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Much of current data mining research is focused on discovering sets of attributes that discriminate data 
entities into classes, such as shopping trends for a particular demographic group.  In contrast, we are 
working to develop data mining techniques to discover patterns consisting of complex relationships 
between entities.  Our research is particularly applicable to domains in which the data is event-driven or 
relationally structured.  In this paper we present approaches to address two related challenges; the need to 
assimilate incremental data updates and the need to mine monolithic datasets.  Many realistic problems 
are continuous in nature and therefore require a data mining approach that can evolve discovered 
knowledge over time.  Similarly, many problems present data sets that are too large to fit into dynamic 
memory on conventional computer systems.  We address incremental data mining by introducing a 
mechanism for summarizing discoveries from previous data increments so that the globally-best patterns 
can be computed by mining only the new data increment.  To address monolithic datasets we introduce a 
technique by which these datasets can be partitioned and mined serially with minimal impact on the 
result quality.  We present applications of our work in both the counter-terrorism and bioinformatics 
domains. 
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1. Introduction 
Much of current data mining research is focused on algorithms that can discover sets of 
attributes that discriminate data entities into classes, such as shopping or banking trends 
for a particular demographic group.  In contrast, we are working to develop data mining 
techniques to discover patterns consisting of complex relationships between entities.  Our 
research is particularly applicable to domains in which the data is event driven, such as 
counter-terrorism intelligence analysis, and domains where the only distinguishing 
characteristics are relational, like molecular structures.  Analytical tasks require discovery 
of relational patterns between events and actors so that these patterns can be exploited for 
the purposes of prediction and action.  Similarly, identifying characteristic molecular 
structures is necessary to acquire a foundational understanding of important research 
problems in many of the basic sciences.  Problems of such complexity often present two



related challenges; the need to assimilate incremental data updates and the need to mine 
monolithic datasets.   

Many challenging problems, including those in the counter-terrorism domain, require 
processing and assimilation of periodic increments of new data, which provides new 
information in addition to that which was previously processed.  Our approach provides a 
mechanism for summarizing discoveries from previous data increments so that the 
globally best patterns can be computed by examining only the new data increment.   

The second challenge we are addressing is the scalability of graph-based discovery to 
monolithic datasets, which are prevalent in domains like bioinformatics, where vast 
amounts of data must be examined to find meaningful structures.  The algorithms used 
for data interpretation in graph-based knowledge discovery and data mining systems are 
generally computationally expensive. The utilization of richer and more elaborate data 
representations for improved discovery leads to even larger graphs.  The graphs are often 
so large that they can not fit into the dynamic memory of conventional computer systems.  
Even if the data fits into dynamic memory, the amount of memory left for use during 
execution of the discovery algorithm may be insufficient, resulting in an increased 
number of page swaps and ultimately performance degradation.  In this paper we describe 
a technique by which large datasets can be segmented and processed serially with 
minimal impact on the result quality. 

Fortunately, these two challenges rely on many of the same mathematical concepts 
and algorithm techniques. 

2. Structure Discovery 
The work we describe in this paper is based on Subdue,1 which is a graph-based data 
mining system designed to discover common structures from relational data.  Subdue 
represents data in graph form and can support either directed or undirected edges.  
Subdue operates by evaluating potential substructures for their ability to compress the 
entire graph, as illustrated in Figure 1.  The better a particular substructure describes a 
graph, the more the graph will be compressed by replacing that substructure with a 
placeholder vertex.  Repeated iterations will discover additional substructures, potentially 
those that are hierarchical, containing previously compressed substructures.   

Figure 1.  Subdue discovers common substructures within 
relational data by evaluating their ability to compress the 
graph. 
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Subdue uses the Minimum Description Length Principle2 as the metric by which 
graph compression is evaluated.  Subdue is also capable of using an inexact graph match 
parameter to evaluate substructure matches, so that slight deviations between two patterns 
can be considered as the same pattern. 

 
 
 
 
Equation 1 illustrates the compression equation used to evaluate substructures, where 

DL(S) is the description length of the substructure being evaluated, DL(G|S) is the 
description length of the graph as compressed by the substructure, and DL(G) is the 
description length of the original graph.  The better a substructure performs, the smaller 
the compression ratio will be.   

