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Abstract 
An intelligent home is likely in the near future. An important ingredient in an intelligent 
environment such as a home is prediction – of the next low-level action, the next location, and the 
next high-level task that an inhabitant is likely to perform. In this paper we model inhabitant actions 
as states in a simple Markov model. We introduce an enhancement to this basic approach, the Task-
based Markov model (TMM) method. TMM discovers high-level inhabitant tasks using the supplied 
unlabeled data. We investigate clustering of actions to identify tasks, and integrate clusters into a 
hidden Markov model that predicts the next inhabitant action. We validate our approach and observe 
that for simulated data we achieve good accuracy using both the simple Markov model and the 
TMM, whereas on real data we see that simple Markov models outperform the TMM. We also 
perform an analysis of the performance of the HMM in the framework of the TMM when diverse 
patterns are introduced into the data. 
Keywords:  Markov models, action prediction, task-based or conceptual clustering, machine 
learning, agent learning. 

 
1. Introduction 

We envision that a home capable of being intelligent is a very likely possibility. A home 
that is capable of making decisions will provide a degree of autonomy not currently 
found in home environments. Individuals in such a home will find the home adapting to 
their needs and living styles while preserving comfort. In automating the home, many of 
the inhabitant’s desired home interactions can be autonomously performed without the 
inhabitant or user intervening. Automation will provide a start towards the home adapting 
to the inhabitant’s needs.  

The MavHome Smart Home research project1, 2 focuses on the creation of an 
intelligent home that behaves as a rational agent. An important component is the ability 
to make decisions based on predicted activities. Values that can be predicted include the 
usage pattern of devices in the home, the movement patterns of the inhabitants and 
typical activities of the inhabitants. In this paper we model part of the prediction problem 
– predicting device usage in a home.  



In a home, a user interacts with a variety of devices, and we term each such 
interaction as an action.  For example, switching on the kitchen light at a given time is an 
action and can be represented as the string ‘10/25/2002 8:15:31 PM Kitchen Light D1 
ON’, where D1 is the device identifier, ‘Light’ is the device type, ‘Kitchen’ represents 
the location of the device, and ‘ON’ is the resulting status of the device. This interaction 
is stamped with the time and date. An inhabitant such as Sira can be characterized by his 
typical activity patterns which consist of a number of high-level tasks broken down into 
individual actions. For example, the task of ‘Getting to Work’ consists of turning on the 
bathroom light at 7am, turning on and later off the coffee maker in the kitchen, turning 
off the bathroom light at 7:30am, then turning on the kitchen light. After Sira has 
breakfast, the garage door is opened while the kitchen light is turned off and the door is 
closed after he leaves. In this case we know the task and the corresponding actions, but 
the observed data consists of just the low-level actions. Our goal is to learn which sets of 
actions constitute a well-defined task and use this information to make predictions. 

Work in the area of prediction has been applied to other problems, such as predicting 
UNIX commands.3, 4, 5 Active LeZi6 is an alternative method of predicting user actions 
being employed in the MavHome smart home project. Active LeZi is a sequential 
prediction approach founded on information theoretic approaches and based on the LZ78 
text compression algorithms. Active LeZi does not currently handle sequences that have 
time information and does not perform unsupervised learning of tasks. The prediction 
problem is difficult for a home scenario where there are multiple inhabitants performing 
multiple tasks at the same or different times. As a first step, we investigate a portion of 
this problem: predicting a single inhabitant's actions and tasks. 

Traditional machine learning techniques (e.g., decision trees, memory-based 
learners, etc.) that are employed for classification face difficulty in using historic 
information to make sequential predictions. Markov models offer an alternative 
representation that implicitly encodes a portion of the history. The distinguishing feature 
of our approach is that instead of learning models from data pre-labeled with an 
associated task, we actually identify the task that encompasses a set of actions in an 
unsupervised fashion. We hypothesize that recognizing the task will help better 
understand the actions that are part of it, and we expect to better predict the inhabitant's 
next task and thus the next action.  For example, if the home recognizes that Sira is 
making breakfast, it will better predict his next action as turning on the coffee maker 
given that the last action was turning off the bathroom light. This paper builds on our 
previous work in which we introduce the application of TMM to smart home tasks.1, 7, 8 

The remainder of the paper presents our work. We first formalize the problem and 
explain application of a simple Markov model.  We then explain a method of partitioning 
actions into sequences, clustering the sequences into tasks, and integrating task 
information into a hidden Markov model.  Following this, we discuss generation of the 
simulated data, the collection of real data and the validation of our approach. Finally, we 
conclude with some directions for future work. 
 
