
ITERATIVE STRUCTURE DISCOVERY IN GRAPH-BASED DATA

JEFFREY A. COBLE, RUNU RATHI, DIANE J. COOK, LAWRENCE B. HOLDER

Department of Computer Science and Engineering
The University of Texas at Arlington

Box 19015, Arlington, TX 76019, USA
{coble, rathi, cook, holder}@cse.uta.edu

Received
Revised

Accepted

Much of current data mining research is focused on discovering sets of attributes that discriminate data
entities into classes, such as shopping trends for a particular demographic group. In contrast, we are
working to develop data mining techniques to discover patterns consisting of complex relationships
between entities. Our research is particularly applicable to domains in which the data is event-driven or
relationally structured. In this paper we present approaches to address two related challenges; the need to
assimilate incremental data updates and the need to mine monolithic datasets. Many realistic problems
are continuous in nature and therefore require a data mining approach that can evolve discovered
knowledge over time. Similarly, many problems present data sets that are too large to fit into dynamic
memory on conventional computer systems. We address incremental data mining by introducing a
mechanism for summarizing discoveries from previous data increments so that the globally-best patterns
can be computed by mining only the new data increment. To address monolithic datasets we introduce a
technique by which these datasets can be partitioned and mined serially with minimal impact on the
result quality. We present applications of our work in both the counter-terrorism and bioinformatics
domains.

Keywords: Structural Data Mining; Incremental Discovery; Graph Partitioning; Machine Learning.

1. Introduction
Much of current data mining research is focused on algorithms that can discover sets of
attributes that discriminate data entities into classes, such as shopping or banking trends
for a particular demographic group. In contrast, we are working to develop data mining
techniques to discover patterns consisting of complex relationships between entities. Our
research is particularly applicable to domains in which the data is event driven, such as
counter-terrorism intelligence analysis, and domains where the only distinguishing
characteristics are relational, like molecular structures. Analytical tasks require discovery
of relational patterns between events and actors so that these patterns can be exploited for
the purposes of prediction and action. Similarly, identifying characteristic molecular
structures is necessary to acquire a foundational understanding of important research
problems in many of the basic sciences. Problems of such complexity often present two

related challenges; the need to assimilate incremental data updates and the need to mine
monolithic datasets.

Many challenging problems, including those in the counter-terrorism domain, require
processing and assimilation of periodic increments of new data, which provides new
information in addition to that which was previously processed. Our approach provides a
mechanism for summarizing discoveries from previous data increments so that the
globally best patterns can be computed by examining only the new data increment.

The second challenge we are addressing is the scalability of graph-based discovery to
monolithic datasets, which are prevalent in domains like bioinformatics, where vast
amounts of data must be examined to find meaningful structures. The algorithms used
for data interpretation in graph-based knowledge discovery and data mining systems are
generally computationally expensive. The utilization of richer and more elaborate data
representations for improved discovery leads to even larger graphs. The graphs are often
so large that they can not fit into the dynamic memory of conventional computer systems.
Even if the data fits into dynamic memory, the amount of memory left for use during
execution of the discovery algorithm may be insufficient, resulting in an increased
number of page swaps and ultimately performance degradation. In this paper we describe
a technique by which large datasets can be segmented and processed serially with
minimal impact on the result quality.

Fortunately, these two challenges rely on many of the same mathematical concepts
and algorithm techniques.

2. Structure Discovery
The work we describe in this paper is based on Subdue,1 which is a graph-based data
mining system designed to discover common structures from relational data. Subdue
represents data in graph form and can support either directed or undirected edges.
Subdue operates by evaluating potential substructures for their ability to compress the
entire graph, as illustrated in Figure 1. The better a particular substructure describes a
graph, the more the graph will be compressed by replacing that substructure with a
placeholder vertex. Repeated iterations will discover additional substructures, potentially
those that are hierarchical, containing previously compressed substructures.

Figure 1. Subdue discovers common substructures within
relational data by evaluating their ability to compress the
graph.

D

E

Y

X Z

S1
S1A

D

C

B

E

C
B

A

Y

X Z

Common Substructures Compressed Graph

Subdue uses the Minimum Description Length Principle2 as the metric by which
graph compression is evaluated. Subdue is also capable of using an inexact graph match
parameter to evaluate substructure matches, so that slight deviations between two patterns
can be considered as the same pattern.

Equation 1 illustrates the compression equation used to evaluate substructures, where

DL(S) is the description length of the substructure being evaluated, DL(G|S) is the
description length of the graph as compressed by the substructure, and DL(G) is the
description length of the original graph. The better a substructure performs, the smaller
the compression ratio will be.

Subdue provides two algorithms for calculating the description length of a graph. The
first takes a more comprehensive view of the physical representation of the graph
components and consists of the number of bits needed to encode the vertex labels, the
adjacency matrix, the number of edges between vertices, and the edge labels. The
second is more simplistic, relying on the number of vertices and edges as a measure of
size. For the work in this paper, we have used this latter encoding. We refer the reader to
[Cook and Holder 1994]3 for a full discussion of the MDL computation used by Subdue
to encode graphs.