Subdue provides two algorithms for calculating the description length of a graph.  The 
first takes a more comprehensive view of the physical representation of the graph 
components and consists of the number of bits needed to encode the vertex labels, the 
adjacency matrix, the number of edges between vertices, and the edge labels.   The 
second is more simplistic, relying on the number of vertices and edges as a measure of 
size.  For the work in this paper, we have used this latter encoding.  We refer the reader to 
[Cook and Holder 1994]3 for a full discussion of the MDL computation used by Subdue 
to encode graphs. 

Subdue’s evaluation algorithm ranks the best substructures by measuring the inverse 
of the compression value in Equation 1.  Favoring larger values serves to pick a 
substructure that minimizes DL(S) + DL(G|S), which means we have found the most 
descriptive substructure. 

3. Research  
In this paper we introduce two new algorithms, Incremental-Subdue (I-Subdue) and 
Serial-Static-Partitioning-Subdue (SSP-Subdue).  For our work on I-Subdue, we assume 
that data is received in incremental blocks as is the case for many long-term analytical 
tasks.  Continuously reprocessing the accumulated graph after each increment would be 
intractable, so instead we wish to develop methods to iteratively refine the substructure 
discoveries with a minimal amount of reexamination of old data so that the globally-best 
patterns can be identified based on previous local discoveries.   

For our work on SSP-Subdue, we have developed a serial graph partitioning 
algorithm to facilitate scaling, both in terms of speedup and memory usage, without the 
need for any distributed or parallel resources.  The baseline Subdue algorithm discovers 
prevalent patterns that best represent the structure of a graph-based dataset, but requires a 
substantial amount of processing time and dynamic memory for the types of datasets 
generally found in realistic problem domains. This work describes how substructures 
discovered locally on data partitions can be evaluated to determine the globally-optimal 
substructures.  
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3.1 Related work 

3.1.1 Online learning 

The online sequential learning4 problem presents many similarities to the incremental 
discovery problem with which we are concerned.  Since the learner is receiving its 
training data sequentially, it must repeatedly apply the learning algorithm until it is 
satisfied that it has converged to a good model of the world.  This means that it has to 
store all of the previously encountered training vectors in some usable form, rather than 
reapply the learner to the aggregate dataset after each new data increment is received.  
Due to the enormity of the datasets, some summarization technique must be used that 
does not sacrifice valuable information.  This summarization technique must also be 
selected so that it does not inappropriately bias the next learning iteration toward a 
previously learned model.  Friedman and Goldszmidt5 address this issue in their work on 
sequentially updating the structure of Bayesian Networks. 

3.1.2 Mining sequential patterns 

Research in mining sequential patterns6 is still largely about finding patterns in item-set 
data, unlike the structural datasets that we are investigating in this research.  However, 
there are similarities in that the objective of mining sequential patterns is to look for time-
sequenced transaction patterns, such as a series of movie rentals or consumer purchases.  
This differs from traditional item-set data mining, which is generally concerned with 
finding intra-transaction patterns.  Our goal for our pattern discovery work includes the 
additional constraint that transactional and event relationships are emerging over time 
and so we must be able to evolve the fundamental structure of our discovered patterns.  
The existing work on item-set data considers all of the transaction data in its entirety and 
looks for sequential patterns within it. 

3.1.3 Online data mining 

There is a body of emerging research related to online data mining.7,8,9  However, much 
of this work is related to online machine learning research in that the focus is more on 
identifying the point of stability in the discovered trend or concept and in dealing with 
changing systems in the form of concept drift or shift.  This is an important problem for 
our work as well and is the focus of continuing research.  However, by restricting the 
research to item-set data, which is assumed to arrive in complete and independent units, 
current approaches are able to largely ignore issues related to event and transaction 
relationships that emerge over time.  Although we make a similar assumption in the work 
presented here for the purposes of illustrating effective summarization techniques, our 
ongoing work is addressing the issue of sequentially connected data, where relationships 
extend across temporal data boundaries.  This is a critical issue for applications of 
structural data mining.   