 



2. Problem Description and Modeling of Actions 

Given actions A1, A2, …, AN we want to predict the next action in the sequence, AN+1. An 
action Ai describes an event in a home. In the example of the action string provided 
earlier, “10/25/2002 8:15:31 PM Kitchen Light D1 ON”, the action string consists of 
many features or fields: date, time, location, device type, device identifier and device 
status. In this work we consider devices that have only binary states – ON and OFF. Also, 
the locations of devices in a home are assumed to be fixed and do not change over a 
period of time. 
 
2.1 Markov Models 

Our motivation to approach the prediction problem within the framework of Markov 
models is prompted by the need to learn the pattern of user actions without storing large 
amounts of history. As a first step we model the entire sequence of inhabitant actions as a 
simple Markov model, where each state corresponds to one or more actions. For example, 
consider the action A11: 03/31/2003 8:17:31 PM Kitchen Light D1 ON which can be 
represented as a state in the model. Since each action is a device manipulation with the 
equivalent time stamp, to create a unique state for each possible action would result in an 
unreasonably large model.  We construct smaller models by discretizing the time of the 
action and ignoring the date, in effect merging similar states together.  

When each new action Ai is processed, a check is made to see if the action is ‘close 
enough’ to an existing model state to merge with that state.  If not, a new state is created 
with action representative Ai and transitions are created from the previous action in the 
sequence to Ai.  The values of each transition reflect the relative frequency of the 
transition.   

Once the simple Markov model is constructed, it is used for prediction of actions. A 
prediction can be generated by matching the current state with a state in the model and 
predicting the action that corresponds to the outgoing transition from that state with the 
greatest probability. 
 
3. Partitioning Actions and Clustering into Tasks 

In the previous section we mention how a simple Markov model was built and used for 
the purpose of predicting user actions. Sometimes the simple Markov model may not 
yield useful predictions. This can be seen when there is an equal likelihood of transitions 
to many states from a particular state. This may occur if there is too much noise in the 
data or there exists some randomness in the inhabitant’s actions. In this section and the 
next we describe enhancements to our model that we use to enhance the ability to predict 
actions. 

We hypothesize that the predictive accuracy can be improved by incorporating 
abstract task information into the model. If we can identify the actions that comprise a 
task, then we can identify the current task and generate more accurate transition 
probabilities for the corresponding task. 
 



3.1 Partitioning Actions using Heuristics 

Actions in smart home log data are not labeled with the corresponding high-level task, so 
we propose to discover these tasks using unsupervised learning.  The first step is to 
partition the action sequence into subsequences that are likely to be part of the same task. 
Given actions A1, A2, …, AN we can divide these into disjoint groups G1, G2, …, GP, 
where each group consists of a sequence of actions AI, …, AI+J and for simplicity every 
action is part of only one group. Note that each group maintains sequence information 
and hence all actions within a group are ordered with respect to the time and date 
information. If action sequences from different tasks overlap and this overlap is present 
sufficiently in the given actions, then we can consider the overlapping action sequences 
as a task by itself. This is supported by our proposition to discover the high level tasks 
with no prior knowledge of the tasks. 

The partitioning step extracts particular instances of activities. Given these groups, or 
activity instances, we can cluster similar instances together into a task definition. Since 
we have no prior information about the tasks, we need to use heuristics to group actions 
such that each group is an instance of a task. Some of the heuristics that can be employed 
are ones that use the location of the device, the time interval between actions, the status 
of devices and the number of actions since the last grouping was formed. 

We separate an action sequence Ax, …, Ay into groups Ax, …, Az and Az+1, …, Ay 
using any of the following rules: 

1) The time difference between Az and Az+1 is > P minutes. 
2) There is a difference in the device location (such as another room) between the 

Az and Az+1. 
3) The number of actions in the group is > n. 
We can use these three rules either independently or in combination with the other 

rules. The result of the partitioning step is a set of groups or individual tasks. The groups 
so obtained are now ready to be clustered into sets of similar groups representing tasks. 
 
