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Much of current data mining research is focusedlisnovering sets of attributes that discriminateada
entities into classes, such as shopping trends fparticular demographic group. In contrast, we ar
working to develop data mining techniques to discopatterns consisting of complex relationships
between entities. Our research is particulariyliagple to domains in which the data is event-dnige
relationally structured. In this paper we presgoiiroaches to address two related challengesgte to
assimilate incremental data updates and the neadnt® monolithic datasets. Many realistic problems
are continuous in nature and therefore require ta daining approach that can evolve discovered
knowledge over time. Similarly, many problems présdata sets that are too large to fit into dymami
memory on conventional computer systems. We addiresemental data mining by introducing a
mechanism for summarizing discoveries from previdats increments so that the globally-best patterns
can be computed by mining only the new data increm&o address monolithic datasets we introduce a
technique by which these datasets can be partiti@mel mined serially with minimal impact on the
result quality. We present applications of our kvar both the counter-terrorism and bioinformatics
domains.
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1. Introduction

Much of current data mining research is focused on algasithi@t can discover sets of
attributes that discriminate data entities into classes) as shopping or banking trends
for a particular demographic group. In contrast, wewamking to develop data mining
techniques to discover patterns consisting of complexaesitips between entities. Our
research is particularly applicable to domains in whiehdata is event driven, such as
counter-terrorism intelligence analysis, and domainsraevitee only distinguishing
characteristics are relational, like molecular striesu Analytical tasks require discovery
of relational patterns between events and actors sthiése patterns can be exploited for
the purposes of prediction and action. Similarly, ideimtifycharacteristic molecular
structures is necessary to acquire a foundational uadeisy of important research
problems in many of the basic sciences. Problemsabf somplexity often present two



related challenges; the need to assimilate incremertlugaates and the need to mine
monolithic datasets.

Many challenging problems, including those in the coutgieprism domain, require
processing and assimilation of periodic increments of data, which provides new
information in addition to that which was previously@ssed. Our approach provides a
mechanism for summarizing discoveries from previous dateeinents so that the
globally best patterns can be computed by examining onlyatedata increment.

The second challenge we are addressing is the sdsglabijraph-based discovery to
monolithic datasets, which are prevalent in domains likintormatics, where vast
amounts of data must be examined to find meaningful stegtufhe algorithms used
for data interpretation in graph-based knowledge disgoaed data mining systems are
generally computationally expensive. The utilization cher and more elaborate data
representations for improved discovery leads to evgrelagraphs. The graphs are often
so large that they can not fit into the dynamic mgnadrconventional computer systems.
Even if the data fits into dynamic memory, the amaoftmemory left for use during
execution of the discovery algorithm may be insufficiemsuiting in an increased
number of page swaps and ultimately performance degraddtichis paper we describe
a technique by which large datasets can be segmented arebsgubcserially with
minimal impact on the result quality.

Fortunately, these two challenges rely on many ofsimme mathematical concepts
and algorithm techniques.

Common Substructures Compressed Graph

Figure 1. Subdue discovers common substructures within
relational data by evaluating their ability to comprées t
graph.

2. Structure Discovery

The work we describe in this paper is based on Subdéch is a graph-based data
mining system designed to discover common structures fatatianal data. Subdue

represents data in graph form and can support eithectetireor undirected edges.

Subdue operates by evaluating potential substructures dor ahility to compress the

entire graph, as illustrated in Figure 1. The bettparicular substructure describes a
graph, the more the graph will be compressed by replabiaig substructure with a

placeholder vertex. Repeated iterations will discovertiadil substructures, potentially

those that are hierarchical, containing previously caesged substructures.



Subdue uses the Minimum Description Length Printiple the metric by which
graph compression is evaluated. Subdue is also capaléngfan inexact graph match
parameter to evaluate substructure matches, so thiat @éviations between two patterns
can be considered as the same pattern.

DL(S)+DL(G|S)

Compression =
DL(G)

(1)

Equation 1 illustrates the compression equation used taaeaubstructures, where
DL(S) is the description length of the substructure beingluated, DL(G|S) is the
description length of the graph as compressed by the scist, andDL(G) is the
description length of the original graph. The bettsubstructure performs, the smaller
the compression ratio will be.