3.1.4 Parallel graph-based knowledge discovery 

Several related partitioning and sampling approaches have been proposed in existing 
association rule mining research10,11,12,13 but generally a graph cannot be divided into non-
overlapping partitions as is the case for association rules. The edges cut at the partition 
boundaries pose a challenge to the quality of discovery. In earlier work, a static 
partitioning algorithm14 was introduced to scale the Subdue graph-based data mining 
algorithm using distributed processing.  This type of parallelism is appealing in terms of 
memory usage and speedup. The input graph is partitioned into n partitions for n 
processors. Each processor performs Subdue on its local graph partition and broadcasts 
its best substructures to the other processors. The processors then evaluate the 
communicated substructures on their local partitions. Once all evaluations are complete, a 
master processor gathers the results and determines the globally best discoveries. 
However, this approach requires a network of computers using communication software 
such as PVM or MPI.  Our serial partitioning approach, implemented in the SSP-Subdue 
system, does not require a system of specialized distributed or parallel hardware.  Instead, 
the partitions are mined one after the other on a single machine with the same processor 
playing the roles of slave and master processors in the static partitioning approach.   

3.2 Incremental Subdue 

For this work, we view each new data increment as a distinct graph structure.  Figure 2 
illustrates one conceptual approach to mining sequential data, where each new increment 
received at time step ti is considered independently of earlier data increments so that the 
accumulation of these structures is viewed as one large, but disconnected, graph.  The 
original Subdue algorithm would still work equally well if we applied it to the 
accumulated graph after each new data increment is received.  The obstacle is the 
computational burden required for repeated full batch processing.   

 

Figure 2.  Independent data received incrementally 
can be viewed as a unique extension to the 
accumulated graph.   
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Figure 3.  Three data increments received serially and processed individually by 
Subdue.  The best substructure is shown for each local increment. 
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It is easy to see how the concept depicted in Figure 2 can be applied to real problems.  
For instance, a software agent deployed to assist an intelligence analyst would gradually 
build up a body of data as new information streams in over time.  This streaming data 
could be viewed as independent increments from which common structures are to be 
derived.  Although the data itself may be generated in very small increments, we would 
expect to accumulate some minimum amount before we mine it.  Duplicating nodes and 
edges in the accumulated graph serves the purpose of giving more weight to frequently 
repeated patterns.   

3.2.1 Sequential discovery 

Storing all accumulated data and continuing to periodically repeat the entire structure 
discovery process is intractable both from a computational perspective and for data 
storage purposes.  Instead we wish to devise a method by which we can discover 
structures from the most recent data increment and simultaneously refine our knowledge 
of the globally best substructures discovered so far.   

However, we can often encounter a situation where sequential applications of Subdue 
to individual data increments will yield a series of locally best substructures that are not 
the globally best substructures, which would be found assuming the data could be 
evaluated as one aggregate block. 

Figure 3 illustrates an example where Subdue is applied sequentially to each data 
increment as it is received.  At each increment Subdue discovers the best substructure for 
the respective data increment, which turns out to only be locally best.  However, if we 
aggregate the same data as depicted in Figure 4 and then apply the baseline Subdue 
algorithm we get a different best substructure, which in fact is globally best.  This is 
illustrated in Figure 5.  Although our simple example could easily be aggregated at each 
time step, realistically large data sets would be too unwieldy to do so. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 4.  Accumulated graph for Subdue batch processing 
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In general, sequential discovery and action brings with it a set of unique challenges, 

which are generally driven by the underlying system that is generating the data from 
which structures are discovered.  One problem that is almost always a concern is how to 
reevaluate the accumulated data at each time step in light of newly added data.  There is 
generally a tradeoff between the amount of data that can be stored and reevaluated and 
the quality of the result.  A summarization technique is usually employed to capture 
salient metrics about the data.  The richness of this summarization is a tradeoff between 
the speed of the incremental evaluation and the range of new substructures that can be 
considered. 

3.2.2 Summarization metrics   

Our goal for this research is to develop a summarization metric that can be maintained 
from each incremental application of Subdue that will allow us to derive the globally best 
substructure without reapplying Subdue to the accumulated data. 

To accomplish this goal, we rely on a few artifacts of Subdue’s discovery algorithm.  
First, Subdue maintains a list of the n best substructures discovered from any dataset, 
where n is configurable by the user.  The default value for n is 3, but any number of 
ranked substructures can be maintained, limited only by constraints on the beam search 
that Subdue uses to prune its search space. 

Figure 5.  Result from applying Subdue to the three aggregated data 
increments. 
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Second, we use the value metric Subdue maintains for each substructure.  Subdue 
measures graph compression with the Minimum Description Length principle as 
described in section 2.  For I-Subdue, we must use a modified version of the compression 
metric to find the globally best substructure, illustrated in Equation 2. 

