical approaches are: box plot, 
x chart, and CUSUM chart. We test these three methods on energy data collected in the CASAS smart 
home apartment testbed. 
 
The box plot [15] is a quick graphic approach for examining one or more sets of data. A box plot usually 
displays five important parameters describing a set of numeric data: 1) lowest value, 2) lower quartile, 3) 
median, 4) upper quartile, and 5) highest value.  As shown in Figure 11, the box plot is constructed by 
drawing a rectangle between the upper and lower quartiles with a solid line drawn across the box to locate 
the median. The lowest and highest values exist at the boundary of the solid line. The advantage of the 
boxplot is that it can display the differences between populations without making any assumptions about 
the underlying statistical distribution. In addition, the distance between the different parts of the box help 
indicate the degree of spread and skewness in the data set. 
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Figure 11.  Configuration of a box plot. 

 
In this study, we make use of the box plot to identify the outliers in the collected energy data, which 
represent those periods of time where the energy consumption lies unusually far from the main body of 
the data. Because even a single outlier can drastically affect the values of the mean, x and the sample 
deviation, s , a box plot is based on measures that could be resistant to the presence of the outliers. A 
measure of spread that is resistant to the outliers is the inter-quartile range or IQ, calculated as 
IQ UpperQuartile LowerQuartile  . Any sample data farther than 1.5*IQ from the closest quartile 
is an outlier. An outlier is extreme if it is more than 3*IQ from the nearest quartile and it is mild 
otherwise. 
 
Statistical Process Control (SPC) [16] is the application of statistical charting techniques for detecting 
shifts in mean or variability of a process. While SPC is applied most commonly to controlling a product's 
quality, it encompasses a much broader scope of applications including: data and process analysis, 
experimental design and decision making. Here, energy usage data will be modeled as a random process 
whose mean and variance could be estimated by the sample data. 
 
We will utilize two SPC techniques to identify abnormal energy usage data as follows. The first technique 
focuses on generating control charts.  In statistical process control, control charts are particularly useful 
for monitoring quality and giving early warnings that a process may be going out of control. A typical 
control chart has control limits set at values such that if the process is in control, nearly all points will lie 
between the upper control limit (UCL) and lower control limit (LCL). Assume that for an in-control 
process, the data collection X follows a normal distribution with mean value,  , and stand deviation,  . 

If X denotes the sample mean for a random sample of size n selected at a particular time, the x  chart for 

determining control limits first calculates the mean ( )E X   and standard deviation X n  of 

the sample values. Next, upper and lower control limits are defined as{ 3 , 3 ,}X Xn n     . 

These control limits can be used to identify the outliers in energy data that occur in the specific 
monitoring time window. The plot of mean values associated with the control limits are used to determine 
when the process is “out of control”. In the case of energy data analysis, when an important acute change 
has occurred, the x  chart can identified the location of this change. 
 
The disadvantage of a x  control chart is its inability to detect a relatively small change in a process mean 
because the ability to judge the process as being out of control at a particular time depends only on the 
sample at that time, and not the past history of the process. Cumulative sum (CUSUM) control charts [17] 
have been designed to address this problem. The CUSUM chart works as follows: Let 0 denote a target 

value or goal for the process mean. The cumulative sums can then be calculated using Equation 3. 

0
1

( )
n

n i
i

S x 


 
      (3) 
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As shown in Figure 12, these cumulative sums are plotted over various time windows and a V-shaped 

mask is superimposed  on the graph of the cumulative sums.  At any given time, the process is judged to 

be out of control if any of the plotted points lies outside the V-mask, either above the upper arm or below 

the lower arm.  In the graph of Figure 12, an out-of-control situation has been identified by the V-mask 

because one point in the time window lies above the upper arm.  The V-mask is calculated based on the 

lead distance d and the rise distance h.  The parameter-defined variations in the shape of the V-mask will 

thus affect the type and number of outliers that are detected. 
 

 
 

Figure 12.  A sample V-Mask demonstrating an out-of-control process. 
 
 
Experimental Results 

We performed two series of experiments using the energy data collected during an entire year in our 
CASAS smart apartment testbed. The first experiment detects abnormal energy wattage during any single 
day. The second experiment looks for novelties in energy Kwh data consumed each week over the course 
of the entire year.  
 
When we generate a x  control chart, there is an assumption that the random process follows a normal 
distribution. Thus, we need to examine whether the energy data during different time windows fits the 
normal distribution. Based on the Central Limit Theorem [18], if a random sample of n observations is 
selected from any population, the sampling distribution will be approximately normal. Unfortunately, the 
energy data for different time granularities in our smart home environment often demonstrate a positive 
skew. Thus, we use the lognormal distribution to describe the energy data distribution, x . In this case, 
ln( )x should follow a normal distribution.  As shown in Figures 13 to 15, the plots on the left show how 

the original energy data x  fits the lognormal distribution and the plots on the right describe how the 
normal curve simulates the variation in log energy values. From the graphs, we see that the log of the 
energy data can basically fit the normal distribution very well. Thus, we can continue to use x charts for 
detecting energy data outliers. 
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Figure 13.  The lognormal and normal distribution of energy data (W) collected in the CASAS testbed 
over the course of one day. 
 