Subdue’s evaluation algorithm ranks the best substructures by measuring the inverse
of the compression value in Equation 1. Favoring larger values serves to pick a
substructure that minimizes DL(S) + DL(G|S), which means we have found the most
descriptive substructure.

3. Research
In this paper we introduce two new algorithms, Incremental-Subdue (I-Subdue) and
Serial-Static-Partitioning-Subdue (SSP-Subdue). For our work on I-Subdue, we assume
that data is received in incremental blocks as is the case for many long-term analytical
tasks. Continuously reprocessing the accumulated graph after each increment would be
intractable, so instead we wish to develop methods to iteratively refine the substructure
discoveries with a minimal amount of reexamination of old data so that the globally-best
patterns can be identified based on previous local discoveries.

For our work on SSP-Subdue, we have developed a serial graph partitioning
algorithm to facilitate scaling, both in terms of speedup and memory usage, without the
need for any distributed or parallel resources. The baseline Subdue algorithm discovers
prevalent patterns that best represent the structure of a graph-based dataset, but requires a
substantial amount of processing time and dynamic memory for the types of datasets
generally found in realistic problem domains. This work describes how substructures
discovered locally on data partitions can be evaluated to determine the globally-optimal
substructures.

)G(DL

)S|G(DL)S(DL
nCompressio

+= (1)

3.1 Related work

3.1.1 Online learning

The online sequential learning4 problem presents many similarities to the incremental
discovery problem with which we are concerned. Since the learner is receiving its
training data sequentially, it must repeatedly apply the learning algorithm until it is
satisfied that it has converged to a good model of the world. This means that it has to
store all of the previously encountered training vectors in some usable form, rather than
reapply the learner to the aggregate dataset after each new data increment is received.
Due to the enormity of the datasets, some summarization technique must be used that
does not sacrifice valuable information. This summarization technique must also be
selected so that it does not inappropriately bias the next learning iteration toward a
previously learned model. Friedman and Goldszmidt5 address this issue in their work on
sequentially updating the structure of Bayesian Networks.

3.1.2 Mining sequential patterns

Research in mining sequential patterns6 is still largely about finding patterns in item-set
data, unlike the structural datasets that we are investigating in this research. However,
there are similarities in that the objective of mining sequential patterns is to look for time-
sequenced transaction patterns, such as a series of movie rentals or consumer purchases.
This differs from traditional item-set data mining, which is generally concerned with
finding intra-transaction patterns. Our goal for our pattern discovery work includes the
additional constraint that transactional and event relationships are emerging over time
and so we must be able to evolve the fundamental structure of our discovered patterns.
The existing work on item-set data considers all of the transaction data in its entirety and
looks for sequential patterns within it.

3.1.3 Online data mining

There is a body of emerging research related to online data mining.7,8,9 However, much
of this work is related to online machine learning research in that the focus is more on
identifying the point of stability in the discovered trend or concept and in dealing with
changing systems in the form of concept drift or shift. This is an important problem for
our work as well and is the focus of continuing research. However, by restricting the
research to item-set data, which is assumed to arrive in complete and independent units,
current approaches are able to largely ignore issues related to event and transaction
relationships that emerge over time. Although we make a similar assumption in the work
presented here for the purposes of illustrating effective summarization techniques, our
ongoing work is addressing the issue of sequentially connected data, where relationships
extend across temporal data boundaries. This is a critical issue for applications of
structural data mining.

3.1.4 Parallel graph-based knowledge discovery

Several related partitioning and sampling approaches have been proposed in existing
association rule mining research10,11,12,13 but generally a graph cannot be divided into non-
overlapping partitions as is the case for association rules. The edges cut at the partition
boundaries pose a challenge to the quality of discovery. In earlier work, a static
partitioning algorithm14 was introduced to scale the Subdue graph-based data mining
algorithm using distributed processing. This type of parallelism is appealing in terms of
memory usage and speedup. The input graph is partitioned into n partitions for n
processors. Each processor performs Subdue on its local graph partition and broadcasts
its best substructures to the other processors. The processors then evaluate the
communicated substructures on their local partitions. Once all evaluations are complete, a
master processor gathers the results and determines the globally best discoveries.
However, this approach requires a network of computers using communication software
such as PVM or MPI. Our serial partitioning approach, implemented in the SSP-Subdue
system, does not require a system of specialized distributed or parallel hardware. Instead,
the partitions are mined one after the other on a single machine with the same processor
playing the roles of slave and master processors in the static partitioning approach.

3.2 Incremental Subdue

For this work, we view each new data increment as a distinct graph structure. Figure 2
illustrates one conceptual approach to mining sequential data, where each new increment
received at time step ti is considered independently of earlier data increments so that the
accumulation of these structures is viewed as one large, but disconnected, graph. The
original Subdue algorithm would still work equally well if we applied it to the
accumulated graph after each new data increment is received. The obstacle is the
computational burden required for repeated full batch processing.