 
 
 
 
With Equation 2 we calculate the compression achieved by a particular substructure, 

Si, up through and including the current data increment m.  The DL(Si) term is the 
description length of the substructure, Si, under consideration.  The term  

 
 
 
represents the description length of the accumulated graph after it is compressed by the 
substructure Si.   
Finally, the term  
 
 
represents the full description length of the accumulated graph. 

 
 
 
 
 
At any point we can then reevaluate the substructures using Equation 3 (inverse of 

Equation 2), choosing the one with the highest value as globally best. 
The process of computing the global substructure value takes place in addition to the 

normal operation of Subdue on the isolated data increment.  We only need to store the 
requisite description length metrics after each iteration for use in our global computation. 
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Figure 6.  The top n=3 subs from each local increment. 
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As an illustration of our approach, consider the results from the example depicted in 
Figure 3.  The top n=3 substructures from each iteration are shown in Figure 6.  Table 1 
lists the values returned by Subdue for the local top n substructures discovered in each 
increment.  The second best substructures in increments 2 and 3 (S22, S32) are the same as 
the second best substructure in increment 1 (S12), which is why the column corresponding 
to S12 has a value for each increment.  The values in Table 1 are the result of the 
compression evaluation metric from Equation 1.  The locally best substructures illustrated 
in Figure 3 have the highest values, demarcated by the highlighted cells in Table 1. 

Table 2 depicts our application of I-Subdue to the increments from Figure 3.  After 
each increment is received, we apply Equation 3 to select the globally best substructure.  
The values in Table 2 are the inverse of the compression metric from Equation 2.  As an 
example, the calculation of the compression metric for substructure S12 after iteration 3 
would be: 

 
 
 
 
Consequently the value of S12 would be: 
 
 
 
For this computation we rely on the metrics computed by Subdue when it evaluates 

substructures in a graph, namely the description length of the discovered substructure, the 

14741
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Table 2.  Using I-Subdue to calculate the global value of each substructure.  The 
description length of each graph iteration (Gj) and of each substructure (Si) are shown.  
Highlighted cells indicate the global best substructure at each increment. 

Global Best 
Calculation After 

Iteration #

S11 S12 S13 S21 S23 S31 S33 DL(Gj)*

1 1.2182 1.04808 0.981511 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117

3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 0.9884 116

DL(Si)* 15 15 25.75489 15 25.754888 15 26.50978

New Substructures from 
Iteration #1

New Substructures 
from Iteration #2

New Substructures 
from Iteration #3

*measured in bits

Table 1.  Substructure values computed independently for each iteration.  
Highlighted cells indicate maximum values in each increment. 

Increment #

S11 S12 S13 S21 S23 S31 S33

1 1.2182 1.04808 0.9815
2 1.04808 1.21882 0.981511
3 1.03804 1.15126 0.966017

New Substructures from 
Increment #1

New Substructures 
from Increment #2

New Substructures 
from Increment #3



description length of the graph compressed by the substructure, and the description length 
of the graph.  By storing these values after each increment is processed, we can retrieve 
the globally best substructure using Equation 3.  Figure 7 illustrates the basic algorithm, 
where Subdue is invoked to discover the candidate substructures and the byproduct 
evaluation metrics are collected and used to calculate the globally best substructures after 
each new data increment is processed. 

 In circumstances where a specific substructure is not present in a particular data 
increment, such as S31 in iteration 2, then  

 
 
and the substructure’s value would be calculated as follows: 
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//Call I-Subdue on the new data increment Gj 

I-Subdue(Gj) 

//Subdue returns description length values and top n substructures for current data increment,  

