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Abstract  
In this paper, we aim to experiment and develop 
a general framework representing the temporal 
relations of actions and events in smart home 
datasets, that support a wide range of reasoning 
tasks, with primary focus on prediction. In earlier 
work, we performed prediction based solely on 
the sequence of observed activities.  In this work, 
we supplement evidence for a particular action 
using the temporal relation information.  We 
compare the predictive accuracy with and 
without temporal information, and illustrate the 
benefit of temporal relationships for prediction 
of smart home events and activities. 

1.  Introduction 

All smart homes provide rich datasets for analyzing, but 
they also introduce unique challenging features.  A smart 
home dataset includes a timestamp, indicating when a 
particular activity occurred or a sensor was triggered. 
Such datasets incorporate the concept of time, which 
describe an event with respect to its start and end times. 
The temporal nature of this data when analyzed and used 
provides us with a much better observation of trends and 
helps us learn patterns of resident behavior over time. 
While smart home actions and events are instantaneous, 
most of them occur over an interval of time. As a result, it 
is more effective to describe activities using time intervals 
rather than time points.  To accomplish this, we 
investigate methods of using Allen’s temporal logic to 
analyze smart home data and perform related tasks such 
as prediction and anomaly detection.  

From Allen’s original thirteen temporal relations (Allen 
et. al., 1994) we represent and identify the nine relations 
shown in Table 1.  These subsets of relationships relate a 
particular event with the next observed event, and thus are 
useful for event prediction. To analyze smart home data, 
we first find the temporal relations among the data and 
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then apply associate rule mining to identify frequent event 
sequences.  Based on the relationships that are found we 
build a probability model using the temporal relations to 
calculate the probability of the event most likely to occur. 
Let us focus now on how to calculate the probability that 
event Z will occur (in this case, the start of the event 
interval).  Evidence for this probability is based on the 
occurrence of other events that have a temporal 
relationship with Z, and is accumulated over all such 
related events.  First consider the probability of Z 
occurring given that the start of the temporal interval for 
event Y has been detected. The formula to calculate the 
probability of event Z based on the occurrence of event Y 
and its temporal relationship with Z is given by Equation 
(1). Note that the equation is based on the observed 
frequency of the observed temporal relationships between 
Y and Z as well as the number of occurrences of Y in the 
collected event history. 
Evidence of P(Z|Y) =|After (Y,Z) +  During(Y,Z) +  
OverlappedBy(Y,Z)+ MetBy(Y,Z) + Starts(Y,Z) + 
StartedBy(Y,Z)+Finishes(Y,Z)+FinishedBy(Y,Z)+ 
Equals(Y,Z)|/|Y|                                                            (1) 

The need for a robust  model is essential for prediction for 
any intelligent smart home to function in a dynamic 
world. For an agent to perform prediction, it should be 
capable of applying the limited experience of 
environmental event history to a rapidly changing 
environment, where event occurrences are related by 
temporal relations. 

In earlier work, we performed this prediction based solely 
on the sequence of observed activities.  In this work, we 
supplement evidence for a particular action using the 
temporal relation information.  We compare the predictive 
accuracy with and without temporal information, and 
illustrate the benefit of temporal relationships for 
prediction of smart home events. Based on results 
generated from synthetic and real smart home data, we 
conclude that temporal logic provides substantial benefits 
for smart home tasks.  Identification of temporal relations 
provides key insights to smart home activities and aids 
with prediction and anomaly detection in a smart home or 
other smart environment. 
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 Table 1. Temporal relations for prediction. 

TEMPORAL 
RELATION 

VISUAL 
DIAGRAM 

CONSTRAINT USABLE 

Y After X 

X During Y 

 

YOverlapped-
by X 

 Start(X)<Start(Y); 
End(X)<Start(Y) 

Start(X)>Start(Y); 
End(X)<End(Y) 

 

Start(X)<Start(Y); 
Start(Y)<End(X); 
End(X)<End(Y) 

 

 

 

 

 

 

 

 

Y Met-by X 
 

XFinishesY 

YFinishedbyX 

 

X Starts Y 

 
YStartedby X 
 
 
 
X Equals Y 

 Start(Y) = End(X) 
 
 
 
 
  Start(X)≠start(Y);    
  End(X) = End (Y) 
 
 
 
   Start(X)≠start(Y);   
   End(X) = End (Y) 
 