Subdue provides two algorithms for calculating the descrifiogth of a graph. The
first takes a more comprehensive view of the physieprasentation of the graph
components and consists of the number of bits neededctude the vertex labels, the
adjacency matrix, the number of edges between verticektree edge labels. The
second is more simplistic, relying on the number ofises and edges as a measure of
size. For the work in this paper, we have used ttierlancoding. We refer the reader to
[Cook and Holder 199&for a full discussion of the MDL computation used by Subdue
to encode graphs.

Subdue’s evaluation algorithm ranks the best substrudbyreseasuring the inverse
of the compression value in Equation 1. Favoring langdues serves to pick a
substructure that minimizeBL(S) + DL(G|S), which means we have found the most
descriptive substructure.

3. Research
In this paper we introduce two new algorithms, Incremenidld8e (I-Subdue) and
Serial-Static-Partitioning-Subdue (SSP-Subdue). For auk wn |-Subdue, we assume
that data is received in incremental blocks as is tke &@ many long-term analytical
tasks. Continuously reprocessing the accumulated grapheafte increment would be
intractable, so instead we wish to develop methodtetatively refine the substructure
discoveries with a minimal amount of reexamination dfadta so that the globally-best
patterns can be identified based on previous local disesve

For our work on SSP-Subdue, we have developed a seriph gartitioning
algorithm to facilitate scaling, both in terms of speedug memory usage, without the
need for any distributed or parallel resources. ThelihasBubdue algorithm discovers
prevalent patterns that best represent the struct@gph-based dataset, but requires a
substantial amount of processing time and dynamic meffieorthe types of datasets
generally found in realistic problem domains. This wddscribes how substructures
discovered locally on data partitions can be evaluatetttiermine the globally-optimal
substructures.



3.1 Related work

3.1.1 Onlinelearning

The online sequential learnihgroblem presents many similarities to the incrementa
discovery problem with which we are concerned. Sithee learner is receiving its
training data sequentially, it must repeatedly apply tlaeniag algorithm until it is
satisfied that it has converged to a good model of the warlds means that it has to
store all of the previously encountered training vectorsome usable form, rather than
reapply the learner to the aggregate dataset aftér reag data increment is received.
Due to the enormity of the datasets, some summarizegidmique must be used that
does not sacrifice valuable information. This summ#dmatechnique must also be
selected so that it does not inappropriately bias #w kearning iteration toward a
previously learned model. Friedman and Goldszhaiddress this issue in their work on
sequentially updating the structure of Bayesian Networks.

3.1.2 Mining sequential patterns

Research in mining sequential pattérissstill largely about finding patterns in item-set
data, unlike the structural datasets that we are igastg in this research. However,

there are similarities in that the objective of m@qsequential patterns is to look for time-
sequenced transaction patterns, such as a series & neatals or consumer purchases.
This differs from traditional item-set data mining, atniis generally concerned with

finding intra-transaction patterns. Our goal for outgratdiscovery work includes the

additional constraint that transactional and eventioelships are emerging over time

and so we must be able to evolve the fundamental strustwer discovered patterns.

The existing work on item-set data considers all ofithesaction data in its entirety and
looks for sequential patterns within it.

3.1.3 Online data mining

There is a body of emerging research related to odfite mining®° However, much
of this work is related to online machine learning researchat the focus is more on
identifying the point of stability in the discovered treordconcept and in dealing with
changing systems in the form of concept drift or shitis is an important problem for
our work as well and is the focus of continuing researcboweder, by restricting the
research to item-set data, which is assumed to arrigemplete and independent units,
current approaches are able to largely ignore issuatedeto event and transaction
relationships that emerge over time. Although we masiendar assumption in the work
presented here for the purposes of illustrating effectiverranimation techniques, our
ongoing work is addressing the issue of sequentiallyecied data, where relationships
extend across temporal data boundaries. This is aatriisue for applications of
structural data mining.



