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Abstract

To many people, home is a sanctuary. For those people who need special medical
care, they may need to be pulled out of their home to meet their medical needs. As the
population ages, the percentage of people in this group is increasing and the effects are
expensive as well as unsatisfying. We hypothesize that many people with disabilities can
lead independent lives in their own homes with the aid of at-home automated assistance
and health monitoring. In order to accomplish this, robust methods must be developed to
collect relevant data and process it dynamically and adaptively to detect and/or predict
threatening long-term trends or immediate crises. The main objective of this paper is to
investigate techniques for using agent-based smart home technologies to provide this at-
home health monitoring and assistance. To this end, we have developed novel prediction
algorithms that will determine common activities of an inhabitant and report significant
activity anomalies that may indicate health crises. Specifically, we address the following
technological challenges: 1) developing secure situation- or context-aware methods to
collect at-home health and activity data, 2) learning patterns from the collected data,
3) identifying long-term trends of increasing or deteriorating health, 4) detecting and
responding to anomalies in the data, and responding to predicted health problems, and
5) providing reminder and automation assistance to promote independent living at home.
The proposed solution approaches are being tested in simulation and with volunteers at
the UTA’s MavHome site, an agent-based smart home project funded by NSF.

1 Introduction and Motivation

We live in an increasingly connected and automated society. We are investigating monitor-
ing and automation assistance in our most personal environment: the home. In particular,
we will investigate methods of adapting such a smart home environment to perform health
monitoring and assistance for persons with disabilities and for aging adults. This integration
of engineering and life science builds upon UTA’s MavHome project [9], a home environ-
ment that perceives the state of the home through sensors and intelligently acts upon the
environment through controllers.
As Lanspery and Hyde [17] state, ”For most of us, the word ‘home’ evokes powerful

emotions [and is] a refuge”. They note that older adults and people with disabilities want to
remain in their homes even when their conditions worsen and the home cannot sustain their
safety. In a national survey, researchers found that 71% of the respondents felt strongly that
they wanted to remain in their current residence as long as possible, and another 12% were
somewhat likely to remain there [1]. Nearly 1/4 of the respondents expected that they or a
member of their household would have problems getting around their house in the next five
years. Of these respondents, 86% stated that they had made at least one modification to
their home to make it easier to live there, and nearly 70% believe that the modifications will
allow them to live in the current homes longer than would have otherwise been possible. A
separate study supported these results and found that the most common modifications were
an easy-to-use climate control system and a personal alert system.
Zola [26] maintains that the problems of aging and disability are converging. Improvements

in medical care are resulting in increased survival into old age, thus problems of mobility,
vision, hearing, and cognitive impairments will increase [19, 20]. As the baby boomers enter



old age, this trend will be magnified. By 2040, 23% will fall into the 65+ category [17]. An
AARP report [1, 2] strongly encourages increased funding for home modifications that can
keep older adults with disabilities independent in their own homes.
While use of technology can be expensive, it may be more cost effective than the alternative

[13]. Nursing home care is generally paid either out-of-pocket or by Medicaid. Typical nursing
home costs are about $40,000 a year, and the $197 billion of free care offered by family members
comes at the sacrifice of independence and job opportunities by the family caregivers.
In this paper, our goal is to assist the elderly and individuals with disabilities by pro-

viding home capabilities that will monitor health trends and assist in the inhabitant’s day
to day activities in their own homes. The result will save money for the individuals, their
families, and the state. We are seeking to meet this goal using the MavHome smart home
environment. MavHome is equipped with sensors that record inhabitant interactions with
many different devices, medicine-taking schedules, movement patterns, and vital signs. We
have developed novel algorithms that learn patterns of activities from this data. We will apply
these capabilities to health monitoring in the following steps: (i) Perform secure, situation
(or context)-aware collection of inhabitant health and activity data; (ii) Use our data mining
and prediction techniques to learn patterns in collected data; (iii) Identify trends that could
indicate health concerns or a need for transition to assisted care; (iii) Detect anomalies in
regular (monitored) patterns that may require intervention; and (v) Provide reminder and
automation assistance for inhabitants.
We will report experimental results on simulated data and on data collected from student

volunteers in smart apartments (MavPad) on UTA campus. By investigating these issues we
can offer the community an intelligent system with learning algorithms that not only perform
their individual tasks well, but also form a synergistic whole that is stronger than the parts.
We will show the benefits that can be derived from these algorithms in intelligent environments
and other learning-driven situations for aging adults and persons with disabilities.
The rest of the paper is organized as follows. Section 2 gives an overview of the MavHome

project while Section 3 explains how to identify significant episodes in smart homes. Section
4 deals with prediction of inhabitants’ mobility and activities. Section 5 summarizes the
capabilities of MavHome to assist the elderly and disabled.