3.2 Clustering Partitions into Abstract Tasks 

Given the different groups resulting from the partitioning process, we have to cluster 
similar groups together to form abstract task classes. As a first step, we extract meta-
features describing the group as a whole. Information that we can collect from each group 
includes the number of actions in the group, the start time and time duration of this group, 
the locations visited and devices acted upon in the group. This information is stored as a 
partition PI and thus we have partitions P1, P2, …, PP. The partitions are now supplied to 
the clustering algorithm. 

Clustering is used to group instances that are similar to each other and the individual 
cluster represents an abstract task definition. A cluster consists of these similar instances, 
and we can consider the mean of the cluster distribution as the cluster representative, 
while the variance represents the disparity in the grouping of the cluster instances. 
Because we require clusters that group similar instances and because of the inherent 



simplicity of the partitional clustering algorithms, we apply k-means clustering to 
partitions P1, P2, …, PP. 

To perform clustering, we utilize LNKnet,9 from MIT Lincoln Labs.  The results are 
parsed to extract the cluster centroids and variance values. We average the cluster 
centroids and variances over values generated from ten separate runs to promote 
generality of the results. For certain data sets we find that the clustering results show the 
tasks clearly. As the data is more disparate we find the clusters less reflect the true tasks. 
The resulting clusters represent the abstract inhabitant tasks. In the context of hidden 
Markov models (HMMs) these clusters can be used as hidden states, and the HMMs can 
be used in the TMM framework to perform action prediction. 
 
4. Hidden Markov Models 

Hidden Markov models have been used extensively in a variety of environments that 
include speech recognition,10 information extraction,11 recognizing human activities12 and 
creation of user profiles for anomaly detection.13 HMMs can be either hand built14 or 
constructed assuming a fixed-model structure that is subsequently trained using the 
Baum-Welch algorithm.15 To our knowledge, HMMs have not been used for prediction 
of tasks, and our use of HMMs to predict actions and tasks is a new direction of research. 

In this section we discuss how clusters obtained from the partitioning and clustering 
process are used in a hidden Markov model, how HMM parameters are learned, and the 
use of HMM within the framework of our task-based Markov model for predicting 
actions. 
 
4.1 HMM Terminology 

The elements of a HMM can be defined formally. A HMM is characterized by the 
following:10 
1) N, the number of hidden states in the model: We denote these individual states as S = 
{S1, S2, …, SN} and we denote the state at time t as qt. 
2) M, the number of distinct observation symbols per state or the discrete alphabet size: 
The individual symbols are denoted as V = {v1, v2, …, vM}. 
3) A, the state transition probability distribution, A = {aij}, where aij = P [qt+1 = Sj | qt = 
Si],  1 ≤ i, j ≤ N 
4) B, the observation symbol probability distribution in state j, B = {bj(k)}, where 
bj(k) = P [vk at t | qt = Sj],  1 ≤ j ≤ N and 1 ≤ k ≤ M 
5) π, the initial state probability distribution, π = {πi}, where πi = P [q1 = Si],  1 ≤ i ≤ N 
6) O, the observation symbol vector or the sequence of observations, O=O1O2 … OT, 
where each observation Ot is one of the symbols from V, and T is the number of 
observations in the sequence. 

In our problem, N represents the number of clusters, and vi is a symbol representing a 
single discretized action. We want a moderate set of symbols that represent the entire 
training action instances. The number of such symbols is the value M. T is the size of our 
training data, and O is a vector containing the modified form of the actions (each action is 



discretized in time) represented as symbols and A, also known as the transition matrix, 
represents the transition probability distribution between hidden states. B, also known as 
the confusion matrix, represents the probability distribution of observing a particular 
symbol (a modified form of an action) upon arriving at one of the N states. The 
distribution π gives the likelihood of each state representing the initial state. 
 
4.2 TMM framework 

We use the clusters obtained from the clustering step as hidden states in a HMM. The 
hidden states thus have the same features as those of the clusters; namely, the number of 
actions in the cluster, the start time of actions in the cluster, the time duration of the set of 
actions in the cluster, the location of the devices, and the device identifiers. Construction 
of a HMM needs more than just the information about the hidden states. We need to 
define the matrices and vectors before we can use the HMM for prediction.  