//which are stored for global calculations 

CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[], size_Gj ⇐ Subdue(Gj) 

total_graph_size = total_graph_size + size_Gj 

/************************************************************************/ 
Get_Global_Best(total_graph_size,CandidateSubstructures[], SubstructureSizes[], 
CompressedGraphSizes[]) 

 best_value = 0 

 global_best_substructure = nil 

 for(i=1 to sizeof(CandidateSubstructures)) 

  size_si = CandidateSubstructureSizes[i] 

compressed_graph_size = 0 

  for(j=1 to num_data_increments) 

compressed_graph_size = compressed_graph_size + 

CompressedGraphSizes[i][j])    //DL(Gj|Si) 

  value_si = graph_size/(size_si + compressed_graph_size) 

  if value_si > best_value 

    best_value = value_si 

    global_best_substructure = CandidateSubstructures[i] 

return global_best_substructure 

Figure 7.  Application of I-Subdue to store metrics returned from running Subdue over a 
single data increment, then calculating the global best substructure using the collected 
metrics.  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Comparison of I-Subdue vs. Subdue on 10 – 50 increments.  
Each increment provides 1020 new vertices with 1 to 4 outgoing edges.  
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Figure 8.  Comparison of I-Subdue vs. Subdue on 10-50 increments.  
Each increment provides 220 new vertices with 0 or 1 outgoing edges. 



3.2.3 Experimental evaluation 

To illustrate the relative value of I-Subdue with respect to performance in processing 
incremental data, we have conducted experiments with a synthetic data generator.  This 
data generator takes as input a library of data labels, configuration parameters governing 
the size of random graph patterns, and one or more specific substructures to be embedded 
within the random data.  The random graph segments can also be configured in terms of 
the density of the edge connectivity.  The data generator produces a new data increment 
when invoked by I-Subdue and for comparison purposes archives the cumulative set of 
increments into a file for batch processing by Subdue. 

For the first experiment, illustrated in Figure 8, we compared the performance of I-
Subdue versus Subdue at benchmarks ranging from 10 to 50 increments.  Each increment 
introduced 220 new vertices, within which five instances of the four-vertex substructure 
pictured in Figure 8 were embedded.  The quality of the result, in terms of the number of 
instances found, was the same for both I-Subdue and Subdue.  The running times were 
the only discernable qualitative difference.  The major simplifying factor for this first 
experiment was the vertex degree.  Each vertex had 0 or 1 outgoing edges with a 50% 
probably for each.  A less densely connected graph greatly simplifies the substructure 
search space.   

The results from the second experiment are depicted in Figure 9.  For this experiment, 
we increased the increment size to 1020 vertices and gave each vertex an outward degree 
ranging from 1 to 4 edges.  Each degree value was chosen with 25% probability, which 
means that on average there are about twice as many edges as vertices.  This more 
densely connected graph begins to illustrate the significance of the run-time difference 
between I-Subdue and Subdue.   Again, five instances of the four-vertex substructure 
shown in Figure 9 were embedded within each increment.  The discovery results were the 
same for both I-Subdue and Subdue with the only qualitative difference being the running 
time. 

3.3 Partitioned Discovery  

For this work we are concerned with addressing large, monolithic datasets, which are 
prevalent in many real-world domains.  To address this challenge, we have developed an 
algorithm that operates serially on smaller partitions of the graph and then compares the 
local results to acquire a measure of the overall best substructures for the entire graph. 
We also illustrate a method to recover information lost in the form of edge cuts from the 
graph partitioning.  We illustrate the scalability with results from experiments performed 
using protein databases and artificial datasets.  

In SSP-Subdue we partition the input graph into x partitions. The value of x here is 
selected by the user to ensure that each partition is small enough to fit in dynamic 
memory. We perform Subdue on each partition and collect the b best substructures local 
to each partition in a list, where b is the beam used to constrain the number of best 
substructures reported. We take care that for each partition, Subdue reports only the 
substructures that have not already been reported as locally-best on any of the previously-



processed partitions. By doing so, we implicitly increase the beam dynamically. At the 
end of this pass, there are xb substructures in the list. Then we evaluate these xb locally-
best substructures on all partitions in a second pass over the static partitions, similar to 
the partition approach applied to association rule mining10. Once all evaluations are 

complete, we gather the results and determine the global best discoveries. This is a serial 
approach and does not rely on parallel hardware. Figure 10 summarizes the basic 
algorithm and the metric used for evaluating substructures globally is described below. 

As a part of this research, we have generated a variant of the MDL measure, 
described in section 2, which is used to rank discoveries globally.   