2 Overview of the MavHome Smart Home

We define an intelligent environment as one that is able to acquire and apply knowledge
about its inhabitants and their surroundings in order to adapt to the inhabitants and meet
the goals of comfort and efficiency [7]. These capabilities rely upon effective prediction,
decision making, robotics, wireless and sensor networking, mobile computing, databases, and
multimedia technologies. With these capabilities, the home can adaptively control many
aspects of the environment such as climate, water, lighting, maintenance, and multimedia
entertainment. Intelligent automation of these activities can reduce the amount of interaction
required by inhabitants, reduce energy consumption and other potential wastages, and provide
a mechanism for ensuring the health and safety of the environment occupants [6].
Compared to existing smart home research projects and/or prototypes, MavHome is

unique in combining technologies from artificial intelligence, machine learning, databases,
robotics, and multimedia computing to create a smart home that acts as an intelligent agent,
as shown in Figure 1. MavHome’s smart home capabilities are organized into an agent-based
software architecture that seamlessly connects needed components while allowing improve-
ments to be made to any of the supporting technologies. that are separated into four coop-
erating layers. The Decision layer selects actions for the agent to execute. The Information
layer collects information and generates inferences useful for decision making. The Communi-
cation layer routes information and requests between agents. The Physical layer contains the
environment hardware including devices, transducers, and network equipment. The MavHome
software components are connected using a CORBA interface.
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Figure 1: MavHome agent architecture.

Because controlling an entire house is a very large and complex learning and reasoning
problem, the problem is decomposed into reconfigurable subareas or tasks. Thus the Physical
layer for one agent may in actuality represent another agent somewhere in the hierarchy, which
is capable of executing the task selected by the requesting agent.
Perception is a bottom-up process. Sensors monitor the environment (e.g., lawn moisture

level) and, if necessary, transmit the information to another agent through the Communication
layer. The database records the information in the Information layer, updates its learned
concepts and predictions accordingly, and alerts the Decision layer of the presence of new
data. During action execution, information flows top down. The Decision layer selects an
action (e.g., run the sprinklers) and relates the decision to the Information layer. After
updating the database, the Communication layer routes the action to the appropriate effector
to execute. If the effector is actually another agent, the agent receives the command through
its effector as perceived information and must decide upon the best method of executing the
desired action. Specialized interface agents allow interaction with users, robots, and external
resources such as the Internet. Agents can communicate with each other using the hierarchical
flow shown in Figure 1.

3 Learning to Identify Significant Episodes

In order to maximize comfort, minimize cost, and adapt to inhabitants, a smart home must
rely upon tools from artificial intelligence such as data mining and prediction. Prediction can
be used to determine the inhabitant’s next action. Specifically, MavHome needs to identify
repetitive tasks performed by inhabitants that establish a baseline for learning trends in
behaviors, detecting anomalies, and determining repetitive tasks worthy of automation by
the home. The home can make this prediction based solely on previously-seen inhabitant
activities and the current state of the inhabitant and the house.
A smart home inhabitant performs various routine activities, which may be considered as

a sequence of events, with some inherent pattern of recurrence. This repeatability leads us to
the conclusion that the sequence can be modeled as a stationary stochastic process. We can
then perform inhabitant action prediction by first mining the data (using episode discovery
techniques) to identify sequences of actions that are regular and repeatable enough to generate
predictions, and by second using a sequence matching approach (LeZi-update or Active LeZi)
to predict the next action in one of these sequences.
Our Episode Discovery (ED) data mining algorithm is based on the work of Srikant and

Agrawal [23] for mining sequential patterns from time-ordered transactions. We move an
examination window through the history of events or inhabitant actions, looking for episodes
(sequences) within the window that merit attention, or significant episodes. Each candidate



Table 1: Scenario prediction results.