Given that the actions repeat over time, we require a model that is ergodic. Since 
only N and M are pre-defined, we need to learn the three probability measures A, B and π 
together known as the triple λ, written as λ = (A, B, π) in compact form. We use the 
Baum-Welch algorithm to train the model. The values of the triple are initialized 
randomly, uniformly or through a seeding procedure (these are discussed in the next 
section), and the training is essentially an expectation-modification10 (EM) procedure. 
Following the training of the model, the forward algorithm10 is used to calculate the 
probability of an observation sequence given the triple.  

Typically, the forward algorithm is used to evaluate an observation sequence with 
respect to different HMMs and the model yielding the greatest probability is the model 
that best explains the sequence. However, we consider a different evaluation mechanism 
where we have a single model and many possible observation sequences. The observation 
sequence that best fits this model is used for prediction of the next action. This is 
accomplished as follows: given a model λ and the observation sequence Oi+1Oi+2 …Oi+k, 
we need to predict Oi+k+1. Symbols Oi+1Oi+2 …Oi+k represent the observed recent history 
of actions. Since the predicted symbol can be any one of the M alphabet symbols, there 
are M possible sequences with the first k symbols in common but different last symbols.  

The sequence that yields the greatest probability value for the model offers symbol 
k+1 as the predicted next action. Since the probabilities associated with the model differ 
only slightly, we consider the top N predictions as valid predictions, where N is a 
configurable value. The probability distributions of the top N predictions will be fed to a 
decision maker, which will learn over time how the top N predictions are to be 
considered. Alternatively a user can be queried regarding the predictions suggested. Since 
this method requires remembering k symbols to make the next prediction, we need to 
remember at least k actions. Remembering the entire observation sequence can be 
prohibitive while making prediction for the next action, hence we have a sliding window 
that keeps only the last k symbols or actions, where k is a configurable value. 
 
 



4.3 Initialization of Parameters 

The last section mentions that the parameters of the HMM need to be initialized before 
using the Baum-Welch method to optimize the parameters. The initialization of the 
parameters can be done in one of three ways. The three approaches are: random 
initialization, uniform initialization and initialization through the process of seeding. We 
have shown the results when the confusion matrix is initialized using the random method7 
and we present these results here again. In addition we show in this paper the results 
when the initialization of the confusion matrix is done through a process of seeding while 
the transition matrix and the initial state vector are initialized using a variety of 
techniques. Random initialization is performed with a different seed each time so that we 
obtain different probability values. This does lead to evaluation problems since multiple 
runs are needed to average the results of the various random seeds. Another approach is 
to uniformly initialize the values of the two probability measures which produces more 
consistency in the results. This method of initialization is detrimental, however, as the 
model size increases and our observations will confirm this hypothesis.  

Seeding the triple requires deliberately fixing the values of one or more of the 
probability measures that comprise the triple. Seeding is done prior to the Baum-Welch 
training so that the model is trained differently in the anticipation that the model thus 
obtained will present us with better predictions. 
 
4.3.1 Seeding the confusion matrix 

Seeding of the confusion matrix is performed using the cluster centroids and variances 
simultaneously on the hidden states along with the observation vector or the inhabitant 
actions. The method of seeding is described now. 

We know that matrix B represents the observation symbol probability distribution in 
a given state j, i.e. B = {bj(k)} and each bj(k) represents the probability of observing 
symbol vk at time t given that the state at time t is Sj, i.e., bj(k) = P [vk at t | qt = Sj]. The 
observation vector is a sequence of observations where each observation is one of the M 
symbols in the set V. If a symbol has a higher likelihood of being part of a particular 
cluster we assign a high probability for the entry in the matrix that corresponds to 
observing this symbol upon reaching the corresponding state (or cluster, since they imply 
the same). A high probability implies that a symbol’s device and location fields occur in 
the corresponding cluster or state and the symbol’s time stamp is within the time duration 
of the state. If the likelihood is small or moderate, the appropriate probability is assigned. 
The value assigned is not a fixed value but a small range around the probability value 
computed. This is repeated for every symbol and for each of the hidden states. 
 