3.1.4 Parallel graph-based knowl edge discovery

Several related partitioning and sampling approaches hese proposed in existing
association rule mining reseatti-*?**put generally a graph cannot be divided into non-
overlapping partitions as is the case for associati@srilhe edges cut at the partition
boundaries pose a challenge to the quality of discovery.attiee work, a static
partitioning algorithm® was introduced to scale the Subdue graph-based data mining
algorithm using distributed processing. This type of pelrsin is appealing in terms of
memory usage and speedup. The input graph is partitionedniqartitions for n
processors. Each processor performs Subdue on itsg@gatt partition and broadcasts
its best substructures to the other processors. Tbeegsors then evaluate the
communicated substructures on their local partitionse@ftcevaluations are complete, a
master processor gathers the results and determinegldhelly best discoveries.
However, this approach requires a network of computers usinganication software
such as PVM or MPI. Our serial partitioning approaciplémented in the SSP-Subdue
system, does not require a system of specializedbditgd or parallel hardware. Instead,
the partitions are mined one after the other on a smglehine with the same processor
playing the roles of slave and master processors igtétie partitioning approach.
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3.2 Incremental Subdue

For this work, we view each new data increment as aclisiraph structure. Figure 2
illustrates one conceptual approach to mining sequenti| daere each new increment
received at time stepis considered independently of earlier data incrementsat the
accumulation of these structures is viewed as one latgedisconnected, graph. The
original Subdue algorithm would still work equally well if wepied it to the
accumulated graph after each new data increment is edceihe obstacle is the
computational burden required for repeated full batch psougs



Increment #1

Compressed Increment #1

Best Substructure
Discovered
S1

Compress with S1

Best Substructure
Discovered

Compress with S2

Best Substructure
Discovered

Compress with S3

Figure3. Three data increments received serially and pragesdévidually by
Subdue. The best substructure is shown for each |lazehient.



It is easy to see how the concept depicted in Figure Peapplied to real problems.
For instance, a software agent deployed to assist arigatele analyst would gradually
build up a body of data as new information streams im tiree. This streaming data
could be viewed as independent increments from which constrantures are to be
derived. Although the data itself may be generated ig serall increments, we would
expect to accumulate some minimum amount before we min@uplicating nodes and
edges in the accumulated graph serves the purpose of givirgwedht to frequently
repeated patterns.

3.2.1 Sequential discovery

Storing all accumulated data and continuing to periogiaapeat the entire structure
discovery process is intractable both from a computatipeaspective and for data
storage purposes. Instead we wish to devise a methodhlgh wwe can discover
structures from the most recent data increment anditsineously refine our knowledge
of the globally best substructures discovered so far.

However, we can often encounter a situation where sequapfibcations of Subdue
to individual data increments will yield a series afdlly best substructures that are not
the globally best substructures, which would be found asguthia data could be
evaluated as one aggregate block.

Figure 3 illustrates an example where Subdue is applied segjlyetdi each data
increment as it is received. At each increment Subdioedirs the best substructure for
the respective data increment, which turns out to belyocally best. However, if we
aggregate the same data as depicted in Figure 4 and thentta@gigseline Subdue
algorithm we get a different best substructure, which ab i& globally best. This is
illustrated in Figure 5. Although our simple example coukllgde aggregated at each
time step, realistically large data sets would be tagieldy to do so.

Figure 4. Accumulated graph for Subdue batch processing
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Figure 5. Result from applying Subdue to the three aggredate
increments.

In general, sequential discovery and action brings withsét of unique challenges,
which are generally driven by the underlying system thajenerating the data from
which structures are discovered. One problem thatisstlalways a concern is how to
reevaluate the accumulated data at each time stefhtrofigiewly added data. There is
generally a tradeoff between the amount of data that eastdoed and reevaluated and
the quality of the result. A summarization technique isallg employed to capture
salient metrics about the data. The richness of thisrsarization is a tradeoff between
the speed of the incremental evaluation and the range ofulestructures that can be
considered.

3.2.2 Summarization metrics

Our goal for this research is to develop a summarizatietric that can be maintained
from each incremental application of Subdue that Widhaus to derive the globally best
substructure without reapplying Subdue to the accumulated data

To accomplish this goal, we rely on a few artifactsSobdue’s discovery algorithm.
First, Subdue maintains a list of tihebest substructures discovered from any dataset,
wheren is configurable by the user. The default valuerfds 3, but any number of
ranked substructures can be maintained, limited only bytreamts on the beam search
that Subdue uses to prune its search space.