 
 
 
Start(X)=Start(Y); 
End(X)≠End(Y) 
 
 
 
Start(X)=Start(Y); 
End(X)≠End(Y) 
 
 
 
Start(X)=Start(Y); 
End(X)=End(Y) 

 
 
 
 

 
 

 
 

 
 

 
 
 
 

 
 
 
 

 
   

2.  Related Work 

Morchen argued that Allen’s temporal patterns are not 
robust and small differences in boundaries lead to 
different patterns for similar situations (Morchen, 2006). 
Morchen presented a Time Series Knowledge 
Representation, which expresses the temporal concepts of 
coincidence and partial order. Although this method 
appears feasible and computationally sound, it does not 
suit our smart home application due to the granularity of 
the time intervals in smart homes datasets. His approach 
does not involve ways to eliminate noise and the datasets 
are so huge that computational efficiency would not be 
the only factor to be considered.   

Björn (Björn. et al., 2006) also reasons that space and 
time play essential roles in everyday lives. They discuss 
several AI techniques for dealing with temporal and 

spatial knowledge in smart homes, mainly focusing on 
qualitative approaches to spatiotemporal reasoning. 

3.  Temporal Relations 

Activities in a smart home include physical activities as 
well as instrumental activities. These may include 
walking, sitting on a couch, turning on a lamp, using the 
coffeemaker, and so forth. We see that these activities are 
not instantaneous, but have distinct start and end times.  
We also see that there are well-defined relationships 
between time intervals for different activities.  These 
temporal relations can be represented using Allen’s 
temporal relations and can be used for knowledge and 
pattern discovery in day-to-day activities. These 
discoveries can be used for developing systems which can 
act as reminder assistants and also help detect anomalies 
and aid us in taking preventive measures (Jakkula & 
Cook, 2007). 

Let us consider a scenario which involves a cooker, oven 
and a lamp being used in a smart home. We see that the 
inhabitant turns on the cooker and after some period of 
time turns on the oven. As time progresses, oven is  
turned off and the individual continues using the cooker. 
Later on, the cooker is turned off and the individual turns 
on the lamp to illuminate the room. We see that this 
scenario involved three activities each defined by 
interaction with a single device, namely a cooker, an oven 
and a lamp. Now we apply Allen’s logic to establish the 
temporal relations among the activities which occurred. 
The scenario is illustrated in figure 1.  These activities can 
be represented as cooker “contains” oven  and “meets” 
lamp. We can also represent these relationships as cooker 
“meets” lamp and oven “before” lamp. 

 

 

 

 

 

 

 

 

 

 

Figure 1: Illustration of temporal relations using activity 
intervals of occurrence. 

4.  Experimentation Results 

The data collection system consists of an array of motion 
sensors, which collect information using X10 devices and 
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the in-house sensor network. Our dataset is collected for 
an inhabitant working in the MavLab (see Figure 2) 
(Youngblood. et. al., 2005)  and consists of two months of 
data. The lab consists of a presentation area, kitchen, 
student desks, and faculty room. There are over 100 
sensors deployed in the MavLab that include light, 
temperature, humidity, and reed switches. In addition, we 
created a synthetic data generator to validate our 
approach. We developed a model of a user’s pattern 
which consists of a number of different activities 
involving several rooms and eight devices. For this paper 
we generated a data set containing about 4,000 actions 
representing two months of activities. 

 
Figure 2: Illustration of Temporal Intervals 

The parameters of the datasets (real and synthetic) used 
are given in table 2  below. 

Table 2. Parameter settings of the dataset  used for finding rules. 

DATA SET NO OF DAYS NO OF 
EVENTS 

INTERVALS 
FOUND 

REAL 60 17 1640
SYNTHETIC 60 08 1738 

 
The first step of the experimentation is to process the raw 
data and find the intervals in the data which is done by a 
simple tool which takes the timestamp of  the event that 
occurred and based on the state (ON/OFF) forms the 
intervals and later this data is passed through a temporal 
analyzer tool which identifies the temporal intervals based 
on the constraints formulated. The pseudo code for the 

temporal analyzer tool is described in algorithm 1 given 
below. 
 