4.3.2 Initializing the other probability measures 

Once the matrix B is seeded, the matrix A and the vector π are initialized. We use random 
and uniform initializations for these two probability measures. In addition we can 
initialize matrix A through a seeding process. In this case, we seed the transition matrix 
using information about the clusters as well as the cluster transition information obtained 



from a classification mechanism. The classification mechanism uses cluster centers to 
classify a data point to a particular cluster. We classify the data points that were used for 
clustering, i.e., the partitions that were clustered are now classified. We determine the 
cluster to which each partition belongs, and thus obtain a cluster classification for each 
partition. The sequence of partitions is then equivalent to a sequence of cluster 
classifications that indicates which cluster or activity follows another. 

Once the probability measures are initialized, the Baum-Welch method is run to 
optimize the parameters. The seeding of parameters influences the optimization and 
hence is an important step towards constructing the HMM. We show the performance 
results for the different types of initializations in the section on experimental results. 
 
5. Data Synthesis and Validation 

We created a synthetic data generator to validate our approach, in which we model a 
user’s pattern consisting of different activities with specific locations (e.g., kitchen, 
bathroom) and devices (e.g., TV, lamp). Devices are turned on or off according to the 
predefined pattern. Randomness is incorporated into the time at which the devices are 
used and in the inhabitant’s activities using a Gaussian distribution. We generate data sets 
corresponding to the usage of eight devices. Data set 1 has 10000 actions, corresponding 
to a period of 1250 days of activity. Data set 2 has 10000 actions corresponding to 1250 
days of activity. Data set 0 has about 10000 actions, which corresponds to a period of 325 
days of activity. In data set 1 the pattern was fixed except for the small differences in 
time of occurrence of the actions. Data set 2 has the same fixed patterns but there is a 
substantial difference in time between activities on weekdays and on weekends. This 
forces our approach to learn the same set of actions as two different tasks since they 
differ substantially in time. Data set 0 has more patterns and randomness that the other 
data sets. 

Real data was also obtained from a student test group who used X10 lamp and 
appliance modules to control devices in their homes. One such sample contained around 
700 actions or data instances over a period of one month. The difference between the real 
and simulated data was that the real data contains noise over which we had no control. In 
contrast, the data we simulated had patterns cleanly embedded so as to test and evaluate 
our different approaches. The real data is useful for a test of how well the approaches do 
in practice. 

In the first set of experiments7 we divided the data set into training and testing data. 
The training data size varies from 100 to 900 instances in steps of 100 for the simulated 
data set 0 and for the real data from 100 to 500 in steps of 100. The remaining data is 
used for testing. 

In the next set of experiments we divide the data into training and testing data. For 
data set 1, data set 2 and data set 0 we divide the data into 10 sets of 1000 actions and 
perform the training and testing on each set of 1000 actions. For these data sets we vary 
the training data from 100 to 900 in steps of 200 and test on 100 subsequent actions. We 
also experiment with different values of the number of clusters, the sequence length and 



the allowable time difference. For data sets 1 and 2 we set the sequence length to 20 and 
the time difference (defined in section 3.1 as ‘P’ minutes) to 600 and the number of 
clusters is set to 3 and 6 respectively. 

For the real data we perform similar experiments. The training data size we use 
varies from 100 to 500 in steps of 200. The values for the time difference and the length 
of action sequence to be retained are the same as for the simulated data. The value of the 
number of clusters used is set to 11, 23 and 47. We experimented with other values 
chosen randomly (7, 17, 27, 39, 59) and found the results comparable to the above values. 
Hence we use these values since they are representative of the possible values that can be 
used. 

For both the simulated and the real data, we employ the three different techniques for 
initialization of the probability measures as mentioned in section 4.3. We also use a 
single heuristic that employs both time and location information. Since the data is of a 
sequential nature, we do not perform a cross-validation for this data but average the 
results from multiple runs. We test the predictive accuracy of the simple Markov model 
and the Task-based Markov model by comparing each predicted action with the observed 
action and average the results over the entire test set for both the simulated and real data. 
 
6. Experimental Results 

We first describe our experimental results when the probability measures are not seeded 
and are randomly initialized. We later explain the results with the introduction of seeding. 
 
6.1 Initial Experiments without Seeding 

In this section we describe our experimental results. The term time difference is set to 5 
minutes in the initial set of experiments. For the clustering process we vary the number of 
clusters generated.  The results shown here are for 47 generated clusters. 

In Figure 1 we plot the performance of the simple Markov model and the hidden 
Markov model for the data set 0. The accuracy of the top prediction as well as the top 5 
(N=5) predictions for both models are shown. As the number of instances increases, the 
simple Markov model does very well but eventually plateaus. For the HMM, the top 
prediction does not do well but the top 5 predictions performs reasonably well. 
 