Second, we use the value metric Subdue maintains for sedadiructure. Subdue
measures graph compression with the Minimum Desoriptiength principle as
described in section 2. For I-Subdue, we must use a madifirsion of the compression
metric to find the globally best substructure, illugtchin Equation 2.
DL(S)+2DL(G;|S)

j=1
>.DL(G,)
j=1
With Equation 2 we calculate the compression achieved gartecular substructure,

S, up through and including the current data incremment The DL(S) term is the
description length of the substructug,under consideration. The term

Compress, (S )= (2)

> DL(G, |S)
j=1

represents the description length of the accumulatedh grfigr it is compressed by the
substructures.
Finally, the term

> DL(G, )

represents the full description length of the accumuigtzph.

M=

DL(G, )

j=1

arg max(i) —
DL(S )+ DL(G;|S)
j=1

3)

At any point we can then reevaluate the substructurieg Ejuation 3 (inverse of
Equation 2), choosing the one with the highest valugdmlly best.

The process of computing the global substructure vakestplace in addition to the
normal operation of Subdue on the isolated data incremé&f&.only need to store the
requisite description length metrics after each iteratoru$e in our global computation.
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Table 1. Substructure values computed independently for gerktion.
Highlighted cells indicate maximum values in each increment

New Substructures from| New Substructures New Substructures
Increment # Increment #1 from Increment #2 from Increment #3
Sll S12 S13 S21 S23 S31 S33
1 1.2182]1.04808]| 0.9815
1.04808 1.21882 | 0.981511
3 1.03804 1.15126 | 0.966017

Table 2. Using I-Subdue to calculate the global value oh eabstructure. The
description length of each graph iteration) (&d of each substructure)(&re shown.
Highlighted cells indicate the global best substrucatirsach increment.

Global Best
Calculation After New Substructures from New Substructures |New Substructures
Iteration # Iteration #1 from lteration #2 from lteration #3
S1y Si2 Si3 So1 Ss3 Sa1 Saz _ |DL(G)*
1 1.2182 1.04808 ] 0.981511 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117
3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 | 0.9884 116
DL(S)* 15 15 25.75489 15 25.754888 15 26.50978

*measured in bits

As an illustration of our approach, consider the redudts the example depicted in
Figure 3. The top=3 substructures from each iteration are shown in Eigur Table 1
lists the values returned by Subdue for the localnt@aibstructures discovered in each
increment. The second best substructures in increrBemd 3 §,, Sp) are the same as
the second best substructure in incremet ), Which is why the column corresponding
to S, has a value for each increment. The values in Talkdeelthe result of the
compression evaluation metric from Equation 1. Thallpdest substructures illustrated
in Figure 3 have the highest values, demarcated by gididtited cells in Table 1.

Table 2 depicts our application of I-Subdue to the incresmfrom Figure 3. After
each increment is received, we apply Equation 3 to seeaglobally best substructure.
The values in Table 2 are the inverse of the comprresseiric from Equation 2. As an
example, the calculation of the compression metric fortautisre S, after iteration 3
would be:

DL(S;;)+DL(G, |S;;)+DL(G, S, )+DL(G;|S;,)
DL(G, )+ DL(G, )+ DL(G,)

Consequently the value 8f, would be:

117+117+116
15+96.63+96.63+96.74

=1.1474

For this computation we rely on the metrics computed byd@&ibvhen it evaluates
substructures in a graph, namely the description lerfdtrealiscovered substructure, the



description length of the graph compressed by the substruahdéhe description length
of the graph. By storing these values after each iremeis processed, we can retrieve
the globally best substructure using Equation 3. Figurkeistrihites the basic algorithm,
where Subdue is invoked to discover the candidate substru@nceshe byproduct
evaluation metrics are collected and used to calculatgltially best substructures after
each new data increment is processed.

In circumstances where a specific substructure ispnegent in a particular data
increment, such &%, in iteration 2, then

DL(G,|S;,)=DL(G,)
and the substructure’s value would be calculated as follows:

117+117+116
15+117+117+85.76

=1.0455

/ICall I-Subdue on the new data increment G;

I-Subdue(G))
//Subdue returns description length values and top n substructures for current data increment,
Ilwhich are stored for global calculations
CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[], size_G; O Subdue(Gj)
total_graph_size = total_graph_size + size_G;

/ /

Get_Global_Best(total_graph_size,CandidateSubstructures[], SubstructureSizes]],
CompressedGraphSizes[])

best_value =0
global_best_substructure = nil
for(i=1 to sizeof(CandidateSubstructures))
size_si = CandidateSubstructureSizesli]
compressed_graph_size =0
for(j=1 to num_data_increments)
compressed_graph_size = compressed_graph_size +
CompressedGraphSizes[i][jl)  //DL(Gj|S)
value_si = graph_size/(size_si + compressed_graph_size)
if value_si > best_value
best_value = value_si
global_best_substructure = CandidateSubstructures]i]
return global_best_substructure

Figure 7. Application of I-Subdue to store metrics regdrfrom running Subdue over a
single data increment, then calculating the global hdssteucture using the collected
metrics.