SSP-Subdue measures graph compression using our measure variant given in 
Equation 4, where DL(S) is the description length of the substructure S being evaluated, 
DL(Gj|S) is the description length of the graph corresponding to the jth partition as 
compressed by substructure S, and DL(Gj) is the description length of the uncompressed 
jth partition. The substructure that minimizes the sum of DL(S) and DL(Gj|S) is the most 
descriptive substructure, and thus is locally the best.  
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Figure 10.  SSP-Subdue Algorithm 

//Invoke serial Subdue on each partition Gj, which returns top b substructures for the //jth partition 

for each partition Gj 

localBest[] = Subdue(Gj); 

//Store local best substructures for global evaluation 

bestSubstructures[] = Union(bestSubstructures[],localBest[]); 

----------------------------------------------------------------------- 

//Reevaluate each locally-best substructure on all partitions  

sizeOfGraph = 0; 

for each substructure Si in bestSubstructures[]  

sizeOfSubSi =  MDL(Si);  

sizeCompressedGraph = 0;  //initialize 

for each partition Gj 

//size of graph (in bits) is the sum of sizes of individual partitions 

sizeCompressedGraph = sizeCompressedGraph + MDL(Gj|Si); 

sizeOfGraph = sizeOfGraph + MDL(Gj); 

//Calculate global value of substructure 

subValueSi = sizeOfGraph / (sizeOfSubSi + sizeCompressedGraph);  

bestSubstructures[i].globalValue = subValueSi; 

//Return the top b substructures in bestSubstructures[] as the top b global best //substructures 



The smaller the value of the compression ratio of a substructure, the higher will 
Subdue rank that substructure locally for the jth partition.  

The global best substructures are found by reevaluating the locally best substructures 
using Equation 5 on the other partitions. Here, S is a substructure in the common list. The 
common list represents a collection of all local best substructures.  The variable x 
represents the number of partitions, DL(S) is the description length of the substructure S 
under consideration, ∑x 

j=1DL(Gj|S) is the sum of description lengths of all the partitions 
after being compressed by the substructure S, and ∑x 

j=1DL(Gj) is the description length 
of the entire graph.  

 
 
 
 
The substructure with the minimum value of the compression ratio obtained from 

Equation 5 is ranked as globally the best substructure. 
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The following example illustrates the SSP-Subdue algorithm concepts. For this 

example input graph is split into two partitions.  Subdue is run on partition 1 shown in 
Figure 11 and the best substructures local to this partition, shown in Figure 12, are stored 
for global evaluation. Next, Subdue is run on partition 2 shown in Figure 13 and the best 
substructures local to this partition, shown in Figure 14, are stored for global evaluation. 
In a second pass over both of the static partitions, all of the locally-best substructures are 
evaluated using Equation 5 to produce the globally-best substructures shown in Figure 
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Figure 16. Unpartitioned graph G'
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15. The instances of these globally best substructures are highlighted in the two 
partitions. 

3.3.1 Edge-loss recovery approach 

The partitions are compressed using the globally best substructures found by running 
SSP-Subdue and then combined in pairs. Then the edges that were lost due to the original 
partitioning are reinserted between the combined partitions.  

Since merging all possible combinations of two partitions that have edges cut between 
them could lead to a total of x(x-1)/2 combinations, each partition is constrained to be 
combined at most once with another partition. The pair of partitions that have the 
maximum number of edges cut between them are merged. Then the pair of partitions that 
have the second maximum number of edges cut between them are combined, and so on. 
This guarantees that two partitions are not combined unless they had any edges cut 
between them. However, this might sometimes lead to a matching such that some 
partitions are left that cannot be combined with any of the remaining unpaired partitions 
due to no edges cut at the boundaries. Here we are assuming that the compression and 
combining of partitions will not lead to a partition with a size too large to fit in dynamic 
memory.  Finally, SSP-Subdue is executed on the combined partitions to get the globally-
best substructures. The following example illustrates our approach. The input graph, 
shown in Figure 16, is divided into two parts.  As a result of this partitioning, all the 
instances of one of the most frequently occurring substructures, “rectangle below 
triangle”, are lost. 

After running SSP-Subdue on the partitions shown in Figure 17, the substructures 
illustrated in Figure 18 are reported as the global best substructures.   

The two partitions are compressed using the above substructures and combined to 
form the graph shown in Figure 19 

After running SSP-Subdue on the compressed graph shown in Figure 19, the 
substructures in Figure 20 were reported as the best substructures. Clearly this set 
includes larger substructures encompassing the frequently-occurring substructure, 
“rectangle below triangle,” which was initially lost due to the original partitioning.  Thus, 
this approach proves useful in recovering the instances of those interesting substructures 
that are lost due to the original partitioning.   