Scenario 1 2 3 4 5 Average

Events 12958 12884 12848 13058 12668 12883

Significant Episodes 13 13 13 13 13 13

IPAM Percentage Correct 39% 42% 43% 40% 41% 41%

IPAM+ED Percentage Correct 77% 84% 69% 73% 65% 74%

BPNN Percentage Correct 62% 64% 66% 62% 64% 64%

BPNN+ED Percentage Correct 84% 88% 84% 84% 88% 86%

ED Processing Time (secs) 11 9 10 9 9 10

episode is evaluated using the Minimum Description Length (MDL) principle [21]. The MDL
principle favors patterns that can be used to minimize the description length of a database
by replacing each instance of the pattern with a pointer to the pattern definition. A detected
regularity factor (daily, weekly, or other time frame) further compresses the data because
the sequence can be removed without storing a pointer to the sequence definition, and thus
increases the value of a pattern. Deviations from the pattern definition in terms of missing
events, extra events, or changes in the regularity of the occurrence add to the description
length because extra bits must be used to encode the change, thus lowering the value of
the pattern. The larger the potential amount of description length compression a pattern
provides, the greater the impact that results from automating the pattern.
Our ED algorithm successfully identified daily and weekly patterns in synthetic data based

on the MavHome scenario described earlier. We also used ED to mine data that was collected
in the MavHome environment from six students during 2003. These students indicated in
advance their likely daily and weekly activities, although the timing, regularity, and order
of events would vary throughout the semester. The dataset contains 618 interactions that
are members of patterns occurring once a week, multiple times a week, and randomly. ED
successfully identified the patterns of three of the inhabitants as weekly significant episodes,
and marked which of the 618 interactions contributed to the significant episodes [14].
The knowledge that ED obtains by mining the user action history can be used in a variety

of ways. First, the mined patterns provide information regarding the nature of activities in
the home, which can be used to better understand lifestyle patterns and aid in designing
homes and devices for the home. Second, the significance of a current event as a member of a
discovered pattern can be used in controlling the home, to determine whether this task is worth
attempting to automate. Third, knowledge of the mined sequences can improve the accuracy
of predicting the next action, by only performing prediction for events known to be part of
a common pattern. We demonstrate the ability of ED to perform the third task, improving
the accuracy of prediction algorithms, by adding the mined results as a preprocessor to two
simple prediction algorithms. Action sequences are first filtered by the mined sequences. If a
sequence is considered significant by the mining algorithm, then predictions can be made for
events within the sequence window.
To test the filtering capabilities of ED, we coupled it with the IPAM sequential predictor

[24] and a back-propagation neural network (BPNN). We created a sequence of 13,000 actions
based on five randomly-generated scenarios, a situation in which these algorithms by them-
selves may not perform well. ED discovered 14 episodes in the data sets, and appreciably
improved the accuracy of both algorithms across all five scenarios, as can be seen in Table 1.
By using ED, we improve the accuracy of the prediction algorithms by reducing the total
number of incorrect predictions, leading to inaccuracies in learned health trends, detected
anomalies, and automated patterns.



4 Learning to Predict Inhabitant’s Mobility and Actions

Prediction is an important component in a variety of domains in artificial intelligence and
machine learning, that allows intelligent systems to make more informed and reliable decisions.
Certain domains require that prediction be performed on sequences of events that can typically
be modeled as stochastic processes. Especially common is the problem of sequential prediction:
given a sequence of events, how do we predict the next event based on a limited known history?
This is true, for example, when predicting inhabitant actions in a smart environment such as
MavHome. Prediction can be performed of upcoming inhabitant movement activities based
on observed past movement/activity patterns.
The fundamental framework due to Bhattacharya and Das [3, 4] demonstrate how optimal,

on-line learning and prediction algorithms can be designed for user mobility in a wide area
cellular network. This adaptive framework is based on the fundamental hypothesis that a
good leaner is a good predictor, thus applying information theoretic concepts and Lempel-
Ziv (LZ78) family of text compression techniques [25], on the mobility profiles collected over
time. We have also shown how to adapt this framework for managing indoor mobility and
context-aware resource management in smart home environments [22].
We have recently extended this framework and designed an algorithm, named Active LeZi