I-Subdue vs. Subdue Runtime
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Figure 8. Comparison of I-Subdue vs. Subdue on 10-50 increments
Each increment provides 220 new vertices with 0 or 1 duggedges.
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Figure 9. Comparison of I-Subdue vs. Subdue on 10 — 50 incte&me
Each increment provides 1020 new vertices with 1 to 4 owjgamdges.



3.2.3 Experimental evaluation

To illustrate the relative value of I-Subdue with respgecperformance in processing
incremental data, we have conducted experiments witmthetic data generator. This
data generator takes as input a library of data labelfigooation parameters governing
the size of random graph patterns, and one or moo#ispibstructures to be embedded
within the random data. The random graph segments aabelsonfigured in terms of
the density of the edge connectivity. The data genepatoluces a new data increment
when invoked by I-Subdue and for comparison purposes ardhigesumulative set of
increments into a file for batch processing by Subdue.

For the first experiment, illustrated in Figure 8, we paned the performance of I-
Subdue versus Subdue at benchmarks ranging from 10 to 50 @mtsenfcach increment
introduced 220 new vertices, within which five instancetheffour-vertex substructure
pictured in Figure 8 were embedded. The quality of the resukrms of the number of
instances found, was the same for both I-Subdue and Sufidgerunning times were
the only discernable qualitative difference. The majanplifying factor for this first
experiment was the vertex degree. Each vertex had 0 og&ingitedges with a 50%
probably for each. A less densely connected graphigr&amplifies the substructure
search space.

The results from the second experiment are depicted imeFeguFor this experiment,
we increased the increment size to 1020 vertices andegatevertex an outward degree
ranging from 1 to 4 edges. Each degree value was chotfe2%8i6 probability, which
means that on average there are about twice as manyg edgeertices. This more
densely connected graph begins to illustrate the signifie of the run-time difference
between I-Subdue and Subdue. Again, five instances ofotivevértex substructure
shown in Figure 9 were embedded within each incremerg. didtovery results were the
same for both I-Subdue and Subdue with the only qualitatiferefice being the running
time.

3.3 Partitioned Discovery

For this work we are concerned with addressing largeofitbic datasets, which are
prevalent in many real-world domains. To address thadlenge, we have developed an
algorithm that operates serially on smaller partitiohthe graph and then compares the
local results to acquire a measure of the overall ddsstructures for the entire graph.
We also illustrate a method to recover information ioshe form of edge cuts from the
graph partitioning. We illustrate the scalability lwiesults from experiments performed
using protein databases and artificial datasets.

In SSP-Subdue we partition the input graph kijmartitions. The value of x here is
selected by the user to ensure that each partitiom&l £nough to fit in dynamic
memory. We perform Subdue on each partition and cdledd best substructures local
to each partition in a list, where is the beam used to constrain the number of best
substructures reported. We take care that for eachigartBubdue reports only the
substructures that have not already been reported agibeatl on any of the previously-



processed partitions. By doing so, we implicitly increteebeam dynamically. At the
end of this pass, there atie substructures in the list. Then we evaluate tixbdecally-

best substructures on all partitions in a second passtlee static partitions, similar to
the partition approach applied to association rule miflingnce all evaluations are

Ilinvoke serial Subdue on each partition Gj, which returns top b substructures for the //jth partition
for each partition Gj
localBest[] = Subdue(Gj);
//Store local best substructures for global evaluation
bestSubstructures[] = Union(bestSubstructures[],localBest[]);

/IReevaluate each locally-best substructure on all partitions
sizeOfGraph = 0;
for each substructure S;in bestSubstructures[]
sizeOfSubgi = MDL(S);
sizeCompressedGraph = 0; /finitialize
for each partition Gj
/Isize of graph (in bits) is the sum of sizes of individual partitions
sizeCompressedGraph = sizeCompressedGraph + MDL(G||Sy);
sizeOfGraph = sizeOfGraph + MDL(G));
/[Calculate global value of substructure
subValues; = sizeOfGraph / (sizeOfSubs; + sizeCompressedGraph);
bestSubstructuresli].globalValue = subValues;;

/IReturn the top b substructures in bestSubstructures[] as the top b global best //substructures

Figure 10. SSP-Subdue Algorithm

complete, we gather the results and determine the glebabliscoveries. This is a serial
approach and does not rely on parallel hardware. Figursubh@marizes the basic
algorithm and the metric used for evaluating substructloeslty is described below.