However, a problem can occur when the best substructure is broken across partition 
boundaries, and subgraphs within this substructure are discovered in local partitions in 
different combinations with other subgraphs.  The local discoveries would be used to 
compress the partitions and the original substructure will not be reformed and discovered 
in the second iteration. To remain consistent with the original Subdue algorithm, the 
compression could be performed using only the single best substructure found as opposed 
to the beam number of best substructures. Then the compressed subgraph would still 
appear as part of the original substructure and the best could be found. However, this 
problem can still exist in other forms. As shown in Figure 21, suppose that 
ellipse→rectangle→triangle is the desired substructure (the same label is applied to every 



edge here), and appears half the time as ellipse→rectangle→triangle→square and the 
other half as ellipse→rectangle→triangle→oval. If one boundary occurs between ellipse 
and rectangle and another between rectangle and triangle, it is possible that 
triangle→square or triangle→oval will be the best local discoveries, and after 
compression the overall best substructure will still not be found as half of the triangles 
are now parts of the compressed substructure. 

3.3.2 Experimental evaluation 

Experiments that demonstrate scalability of a serial partitioned version of Subdue were 
performed using artificially-generated datasets and protein databases.  

3.3.2.1 Artificial datasets 

The artificial graphs have been generated using a graph generator that takes as input one 
or more substructures and the number of instances of each substructure to be embedded 
in the target graph.  Random vertices are then added and random edges are inserted 
between the vertices to generate a graph of the user-specified size. A post-processing step 
of randomizing the distribution of the vertices in the graph is performed for our 
experiments to ensure that all of the embedded substructures are not localized in one part 
of the graph. The size of the graphs are indicated by the notation xxKVyyKE, where KV 
stands for kilo vertices (1000 vertices) and KE stand for kilo edges (1000 edges). Also, in 
some cases a suffix of the type Nw has been added to the above notation where N denotes 
the number of partitions. 

Figure 21 Best substructure broken across partition boundaries, its 
subgraph occurring as best local substructure 
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Figure 22 plots the run time of SSP-Subdue on the artificial graphs of varying sizes as 

the number of partitions increases. For this experiment, the substructures shown in Figure 
23 are embedded into the artificial graphs, each with about 35% coverage.  The execution 
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Figure 23.  Substructures embedded in artificial datasets 
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times plotted for Number Of Partitions = 1 represents the execution time for the baseline 
Subdue algorithm. It is clear that SSP-Subdue achieves a substantial speedup. This is 
because the run time of Subdue is nonlinear in the size of the input graph. In SSP-
Subdue, the Subdue algorithm is applied serially to small portions of the graph, so the 
combined run time is less than that of Subdue. 

SSP-Subdue spent about 15% of its total run-time on the global evaluation of locally-
discovered substructures in order to select the globally-optimal substructures.  

3.3.2.2 Protein database 

The Protein Data Bank (PDB) is a worldwide repository for processing and distributing 
3-D data structures for large molecules of proteins and nucleic acids. We converted the 
information in the given PDB file to a Subdue-formatted graph file corresponding to the 
compound described in the PDB file. Each atom is represented as a vertex whose label is 
the element name of that atom. For any two atoms whose Euclidean distance is between 
0.4 and 1.9 angstroms (or 0.4 and 1.2 angstroms if one or both of the atoms are 
hydrogen), the program outputs a "bond" edge between the vertices of the two atoms. 
These bond distances are based on the technique used in the RasMol molecular 
visualizer. The graphs are not heavily connected and all the edges have the same label 
(i.e., “bond”). Since we were mainly concerned with experimenting on graphs of varying 
sizes, the files from PDB used for our experiments were selected randomly and inclusion 
of no particular chemical compound was emphasized. We browsed the database to obtain 
the graphs of the required sizes. 

Figure 24 plots the run time of SSP-Subdue on PDB graphs of varying sizes as the 

number of partitions increases. The execution times plotted for Number Of Partitions = 1 
represents the execution time for Subdue. As in the case of artificial graphs, it is observed 
that a substantial speedup is achieved over Subdue. Here, we have observed an 
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Figure 24 SSP-Subdue execution time on graphs of varying 
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anomalous small increase in the run time for four partitions as compared to that of three 
partitions for the 24KV25KE graph. This can be attributed to the fact that the random 
partitioning can lead to partitions that have varying degrees of connectivity (very highly 
connected or very sparsely connected) between vertices when partitioned into different 

number of partitions. The more highly connected a graph/partition is, the more time 
Subdue takes to process it.  