(ALZ), for sequential action prediction from an information theoretic standpoint. For any
sequence of events that can be modeled as a stochastic process, this algorithm employs the
power of Markov models to optimally predict the next symbol in any stochastic sequence.
Inhabitant action prediction, similar to other prediction problems, requires that the prediction
algorithm be capable of incrementally gathering information and deliver real time, “online”
predictions. Active LeZi is based on the LZ78 data compression algorithm, which employs
incremental parsing, thereby addressing this requirement. The smart home provides a ready
environment for employing sequential prediction algorithms such as ALZ. The home will have
to make inhabitant predictions based only on previously-seen inhabitant actions.
Consider a sequence of events being generated by an arbitrary deterministic source, which

can be represented by the stochastic process X = {xi}. The sequential prediction problem
can then be stated as follows. Given the sequence of symbols {x1, x2, . . . xi}, what is the
next symbol xi+1? Well-investigated text compression methods, such as LZ78, have also been
established as good predictors [4, 11]. According to information theory, a predictor that builds
a model whose entropy approaches that of the source achieves greater predictive accuracy.
Also, it has been shown that a predictor with an order that grows at a rate approximating the
entropy rate of the source is an optimal predictor [11]. Another motivation to look to the field
of text compression is that such algorithms are essentially incremental parsing algorithms,
providing a basis for online processing. ALZ addresses this prediction problem based on the
above-mentioned motivations.
The LZ78 data compression algorithm due to Lempel and Ziv [25], is a dictionary-based

text compression algorithm that performs incremental parsing of an input sequence and, as
a result, gradually changes the Markov order at the appropriate rate. This algorithm parses
an input string x1, x2, . . . , xi into c(i) substrings w1, w2, . . . , wc(i) such that for all j¿0,
the prefix of the substring wj (i.e., all but the last character of wj) is equal to some wi for
1 < i < j. Because of this prefix property, parsed substrings can efficiently be maintained in
a trie.
Consider the sequence of input symbols xn = aaababbbbbaabccddcbaaaa. An LZ78 parsing

of this string would yield the following set of phrases: a, aa, b, ab, bb, bba, abc, c, d, dc, ba, aaa.
This algorithm maintains statistics for all contexts seen within the phrases. For example, the
context a occurs 5 times (at the beginning of the phrases a, aa, ab, abc, aaa), the context bb
is seen 2 times (bb, bba), etc. These context statistics are stored in a trie.
LZ78 suffers from two drawbacks: in any LZ parsing of an input string, all the information

crossing phrase boundaries is lost. In most situations, there might be significant patterns
crossing phrase boundaries that affect the next symbol in the sequence. Second, although
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Figure 2: Trie formed by the ALZ parsing of the string aaababbbbbaabccddcbaaaa.

LZ78 asymptotically approaches optimal predictability, its convergence rate is slow [11].
Our Active LeZi (ALZ) algorithm is an enhancement of LZ78 that addresses these draw-

backs. As the number of states in an input sequence grows, we can see that the amount of
information being lost across the phrase boundaries increases rapidly. Our solution to this
problem involves maintaining a variable length window of previously-seen symbols. We choose
the length of the window at each stage to be equal to the length of the longest phrase seen in a
classical LZ78 parsing of the symbol history. The reason for selecting this window size is that
the LZ78 algorithm is essentially constructing an (approximation to an) order-(k-1) Markov
model, where k is equal to the length of the longest LZ78 phrase seen so far, which builds a
better approximation to the order-k Markov model. Therefore, we gain a better convergence
rate to optimal predictability as well as greater predictive accuracy. Figure 2 shows the trie
formed by the ALZ parsing of the input sequence aaababbbbbaabccddcbaaaa, which results
in an order-2 Markov model.
In order to predict the next event of the sequence for which ALZ has built a model, we

calculate the probability of each next action (symbol) occurring in the sequence, and predict
the one with the highest probability. For sequential prediction, to achieve good convergence
rates to optimal predictability, the predictor must ”lock on” to the minimum possible set
of states that is representative of the sequence being considered by using a ”mixture” of all
possible order models in assigning the next symbol its probability estimate. For this goal, we
employ the Prediction by Partial Match (PPM) family of predictors.
PPM algorithms combine weighted different-order Markov models to build a probability

distribution. In our predictive scenario, ALZ builds an order-k Markov model. The window
maintained by ALZ represents the set of contexts used to compute the probability of the next
symbol. In our example sequence aaababbbbbaabccddcbaaaa, the last phrase aaa (which is
also the current ALZ window) is used. Within this phrase, the contexts that can be used are
all suffixes within the phrase, except the window itself (i.e., aa, a, and the null context).
Suppose the probability that the next symbol is an a is being computed. From Figure 2