As a part of this research, we have generated a varfatieoMDL measure,
described in section 2, which is used to rank discoveriémijjo

SSP-Subdue measures graph compression using our measure gargmtin
Equation 4, where DL(S) is the description length ofdhlestructure S being evaluated,
DL(Gj|S) is the description length of the graph correspondinthéojth partition as
compressed by substructure S, and Q)L{&the description length of the uncompressed
jth partition. The substructure that minimizes the s@dlqS) and DL(G|S) is the most
descriptive substructure, and thus is locally the best.

DL(S) + DL(G | S) @)
DL(G)

CompressionRatigi(S) =



The smaller the value of the compression ratio of astsudture, the higher will
Subdue rank that substructure locally for the jth partition.

The global best substructures are found by reevaluatinigahlly best substructures
using Equation 5 on the other partitions. Heris, &substructure in the common list. The
common list represents a collection of all local bssbstructures. The variable
represents the number of partitions, DL(S) is therilg$on length of the substructure S
under consideratior},* -1DL(G;|S) is the sum of description lengths of all the partit
after being compressed by the substructure SYdnpdDL(G;) is the description length
of the entire graph.

DL(S)+>_DL(G|S)
j=1
Z DL(G))
j=1
The substructure with the minimum value of the compoessatio obtained from
Equation 5 is ranked as globally the best substructure.

Compression(S) =

(5)
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The following example illustrates the SSP-Subdue algorithmcems. For this
example input graph is split into two partitions. Subdueuison partition 1 shown in
Figure 11 and the best substructures local to this partdhown in Figure 12, are stored
for global evaluation. Next, Subdue is run on partition @shin Figure 13 and the best
substructures local to this partition, shown in Figureaté,stored for global evaluation.
In a second pass over both of the static partitidhsf ghe locally-best substructures are
evaluated using Equation 5 to produce the globally-bedtrsidures shown in Figure



15. The instances of these globally best substructureshighdighted in the two
partitions.

3.3.1 Edge-lossrecovery approach

The partitions are compressed using the globally bdsttisictures found by running
SSP-Subdue and then combined in pairs. Then the edgestiedbst due to the original
partitioning are reinserted between the combined pmarti

Since merging all possible combinations of two pariitithat have edges cut between
them could lead to a total of x(x-1)/2 combinations, eactitipa is constrained to be
combined at most once with another partition. The péipartitions that have the
maximum number of edges cut between them are merged.ti&@air of partitions that
have the second maximum number of edges cut between therorabined, and so on.
This guarantees that two partitions are not combinedssnthey had any edges cut
between them. However, this might sometimes lead toatchimg such that some
partitions are left that cannot be combined with anthefremaining unpaired partitions
due to no edges cut at the boundaries. Here we are agstirainthe compression and
combining of partitions will not lead to a partition kvia size too large to fit in dynamic
memory. Finally, SSP-Subdue is executed on the combimttiqos to get the globally-
best substructures. The following example illustrates @prcaach. The input graph,
shown in Figure 16, is divided into two parts. As a restiithis partitioning, all the
instances of one of the most frequently occurring substestu‘rectangle below
triangle”, are lost.

After running SSP-Subdue on the partitions shown in Figurethe substructures
illustrated in Figure 18 are reported as the global hdwstsictures.

The two partitions are compressed using the above sutosgsicand combined to
form the graph shown in Figure 19

After running SSP-Subdue on the compressed graph shown ineFigyr the
substructures in Figure 20 were reported as the bestrsttbses. Clearly this set
includes larger substructures encompassing the frequentlyrimer substructure,
“rectangle below triangle,” which was initially lost dteethe original partitioning. Thus,
this approach proves useful in recovering the instancd®sé interesting substructures
that are lost due to the original partitioning.