 Algorithm 1 Temporal Interval Analyzer  
 
 Input: data timestamp, event name and state 
     repeat 
       while [Event && Event + 1 found] 
           Find paired “ON” or “OFF” event in data to   

   determine temporal range. 
           Read next event and find temporal range. 
          Take both events and look up kind of relation from 

possible relation types based on the constraint     
(see Table 1). 

          Write out relation type and related data. 
          Increment Event Pointer 
   Loop  until  End of Input. 
 

Thus we see that the temporal relations dataset is now 
formed and we proceed to the next step of 
experimentation where we identify the association rules 
which can be used for prediction. Weka implementation 
of Apriori-type algorithm is used, which iteratively 
reduces the minimum support until it finds the required 
number of rules within the given minimum confidence. 
The table 3 given below gives us the different parameters 
set and the number of rules generated with a given 
specified minimum confidence for real dataset and table 4 
for synthetic data.  

Table 3. Parameter settings and rules generated using Apriori-
type algorithm in Weka for real dataset. 

RUN # MINIMUM 
SUPPORT 

MINIMUM 
CONFIDENCE 

NO OF BEST 
RULES FOUND 

1 0.00 0.5 100
2 0.01 0.5 006 
3 0.02 0.5 002
4 0.05 0.5 001

Table 4. Parameter settings and rules generated using Apriori-
type algorithm in Weka for synthetic dataset. 

RUN # MINIMUM 
SUPPORT 

MINIMUM 
CONFIDENCE 

NO OF BEST 
RULES FOUND 

1 0.00 0.5 100
2 0.01 0.5 006 
3 0.02 0.5 002
4 0.05 0.5 001

 
In the tables above, the confidence level above 0.5 and 
support above 0.05 could not be used, as they could not 
result in any best rules, due to the smaller datasets being 
used. As we see that the datasets are small, run 2 is 
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chosen for this experimentation, with minimum 
confidence of 0.5 and minimum support of 0.01 and their 
resulting best runs. The final step involves using these 
rules with the existing sequential predictor (Gopalratnam 
& Cook, 2005) and compare the performance without the 
rules. This was tested on a single day of  smart 
environment data. The enhanced prediction is given by 
the Algorithm 2 below. 
 
 Algorithm 2 Temporal Rules Enhanced prediction.  
 
 Input: Output of ActiveLezi Predictor a, Best Rules r, 
Temporal Dataset 
     repeat 
       If a != null   
           repeat 

Find first event in the relation rule and set it to r1   
               If (r1 ==a) Then 
    If (Relation != “After”) Then 
    Calculate Evidence (use equation 1) & if high  

   evidence is noted then 
   Make event related to r1 in the best rule as next  
   predictor output ; 
  else 
  *Get next predicted event and look for there        
  temporal relation in the temporal relations   
  database based on the frequency. 
  If again the relation is after Then goto * Until  
  no more after relations found then calculate  
  evidence if high then predict;  
  Else   
  Calculate evidence and if high then predict this    
  event based on the relation; 
 Continue. 
 End if. 
Until end of rules. 

         End if. 
   Loop  until  End of Input. 
 

Table 5. Comparing ActiveLezi based prediction with and 
without temporal rules found with 0.5 confidence. 

DATA SET PERCENTAGE 
ACCURACY 

PERCENTAGE 
ERROR 

 

WITHOUT RULES   
REAL 55 45  
SYNTHETIC 64 36
WITH RULES  
REAL 56 44
SYNTHETIC 69 31

The  table 5 above discusses the observed accuracy of  the 
prediction performance on real and synthetic datasets 

which are from an smart environment (We observed 
percentages were rounded-off). We see that there was 
1.86% improved and 7.81% improved real and synthetic 
dataset predictions respectively. One of the main reason 
for higher error rate is the use of a smaller dataset and 
also the temporal relations are based on activities which 
occur and the activities or events in the test dataset need 
not be of the same pattern of some earlier day. As we 
have larger datasets we see that the performance of the 
temporal relations enhanced prediction would also 
improve drastically over time. 

5.  Conclusion 

Temporal rule based knowledge discovery  is a new area 
in smart home research. We notice that the use of 
temporal relations provides us a unique new approach for 
prediction. The current approach is currently 
experimented on small datasets, but we will next validate 
the performance of our algorithm on larger datasets. Some 
future directions of this work also includes the expansion 
of the temporal relations by including more temporal 
relations, such as until, since, next, and so forth, to create 
a richer collection of useful temporal relations.  
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