we see that an a occurs two out of the five times that the context aa appears, the other cases
producing two null outcomes and one b. Therefore, the probability of encountering an a at
the context aa is 2/5, and we now fall back (escape) to the order-1 context (i.e., the next
lower-order model) with probability 2/5. At the order-1 context, we see an a five out of the
ten times that we see the a context, and of the remaining cases, we see two null outcomes.
Therefore we predict the a at the order-1 context with probability 5/10, and escape to the
order-0 model with probability 2/10. At the order 0 model, we process an a for 10 out of 23
symbols seen so far, and we therefore predict a with probability 10/23 at the null context. The
blended probability of seeing an a as the next symbol is therefore 2

5 +
2
5{

5
10 +

2
10(

10
23)}. This

blending strategy assigns greater weight to higher-order models, while lower-order models
are suppressed owing to the null context escape probability. This is in keeping with the
advisability of making the most informed decision.
Figure 3 shows the performance of ALZ tested on data obtained from a Synthetic Data
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Figure 3: ALZ learning curve on data a) without noise and b) with noise.

Figure 4: ALZ performance on real data from April, 2003.

Generator containing in the first case a high degree of repetitiveness and little noise, and
containing in the second case a lower percentage of repeated events and more noise. The ALZ
learning curves were plotted by testing the number of correct predictions from the next 100
events, while increasing the training data set. ALZ’s performance converges quickly to 100%
in the first experiment (Figure 3a), and eventually converges to 86% accuracy in the second
experiment (Figure 3b).
In addition to the tests performed on the simulated data, ALZ was also tested on data

collected in an actual smart home environment - the UTA MavHome Lab. This data was
collected from monitoring the interactions of six different participants with devices, based on
regular daily and weekly patterns of activity. These represent data that will typically be seen
in a home environment – with all the associated randomness and noise within the system. As
we can see from Figure 4, the algorithm converges to about 47% accuracy on one month of
data consisting of 750 data points.
We have also enhanced ALZ to learn a Gaussian distribution representing relative time

intervals between actions in the observed sequences, each characterized by a mean µ and
standard deviation σ. Here, the relative frequency counts of the various phrases are stored
as before in the trie and used to incrementally build Gaussians that represent the observed
normal distribution of the relative time of occurrence of the last event in the corresponding
phrase. As with the prediction of the event itself, information stored at various orders of the
trie are blended to strengthen the resulting prediction. This enhancement was tested using
synthetic data consisting of a smart home scenario with repeating events, where the order
of events was constant, but the time difference between successive events were drawn from
different distributions depending on the context in which that event was taking place. Results
from this test show that in 92% of the cases, the next event occurred within the mean +/- 2
standard deviations of the predicted time.



As an additional experiment, we use ED to filter data for prediction by ALZ using actual
collected MavHome activity data. Based on one month of collected data with an extremely
large amount of noise (there are 20 students and 50 devices in the environment), ALZ achieves
a predictive accuracy of 30%, while ALZ with ED achieves an improved predictive accuracy
of 44%. These results show that even a powerful predictor such as ALZ benefits from being
combined with the results of a data mining algorithm.

5 Using a Smart Home to Assist Elderly and Disabled

The data mining, prediction, and multiagent technologies available in MavHome can be em-
ployed to provide health care assistance in living environments. Specifically, models can be
constructed of inhabitant activities and used to learn activity trends, detect anomalies, intelli-
gently predict possible problems and make health care decisions, communicate with caregivers,
and provide automation assistance for inhabitants with special needs.
A variety of approaches have been investigated in recent years to automate caregiver ser-

vices. Many of the efforts offer supporting technologies in specialized areas, such as using
computer vision techniques to track inhabitants through the environment and specialized
sensors to detect falls or other crises. Some special-purpose prediction algorithms have been
implemented using factors such as measurement of stand-sit and sit-stand transitions and
medical history, but are limited in terms of what they predict and how they use the results.
Remote monitoring systems have been designed with the common motivation that learning
and predicting inhabitant activities is key for health monitoring, but very little work has
combined the remote monitoring capabilities with prediction for the purpose of health mon-
itoring. Some work has also progressed toward using typical behavior patterns to provide
reminders, particularly useful for the elderly and patients suffering from various types of
dementia [12, 15, 18].
Our approach differs from these earlier explorations in that we are combining capabilities

in the areas of data collection, remote monitoring, prediction, data mining, and knowledge
engineering to provide predictive health monitoring assistance for inhabitants with disabilities
and caregivers. Instead of designing one specialized component, we demonstrate here that
a smart environment can accomplish all of the tasks needed to identify patterns indicating
or predicting a sudden or slow change in health status, to supply caregivers with periodic or
emergency information, and to provide inhabitants with needed automation assistance.