However, a problem can occur when the best substruistim®ken across partition
boundaries, and subgraphs within this substructure arevdigzl in local partitions in
different combinations with other subgraphs. The laiatoveries would be used to
compress the partitions and the original substructilienet be reformed and discovered
in the second iteration. To remain consistent with dhniginal Subdue algorithm, the
compression could be performed using only the singlesiestructure found as opposed
to the beam number of best substructures. Then dhmpressed subgraph would still
appear as part of the original substructure and the bedd beufound. However, this
problem can still exist in other forms. As shown inglfe 21, suppose that
ellipse- rectangle- triangle is the desired substructure (the same lalaglgked to every



edge here), and appears half the time as ellipsetangle- triangle- square and the
other half as ellipserectangle- triangle- oval. If one boundary occurs between ellipse
and rectangle and another between rectangle and triaitgles possible that
triangle- square or triangleoval will be the best local discoveries, and after
compression the overall best substructure will stll be found as half of the triangles
are now parts of the compressed substructure.

near near

[=rmimm ==

Figure 21 Best substructure broken across partition bo@sgés
subgraph occurring as best local substructure

3.3.2 Experimental evaluation

Experiments that demonstrate scalability of a seriditigered version of Subdue were
performed using artificially-generated datasets and proiabases.

3.3.2.1 Artificial datasets

The artificial graphs have been generated using a grapérator that takes as input one
or more substructures and the number of instanceacbf gubstructure to be embedded
in the target graph. Random vertices are then addedamubm edges are inserted
between the vertices to generate a graph of thespseified size. A post-processing step
of randomizing the distribution of the vertices in the frdp performed for our
experiments to ensure that all of the embedded substrsieieaot localized in one part
of the graph. The size of the graphs are indicated dydtitation xxKVyyKE, where KV
stands for kilo vertices (1000 vertices) and KE stand forddges (1000 edges). Also, in
some cases a suffix of the type Nw has been added &bdive notation where N denotes
the number of partitions.
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Figure 22. SSP-Subdue execution time on artificial grapkarying size
and varying numtr of partition:
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Figure 23. Substructures embedded in artificial datasets

Figure 22 plots the run time of SSP-Subdue on theaatifjraphs of varying sizes as
the number of partitions increases. For this experintleatsubstructures shown in Figure
23 are embedded into the artificial graphs, each withta®®%6 coverage. The execution



times plotted for Number Of Partitions = 1 represengsetkecution time for the baseline
Subdue algorithm. It is clear that SSP-Subdue achieves tastidisspeedup. This is
because the run time of Subdue is nonlinear in thedfizbe input graph. In SSP-
Subdue, the Subdue algorithm is applied serially to smallgparivf the graph, so the
combined run time is less than that of Subdue.

SSP-Subdue spent about 15% of its total run-time on dialgévaluation of locally-
discovered substructures in order to select the globallgrapsubstructures.

3.3.2.2 Protein database

The Protein Data Bank (PDB) is a worldwide repositoryparcessing and distributing
3-D data structures for large molecules of proteins and ioumbéds. We converted the
information in the given PDB file to a Subdue-formattgdph file corresponding to the
compound described in the PDB file. Each atom is reptedeas a vertex whose label is
the element name of that atom. For any two atomsseticuclidean distance is between
0.4 and 1.9 angstroms (or 0.4 and 1.2 angstroms if one ordbathe atoms are
hydrogen), the program outputs a "bond" edge between theegedf the two atoms.
These bond distances are based on the technique used iRa#hdol molecular
visualizer. The graphs are not heavily connected dntleaedges have the same label
(i.e., "bond”). Since we were mainly concerned wixperimenting on graphs of varying
sizes, the files from PDB used for our experiments welerted randomly and inclusion
of no particular chemical compound was emphasized. We bdaWwsealatabase to obtain
the graphs of the required sizes.

Figure 24 plots the run time of SSP-Subdue on PDB grapkarging sizes as the
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Figure 24 SSP-Subdue execution time on graphs of varying
size and varying number of partitions from proteiratias

number of partitions increases. The execution timetsgal for Number Of Partitions = 1
represents the execution time for Subdue. As in theafatificial graphs, it is observed
that a substantial speedup is achieved over Subdue. Here, wseobaerved an



anomalous small increase in the run time for fourig@ms as compared to that of three
partitions for the 24KV25KE graph. This can be attributedht fact that the random
partitioning can lead to partitions that have varying degoéeonnectivity (very highly
connected or very sparsely connected) between veitioea partitioned into different
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Figure 25 Number of instances of best substructure fougdhjphs of varying size
and varying number of partitions from protein database

number of partitions. The more highly connected a gragitiparis, the more time
Subdue takes to process it.