Figure 25 indicates the number of instances of the best substructure found by SSP-
Subdue for graphs of varying sizes with a varying number of partitions. The best 
substructure discovered by Subdue and SSP-Subdue was the same for each of these 
graphs. As the graphs in the protein database are sparsely connected, the information loss 
at the partition boundaries is relatively less and thus the quality of discovery is not 
degraded drastically. An enlarged plot depicting the trend in the quality of discovery for 
the 10KV10KE graph with varying number of partitions has been inserted in Figure 25 to 
emphasize the point that the quality is affected, though not drastically. 

4. Conclusion and Future Work 

4.1 Sequentially-connected data 

The focus of incremental discovery in this paper has been on developing the fundamental 
algorithms for iterative discovery refinement and was tested on data that was not 

Figure 25 Number of instances of best substructure found in graphs of varying size 
and varying number of partitions from protein database 
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connected across temporal increment boundaries.  However, many domains, including 
the counter-terrorism domain we discussed, will include event correlations that transcend 
multiple data iterations.  For example, a terrorist suspect introduced in one data increment 
may be correlated to events that are introduced on latter increments.  As each new data 
increment is received, it may contain new edges that extend from vertices in the new data 
increment to vertices received in previous increments. 

Figure 26 illustrates an example where two data increments are introduced over 
successive time steps.  Common substructures have been identified and two instances of 
the common substructure extend across the increment boundary.   

4.2 Shifting concepts  

In the traditional machine learning problem,15,16 it is generally stated that some function 
F(x) is generating an attribute vector x, based on a fixed relationship, whether 
probabilistic or deterministic.  The attribute vector x represents the observable features of 
the problem space.  This definition extends intuitively to data mining.  However, in 
sequential discovery problems, the domains are such that the underlying relationships 
between system variables often change over time.  Referring back to our counter-
terrorism application, it is certainly the case that terrorist organizations change their 
behaviors in unpredictable ways and adapt to counter-terrorism efforts.  There are 
approaches to machine learning in the presence of shifting concepts, such as the sliding 
window approach,17 where only the last n data points are used to update the learned 
model, but such approaches are often naïve in the sense that they disregard valuable 
information learned outside of the data window.  This is akin to forgetting everything 
discovered about a terrorist organization’s behaviors and capabilities when in fact only a 
small portion of their behaviors have changed, like an alteration in communication 
patterns.  Our future work will focus on developing methods for structure discovery when 
the underlying system is undergoing change. 

4.3 Graph partitioning 

We have developed a naïve graph partitioner for use in our current research.  The main 
motivation behind developing our own partitioner was that the entire input graph need 
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not be placed in dynamic memory at once. Graphs that are too large to fit in main 
memory can be streamed and partitioned using this naïve partitioner.  It also records the 
edge cuts in a separate file, which is helpful for edge loss recovery as described in section 
3.3.1.  We have been able to show that the quality of substructures discovered by SSP-
Subdue is good, even with an unsophisticated graph partitioner. The use of a more 
sophisticated graph partitioner should lead to improved performance of the SSP-Subdue 
system. 

The quality of discovered substructures as well as the speedup achieved by SSP-
Subdue depends highly on the graph partitioning step. Subdue does not have any 
information about the structure of its input graphs and therefore graph partitioning 
algorithms, like the multi-level Kerninghan-Lin algorithm18 or the Fiduccia-Matheyses 
algorithm,19 are best suited for use in Subdue.  However, we are investigating additional 
partitioning heuristics, beyond frequency of occurrence, which may help reduce the loss 
of edges that represent important information and are a part of important pattern 
discoveries.   

We are also pursuing analytical methods that could be used to determine if it is 
possible to bound the probability that any of the edges in a subgraph of a randomly-
partitioned graph straddle a partition boundary.  It may be possible to bound the number 
of random partitions that should be considered to ensure that with a high probability most 
matching subgraphs are found.  This would suggest that the algorithm be modified to try 
many different random partitions. 
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