5.1 Capability 1: Perform Secure, Context-Aware Data Collection

The first capability we are developing is that of remote collection of long-term activity and
health status data. Data will consist of monitored inhabitant activities, vital signs, and
interactions with the environment, and will be collected using context-aware technology.
Our smart home environment is currently equipped to gather the following types of in-

formation: 1) inhabitant usage of any electrical device in the home, 2) usage of water in the
home and amount, 3) temperature settings, 4) inhabitant weight, 5) inhabitant movement
throughout the home, 6) prescribed and actual medicine dispensing schedule, 7) time, dura-
tion, and intensity of exercise, and 8) use of food items in kitchen. Active sensors including
wearable vital sign monitors can be integrated to further refine the model.
We have designed efficient algorithms for collecting real-time data that are context- and/or

situation-aware. For example, the inhabitant’s current activity (e.g., cooking vs. watching
television) or location in the environment (e.g., bedroom vs. navigating the stairs) can affect
the choice of sensors to use, and thus represent a defined context. Our data mining and
prediction algorithms are highly scalable, a desirable feature when numerous tiny, portable
sensor devices are involved. Furthermore, the algorithms create personal profiles and hence
provide customized solutions to individual patients. There may also be a need for ad hoc



collaboration of various entities as the emergency need arises. These problems can be elegantly
tackled with the help of pervasive computing and communications technology [10, 16].
Use of sensors in smart homes and on elderly or people with disabilities is critical for

collecting, storing, and processing appropriate data intelligently and in a timely manner.
Data collection and processing needs to be backed by an infrastructure that allows anytime,
anywhere reliable access to data sources (e.g., national data bases or vital records). This
is crucial for the purpose of data mining, intelligent decision making and profiling. Privacy
of the information is highly required since personal information will be collected during the
monitoring phase.

5.2 Capability 2: Identify Trends in Long-Term Data

The second health monitoring capability uses our data mining and prediction techniques to
identify trends in long-term data. Trends in time-varying data can be discovered and predicted
using the same data mining and prediction techniques described earlier. Instead of capturing
individual events and readings to store in the trie and use for prediction, changes in these
values over varying periods of time are captured, stored, and predicted. In particular, for each
feature of interest, the qualitative change in value (increase, decrease, same) and quantitative
relative change (numeric difference) is recorded. Because the chosen time steps are limitless in
value and yet critical to learning trends, we allow the user to determine the time step of choice
(e.g., daily, weekly, monthly) and use auto-correlation techniques to automatically determine
the time step most indicative of a temporal trend in the data.
The user can select features to monitor for trend analysis, including 1) change in mobility

(schedule, time, room location, total movement), 2) change in amount of exercise, 3) change
in deviation from prescribed medicine schedule, 4) change in amount of smart home requested
assistance (reminders or automation assistance), 5) change in nutrition (types of food, number
of calories), and 6) change in amount and types of activities.
Using the ED algorithm, long-term trends can be discovered from the raw data. The

algorithm can also be used to search for changes of a type of duration indicated by the
user. In addition, the prediction algorithm can be used to predict the upcoming changes
in these features for the next time step. Finally, we can use data from individuals assessed
by practitioners to learn classes of patient types, such as patients who require a move to
an assisted care facility. Time-varying data captured for a particular individual can then be
classified based on the learned models.
The result of this technology can be used in a number of ways. For patients recovering from

an illness or accident, the algorithms can be used to determine whether they are regaining
strength and vitality at an acceptable rate. For patients at risk of various types of accidents
and health risk situations, the trends can be used to determine the current health risk and
predicted short term health risk. These analyses can aid a caregiver in deciding whether the
individual requires a change in medication, activity schedule, care scheduling, or environment.