Figure 25 indicates the number of instances of the sadsstructure found by SSP-
Subdue for graphs of varying sizes with a varying numbepaofitions. The best
substructure discovered by Subdue and SSP-Subdue was thefosaeaeh of these
graphs. As the graphs in the protein database arsetpaonnected, the information loss
at the partition boundaries is relatively less and tigs quality of discovery is not
degraded drastically. An enlarged plot depicting the trend injtladéity of discovery for
the 10KV10KE graph with varying number of partitions hasiiaserted in Figure 25 to
emphasize the point that the quality is affected, thougknastically.

4, Conclusion and Future Work

4.1 Sequentially-connected data

The focus of incremental discovery in this paper has beeateveloping the fundamental
algorithms for iterative discovery refinement and wasetksbtn data that was not



connected across temporal increment boundaries. Howengry domains, including
the counter-terrorism domain we discussed, will inclugmecorrelations that transcend
multiple data iterations. For example, a terrorist sttspé&roduced in one data increment
may be correlated to events that are introduced on lattegments. As each new data
increment is received, it may contain new edges thahdxXtom vertices in the new data
increment to vertices received in previous increments.

Increment

Common Boundary
Substructures -7

.....

Figure 26. Sequentially connected data

Figure 26 illustrates an example where two data incremamsintroduced over
successive time steps. Common substructures have deggifiéd and two instances of
the common substructure extend across the incrementiany.

4.2 Shifting concepts

In the traditional machine learning problémt® it is generally stated that some function
F(x) is generating an attribute vector x, based on a fixéatioeship, whether
probabilistic or deterministic. The attribute vectaepresents the observable features of
the problem space. This definition extends intuitivelydata mining. However, in
sequential discovery problems, the domains are suchhbatrtderlying relationships
between system variables often change over time. me&feback to our counter-
terrorism application, it is certainly the case thatorist organizations change their
behaviors in unpredictable ways and adapt to couatesrism efforts. There are
approaches to machine learning in the presence ofnghiftincepts, such as the sliding
window approachi! where only the lash data points are used to update the learned
model, but such approaches are often naive in the seasé¢hey disregard valuable
information learned outside of the data window. Thigks to forgetting everything
discovered about a terrorist organization’s behaviors apdhilities when in fact only a
small portion of their behaviors have changed, like daration in communication
patterns. Our future work will focus on developing methfodstructure discovery when
the underlying system is undergoing change.

4.3 Graph partitioning

We have developed a naive graph partitioner for use ircwovent research. The main
motivation behind developing our own partitioner was thatentire input graph need



not be placed in dynamic memory at once. Graphs arattoo large to fit in main
memory can be streamed and partitioned using this naitiggoar. It also records the
edge cuts in a separate file, which is helpful for edgerkasssery as described in section
3.3.1. We have been able to show that the quality lnftauctures discovered by SSP-
Subdue is good, even with an unsophisticated graph paetitidhe use of a more
sophisticated graph partitioner should lead to imprqaedormance of the SSP-Subdue
system.

The quality of discovered substructures as well as thedspeachieved by SSP-
Subdue depends highly on the graph partitioning step. Subdige riwehave any
information about the structure of its input graphsl danerefore graph partitioning
algorithms, like the multi-level Kerninghan-Lin algoritffiror the Fiduccia-Matheyses
algorithm?® are best suited for use in Subdue. However, we are igaisy additional
partitioning heuristics, beyond frequency of occurrendgchivmay help reduce the loss
of edges that represent important information and are a gbamnportant pattern
discoveries.

We are also pursuing analytical methods that could be usdétéomine if it is
possible to bound the probability that any of the edges subgraph of a randomly-
partitioned graph straddle a partition boundary. It mapdssible to bound the number
of random partitions that should be considered to enkatanith a high probability most
matching subgraphs are found. This would suggest that thiétfatgdoe modified to try
many different random partitions.
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