 
 

Fig. 1: Performance of simple MM and HMM for simulated data. 

 
In Figure 2, we compare the simple Markov model against the HMM when real data 

is used. Here, neither model performs well, but the HMM performs slightly better than 
the simple model. The best and top 5 predictions yield similar results for the simple 
Markov model. In the case of real data, the vast number of actions (devices along with 
the action time) as well as noise in the data hinders the simple Markov model from 
coming up with an efficient prediction algorithm. A random predictor that chooses 
among the many actions does not compare well. The choice for a simple Markov model 
is one of the N different states whereas for a HMM the choice is the alphabet size, that is 
M. For 300 training instances we observe 225 states added to the simple Markov model 
and 215 symbols added to the alphabet. The random predictor’s accuracy for simple 
Markov is 0.0044 and for the HMM is 0.047.  

To clean up noise in the real data will require us to know what the actual tasks are 
and this defeats our purpose of finding the tasks to make better predictions. Also, in the 
figure we see that the best and top 5 predictions of the simple MM are almost equal and 
hence the overlap in the plots. 
 



 
 

Fig. 2:  Performance of simple MM and HMM for real data. 

 
The HMM does not perform as well on real data as on simulated data, and we 

discuss why this is so. 
1) The heuristics that are employed to partition the actions are not able to exactly 

divide these actions into tasks. This is because of the user patterns that interleave 
actions from different tasks. Employing these heuristics will not determine 
whether the interspersing is deliberate or the mixing is a random occurrence. 

2) The clustering of these partitions employs a Euclidean distance measure. The 
simple use of a distance function may not be sufficient for clustering these tasks.  

An improvement in the simple Markov models can be seen when we change the time 
difference feature, as shown in Table 1. However, the improvement in accuracy is slight. 
In Table 1, we vary the time difference keeping the number of training instances a 
constant. This value is 600 for the simulated data and 500 for the real data. We observe 
that as the time difference increases there is an improvement in the accuracy (due to the 
fact that the model is much smaller and easier to learn), but for higher time difference 
values, the performance suffers. This is due to the fact that actions that manipulate the 
same devices but at different times are now mapped to the same state. This generalization 
will lead to a smaller model. With this model accurate prediction of an action occurring at 
a certain time is not possible. In the case of real data, there is a constant increase in the 
predictive accuracy and beyond this point the accuracy plateaus. The real data that we 
have needs more analysis and we expect that with a larger amount of real training data, a 
similar performance to that of the simulated data will be seen.  
 

 
 
 



Table 1: Effect of change in time difference to predictive accuracy in simple Markov models. 
 

Time 
difference 
 

Accuracy (Top5) 
Simulated data 

Accuracy (Top5) 
Real data 

100 0.52 0.02 
300 0.84 0.046 
600 0.92 0.137 
1200 0.93 0.152 
3600 0.872 0.273 
10800 0.90 0.33 
28800 0.88 0.32 
57600 0.72 0.39 

 
 
We also observe the effect of the number of clusters on predictive accuracy for the 

HMM. We found that for few clusters, the accuracy is about 54-58%. As we increase the 
number of clusters, the accuracy increases to near 80% in some cases. Further increase 
does not greatly improve the accuracy. 

In our next experiment we evaluated the rate at which states are added to a simple 
Markov model for simulated and real data. The comparison is shown in figure 3 and is 
important since it depicts the nature of the simulated and real data and consequently the 
performance of the HMM on real data. The figure shows the rate at which states are 
added to the simple Markov model for every 50 training instances for the simulated data 
and for real data. We see a drop in the number of states added as more training instances 
are seen. This is true of both simulated and real data. The modeling of an inhabitant’s 
actions as states in a simple Markov model works better on simulated data than on real 
data. The more we see the training instances, the less the model adds new states because 
of the similarity between the action and the existing states. The graph for the real data 
indicates that the set of training instances is not sufficient since there are a large number 
of states added despite the large number of training instances. Since the real data has a 
total of 600 actions we see that the training instances result in adding new states more 
often than in finding a match with the current set of states present in the model. This large 
number of states and transitions only decreases the likelihood of making a correct 
prediction with the simple Markov model. 
 