 
Figure 14.  The lognormal and normal distribution of energy data (Kwh) for one day. 

 

 
Figure 15.  The lognormal and normal distribution of energy data (Kwh) for one week. 
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Figure 16.  Box plot of wattage energy data for one day. 

 

For the first experiment we focus on energy wattage data collected for one day in the smart environment 
testbed. The purpose of this experiment is to detect the energy data outliers and determine possible 
reasons for the anomalies. Figure 16 shows the box plot graph of the data. The red points located on the 
right side represent the outliers. We examined those outliers in detail and found out these abnormal data 
occur  during two main time intervals. The first set of anomalies were mainly concentrated at around 
midnight. One reasonable explanation is that all the heaters in our smart home worked at the same time 
because the temperature of that time is the lowest during the day. The outliers in the second group are 
located at the middle time of the day, which is the residents’ cooking time and the large appliances are 
being used for cooking such as the microwave, the stove and the oven, all of which would give rise to 
dramatically increasing energy consumption. 
 

 
 

Figure 17.  A x chart of energy wattage data for one day. 

 

For the x control chart shown in Figure 17, all the outliers fall below the lower control limit. All of these 
anomalies occurred between 01:00 am and 06:00 am, which is the common sleep time for the residents 
and most of the appliances are idle during that time interval. 
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Figure 18.  A CUSUM chart of energy wattage data for one day ( 0.3, 30h   ). 

 

The CUSUM chart as described in Figure 18 detects some outliers not detected in the previous 
experiment because the CUSUM chart is very effective for small shifts and the process can be judged out 
of control depending on the past history of the process. However, the drawback of the CUSUM chart is 
that it is relatively slow to respond to large shifts and some special data patterns are also hard to analyze 
and explain. In this experiment, the CUSUM chart highlights a large number of outliers, many of which 
are difficult to explain. However, some of these results provide some valuable information for 
understanding human behavior in the smart apartment. Novelties were detected at times 00:31:07 and 
16:12:50, which both represent turning points in energy usage during the day. After these times, energy 
consumption decreased consistently, perhaps because some large electrical devices were turned off. 

 

Figure 19.  Bot plot chart (left) and x chart (right) of energy data (in Kwh) by week for one year. 

 

The second experiment analyzes energy consumption data (Kwh) by week over a year timeframe in order 
to look for the long term trends of energy usage and its relationship with other relevant elements like 
weather variation. However, from Figure 19, none of the outliers can be detected by box plots or x
control charts. Thus, the variation of this data set experience extreme changes during the year. 

As shown in Figure 20, the CUSUM chart shows the periodic pattern of the cumulative sum. The 
CUSUM chart identifies four energy data abnomalies (on the dates 03/16, 05/25, 08/13, and 12/12), 
which represent the turning points of four different seasons (Spring, Summer, August and Winter). That 
result gives us a cue that there may be a possible strong relationship between seasonal temperature 
changes and energy usage. Thus, we continue to explore this relationship as shown in Figure 21. Figure 
21 describes the change trend of the energy usage and the average temperature. Historic average regional 
temperature values are obtained online [19]. This figure demonstrates that there exists a strong 
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relationship between energy usage and external temperatures during the same time. When the temperature 
increases or decreases, the energy usage consumed by the residents will also increase or decrease 
correspondingly. The likeliest reason is that the heaters in our smart home environment will consume 
different amounts of energy with temperature changes. In our testbed, the heaters are key influences on 
energy efficiency. In the future, residents might be able to utilize other heating sources such as open 
blinds or decrease temperature at night in order to improve energy efficiency in the apartment. 

 
Figure 20. CUSUM chart of energy data (Kwh) by week during one year ( 0.3, 0.95h   ). 

 

 
 

Figure 21. The comparison between temperature (top) and energy usage (bottom). 
 

Analyzing the results of our experiments, we see that statistical approaches can be used useful tool for 
detecting and identifying anomalies in energy usage, which in turn provides insights on human behavior 
and gives the residents some valuable insights with which they can improve their own daily patterns to 
reduce energy usage. However, there are also some drawbacks of these methods. Box plots and x charts 
only detect relatively big changes in a process mean and sometimes fail to detect small changes. This is 
why both of these methods did not detect the outliers for the weekly energy data. In contrast, CUSUM 
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charts can be very effective for small shifts based on the past history of the process. However, CUSUM 
charts are relatively slow to respond to large changes. 
 
 
CONCLUSIONS 

In this chapter, we introduce several techniques for predicting energy usage and for detecting novelties, or 
anomalies, in energy usage which can provide insight on human behavior.  To assess the performance of 
our algorithms we provided experimental results using real data collected in the CASAS smart 
environment testbeds. 
 
In our ongoing work, we plan to investigate methods to detect a greater range of anomalies.  We also plan 
to install more sensitive power meters in order to capture more accurate changes in energy consumption.  
Our future plans also include collecting data in a greater variety of households, which will allow us to 
determine whether energy predictions, energy usage trends, and energy anomalies exist and generalize 
across multiple settings. 
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