5.3 Capability 3: Detect Anomalies in Current Data

A direct outcome of our work in data mining prediction is the ability to detect anomalies in
collected data. For this purpose, we use the intuitive notion of an anomaly as a surprising or
unusual occurrence. With this notion in mind, the anomaly value of each monitored activity
or captured feature value can be collected and used to provide health status information.
An important consideration in any anomaly-detection system is the regularity, or pre-

dictability, of the data. Generally, the more predictable the data, the easier it is to detect
anomalies. As a result, the anomaly value of each data point is influenced first by the degree
of membership of the current state in a significant episode, second by the significance value
of the episode itself, and third by the deviation of the observed activity from the predicted
activity given the known episode.



The degree of membership of the current state in any of the discovered significant episodes
is calculated as the probability of occurrence of the episode given the immediate history of
observed activities. A probability is returned for each episode. This probability is then multi-
plied with the significance of the episode itself to calculate the regularity of the data context.
The episode yielding the highest regularity value, episode i, represents the baseline for the
anomaly calculation. Once membership in episode i is established, the ALZ trie is used to
provide the probability of the next predicted event e. If the event that actually occurs has
a very low probability given the context, the resulting event constitutes an anomaly. If the
regularity of the context is high and the probability of the observed event is low, this event
should be flagged as an anomaly. Thus the anomaly value of observed event e can be calcu-
lated as A = (Member(e,Episodei) ∗ Significance(Episodei))

P (e|Episodei,ImmHistory(e)) .

Anomalies can be be handled in a manner appropriate to the nature of the event and
anomaly value. The criticality of events can be set by the user. For example, an anomaly
in predicted interactions with the house will typically have a low criticality and thus simply
be recorded as an anomaly or prompt a reminder of the inhabitant of their normal routine.
For a more critical anomaly, such as a sudden disruption in vital signs, the home will first
attempt to contact the inhabitant. If contact cannot be made, the home will contact the
caregiver. Web cameras placed throughout the house can be used by the caregiver to check
on the inhabitant in such a situation and intervene with a medical difficulty.

5.4 Capability 4: Design Reminder Assistance System

An additional benefit that our smart home data mining and prediction capabilities can offer is
to provide a reminder system for inhabitants. Reminders can be triggered by two situations.
First, if the inhabitant queries the home for his/her next routine activity, the activity with
the highest probability will be given based on the ALZ prediction. Second, for episodes
with a high degree of significance and criticality, if the inhabitant deviates from the normal
routine (creates an anomaly), the house will initiate contact with the inhabitant to remind
him/her of the next expected activity. Such a reminder service will be particularly beneficial
for individuals suffering from dementia. The reminder can enable the individual to feel secure
about performing daily activities, and prevent accidents such as forgetting to turn off the
water in the bathtub or keeping the doors unlocked when leaving the house.

5.5 Capability 5: Provide Automation Assistance

Intelligent automation of home activities can reduce the amount of manual home interac-
tion required by inhabitants. Earlier we developed a decision-making algorithm to automate
activities in the house [8]. Selection of actions for the house to take is based on suggestions
from a reinforcement learning algorithm, which minimizes necessary manual intervention with
the house and reduces actions with costly effects. The decision maker relies on input from
ALZ to suggest the typical next inhabitant action, and uses results from the ED data mining
algorithm to segment the learning space and improve the quality of the learned results.
Users can specify specific activities they would like the house to automate (temperature

control, control of hard-to-reach devices, etc.). MavHome will then automate the activities
based on learned preferences and action patterns. In addition, if the inhabitant does not
respond to a reminder of a critical event, MavHome will automate an activity to ensure safety
of the individual. Such actions include shutting off the bathwater, turning off the stove, or
locking up the house when it is empty.



Figure 5: MavHome environment and interface.

6 Conclusion

Initial algorithms are in place for data mining, mobility and action prediction, decision mak-
ing, and automation. These capabilities are being used in the MavHome lab (MavLab) and
apartment (MavPad). Figure 5 shows lights in the entryway (top left) and on Ryan’s desk
(bottom left) turning on in reaction to inhabitant activities (these automated actions are also
reflected in the simulator). We are collecting health-specific data and testing using volunteers
living in MavPad and MavHome, as well as recruited residents of the C.C. Young Retirement
Community in Dallas, Texas.
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