 



 
 

Fig. 3: States added in a simple Markov model for every 50 training instances. 

 
6.2 Experiments with Seeding and Different Initializations of the Probability measures 

The next set of experiments investigates the results of seeding the confusion matrix while 
the other probability measures are initialized using random, uniform or seeding methods. 
The best and top 5 predictions for the simple Markov model yield similar results and 
hence we show only the top 5 predictions and compare these with the top 5 predictions 
suggested by the HMM.  

In figure 4 we compare the performance of the top 5 predictions of the simple 
Markov model with the predictions suggested by the HMM. The performance of the 
HMM and the simple Markov model for the top 5 predictions are similar and achieve 
near perfect accuracy for this data set.  

 
 



 
 

Fig. 4. Data set 1 – Performance of simple Markov model and HMM (uniform initialization). 

 
Observe that the best prediction of the HMM is low because of the added complexity 

introduced into the model. The accuracy value increases if we were to consider the top N 
choices for the next action. Using the knowledge of the top N values we can consider 
eliminating wrong choices over a period of time through feedback. The method of 
feedback and improving the top N values is one of the future work directions. 

We compare the performance of the HMM using the different initializations – 
random, uniform and through seeding. We observe that the uniform initialization 
significantly outperforms the other two (p<0.025) and random outperforms the seeded 
method (p<0.03). 

In figure 5, we trace the performance of the HMM, initialized using the seeding 
process for the best and top 5 predictions, for different values of the sequence length. We 
observe that there is an increase in the accuracy as the sequence length increases, but for 
higher values of sequence length the amount of computation increases so that the increase 
in computation may offset any gain in the accuracy. The effort here is to find a small 
value of the sequence length that gives fairly good accuracy. 
 



 
 

Fig. 5: Performance of HMM for the simulated data set 1 for varying values of sequence length. The probability 
measure (matrix A) uses a seeding method. Parameters kept constant are the number of training instances (200); 

allowable time difference (TD = 300) and # clusters (CS = 3). 
 

Data set 2 contains patterns that are temporally shifted and has more randomness 
than data set 1. In figure 6 we see the performance of the simple Markov model and the 
HMM when data set 2 is used. We see that the performance of the HMM for the top 5 
actions is lower than for the simple Markov model. The uniform initialization and 
random initialization performed comparably (significant to t=0.45). These methods 
significantly outperformed the seeding method (p<0.02 and p<0.048, respectively). 

We observe in this experiment that the clustering of the partitions of actions is 
imperfect. Just as data set 1 can be hand labeled and fit into clusters, so can this data set 
be hand labeled into clusters. We observe the imperfection in the clustering process by 
comparing the results of the clustering to the results obtained through hand labeling. This 
can be attributed to the difference in the time of actions between weekends and weekdays 
and hence an increase in model size. 



 
 

Fig. 6. Data set 2 – Performance of simple Markov model and HMM (uniform initialization). 

 
The effect of seeding improves the performance of the HMM and this is seen in the 

experiments that follow on the data set 0 and the real data set. The next experiment uses 
the data set 0 that has more patterns and randomness. We observe here that the seeding 
method performs better than the other initialization methods (p<0.005 for uniform and 
p<0.023 for random). We also observe the for certain values of the training instance the 
random initialization does better than the uniform method (p<0.005) but for some values 
(training size = 900) the two methods are comparable.  

In figure 7 we show the performance of the simple Markov model and the HMM. 
We observe that with an increase in patterns and randomness there is a loss in the cluster 
quality. The loss in cluster quality affects the HMM from coming up with sequence of 
hidden states that best explains the observed sequence of symbols, in HMM terminology, 
or actions. Thus, we see more state transitions and the symbols that are output reflect the 
likelihood of seeing the best symbol for a particular state. Thus the task identification for 
more disparate data sets becomes more difficult. 
 



 
 

Fig. 7. Data set 0 – Performance of simple Markov model and HMM (initialization through seeding). 

 
However, as more clusters are introduced the seeding method performs better than 

the uniform initialization method. Similarly, we can conjecture that the greater the 
disparity in the data, the better the random initialization will perform since uniform 
initialization can be harmful leading to local minima when using the Baum-Welch 
method to train the HMM. Our purpose in testing these three techniques is to show that 
we can apply these different techniques for different types of data and observe the 
circumstances under which a particular technique performs well. 

The reasons why the HMM does not perform as well as the simple Markov model in 
the experiments with disparate data were discussed in section 6.1. In figure 8 we show 
the performance of the real data for the top 5 predictions of the simple Markov model and 
the HMM. We employ the seeding method to initialize the HMM and due to data 
insufficiency, we are not able to test for significance. 

In the case of real data, the vast number of actions (devices along with the action 
time) and noise in the data hinders the simple Markov model from generating accurate 
predictions. To clean up noise in the real data will require us to know the actual task 
labels, which are not always available. We see that the simple Markov model improves 
its performance as the size of the training data increases. This is in contrast to what 
happens with the HMM. 
 



 
 

Fig. 8. Real data – Performance of simple Markov model and HMM. 

 
The HMM does not perform well as the number of training instances increases. This 

is due in part to the noisy nature of the data sample we have. The decrease in 
performance is due to the increase in the number of symbols in the alphabet of the HMM 
that adds to the complexity in terms of increasing the model size as well as evaluating the 
forward probabilities when determining the next action. The effect is a decrease in the 
probability of choosing the correct observation as the next action. Hence there is a 
decrease in the accuracy with an increase in the amount of training data. To verify that 
the decrease is due to the complexity we vary the number of training instances and test on 
a fixed size of the test data (200 instances). The results are shown in figure 8. The 
performance of a random predictor has been discussed in section 6.1. 

In figure 9 we illustrate the performance of the HMM (initialized through seeding) 
when the number of clusters is varied. We observe here that the increase in the number of 
clusters decreases the accuracy, while accuracy drops when the amount of training 
instances is increased for the same number of clusters. Due to the limited data available 
we do not have significance tests for these experiments.  
 



 
 

Fig. 9. Real data – Performance of HMM for a range of the number of clusters. 

 
We also ran tests varying the sequence length and the allowable time difference. We 

find that as the sequence length and the time difference increases, the accuracy increases. 
Further increase in sequence length or time difference offers no appreciable increase in 
accuracy and can be detrimental for large values.  
 
7. Conclusions and Future Work 

In this paper we have described our approach to predicting an inhabitant’s behavior in an 
intelligent environment such as a smart home. The role of prediction here is to provide 
assistance for home automation and adaptation to an inhabitant’s needs. To predict the 
next action we use a simple Markov model that models each action as a state. Our 
enhancement to this model is to categorize the actions into abstract tasks and use this 
information to make subsequent predictions. This is part of our Task-based Markov 
model approach. TMM groups actions into partitions, clusters the partitions and uses a 
HMM to perform prediction. 

Our experiments show the performance of the simple Markov model and HMM for 
real and simulated data sets. The results reveal that the HMM performs better than the 
simple Markov models for certain data sets. The results of the various experiments also 
illustrate that the real data and simulated data differ, and the solutions that work for 
simulated data do not work for the real data. Generalizing, we can say that the choices of 
parameters including the allowable time difference, the number of clusters, and the 
sequence length are important in determining the overall accuracy. In spite of this, we 
cannot have a ‘one solution fits all’ policy. For real data this is especially true and only 



based on experience we can find a choice of parameters that performs reasonably well for 
a given data set.  

We can say that although identifying abstract tasks of users is difficult given just a 
history of executed actions, what has been achieved is progress in the direction of task 
identification in an unsupervised mode. We obtain good clustering results for data such as 
the Data Set 1 which contains identifiable patterns. Thus, the TMM finds a right model in 
certain instances that validates the identification of tasks. Identifying the task and its 
associated actions can be used to predict future actions. 

One of the pressing issues for future work is to test the model using different sources 
of real data and verify the resulting performance. As part of this effort, we are currently 
generating a larger database of smart home activity for testing in our Artificial 
Intelligence lab. 

Another effort that can be pursued is the use of multiple simple Markov models, 
where each model abstracts a task and is similar to a cluster. Once the clusters are 
obtained, a Markov model is constructed to encompass the actions of each cluster while 
also forming the transitions from one Markov model to another. We can also look into 
alternate methods of cluster generation and compare the performance of HMMs with the 
multiple simple Markov models. Other elements that need to be considered once we 
achieve reasonable performance is the cost associated with correct and incorrect 
predictions and the use of feedback to alter the model. 
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