Figure 2. Independent data received incrementally
can be viewed as a unique extension to the
accumulated graph.

A

CB

A

CB

A

CD

t0

A

CB

A

CD
t1

E

CD

A

CB

A

CD

E

CDt2

Time Step
Incremental

Addition
Accumulated

Graph

Figure 3. Three data increments received serially and processed individually by
Subdue. The best substructure is shown for each local increment.

Travels
to

C
om

m
un

ic
at

e
s

w
ith

Cairo

B

C
om

m
u

ni
ca

te
s

w
ith

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Increment #1

Travels
to

Riyadh
Travels

to
Cairo

S1

C
om

m
un

ic
at

es
w

ith

Travels
to

C
om

m
un

ic
a

te
s

w
ith

Riyadh

C
om

m
un

ic
a

te
s

w
ith

C
o

m
m

un
ic

at
es

w
ith

Best Substructure
Discovered

S1

Compressed Increment #1

Compress with S1

Travels
to

C
o

m
m

un
ic

at
es

w
ith

Karachi Travels
to

C
om

m
un

ic
at

e
s

w
ith

Tehran

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Karachi

Travels
to

Karachi

Increment #2

C
om

m
u

ni
ca

te
s

w
ith

Travels
to

C
om

m
un

ic
a

te
s

w
ith

Tehran
C

om
m

un
ic

at
es

w
ith

C
om

m
un

ic
at

es
w

ith

S2

Best Substructure
Discovered

Compressed Increment #2

Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut
Travels

to

C
om

m
u

ni
ca

te
s

w
ith

Riyadh

Travels
to

C
om

m
u

ni
ca

te
s

w
ith

Beirut Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut

Travels
to

Beirut

S3

C
om

m
u

ni
ca

te
s

w
ith

C
om

m
u

ni
ca

te
s

w
ith

Best Substructure
Discovered

Compressed Increment #3

Compress with S2

Compress with S3

Increment #3

C

A A

C

A A

D

B C

A

C D

S1 S1

E C

A A

C F

A A

A

E C

AS2

C F

S2 S2

E C

A A

C F

A A

A

C
om

m
un

ic
at

es
w

ith

Travels
to

C
o

m
m

un
ic

at
es

w
ith

Riyadh

E C

AS3

C F

S3 S3

A

It is easy to see how the concept depicted in Figure 2 can be applied to real problems.
For instance, a software agent deployed to assist an intelligence analyst would gradually
build up a body of data as new information streams in over time. This streaming data
could be viewed as independent increments from which common structures are to be
derived. Although the data itself may be generated in very small increments, we would
expect to accumulate some minimum amount before we mine it. Duplicating nodes and
edges in the accumulated graph serves the purpose of giving more weight to frequently
repeated patterns.

3.2.1 Sequential discovery

Storing all accumulated data and continuing to periodically repeat the entire structure
discovery process is intractable both from a computational perspective and for data
storage purposes. Instead we wish to devise a method by which we can discover
structures from the most recent data increment and simultaneously refine our knowledge
of the globally best substructures discovered so far.

However, we can often encounter a situation where sequential applications of Subdue
to individual data increments will yield a series of locally best substructures that are not
the globally best substructures, which would be found assuming the data could be
evaluated as one aggregate block.

Figure 3 illustrates an example where Subdue is applied sequentially to each data
increment as it is received. At each increment Subdue discovers the best substructure for
the respective data increment, which turns out to only be locally best. However, if we
aggregate the same data as depicted in Figure 4 and then apply the baseline Subdue
algorithm we get a different best substructure, which in fact is globally best. This is
illustrated in Figure 5. Although our simple example could easily be aggregated at each
time step, realistically large data sets would be too unwieldy to do so.

 Figure 4. Accumulated graph for Subdue batch processing

T rave ls
to

C
om

m
un

ic
at

es

w
ith

R iya dh
T rav els

to

C
om

m
un

ic
at

es

w
ith

Beiru t
T rave ls

to

C
om

m
un

ic
at

es

w
ith

Beiru t
T ra ve ls

to

C
om

m
un

ic
at

es

w
ith

B eiru t

T rave ls
to

C
om

m
un

ic
at

es

w
ith

K arach i
T ra vels

to

C
om

m
un

ic
at

es

w
ith

T e hran
T rave ls

to

C
om

m
un

ic
at

es

w
ith

Karach i
T rave ls

to

C
om

m
un

ic
at

es

w
ith

Ka ra ch i

T ra ve ls
to

C
om

m
un

ic
at

es

w
ith

C airo Tra vels
to

C
om

m
un

ic
at

es

w
ith

R iyadh
T rave ls

to

C
om

m
un

ic
at

es

w
ith

C airo
Tra vels

to

C
om

m
un

ic
at

es

w
ith

C airo

B C C D

A A A A

A A A A

E C C F

E C C F

A A A A

In general, sequential discovery and action brings with it a set of unique challenges,

which are generally driven by the underlying system that is generating the data from
which structures are discovered. One problem that is almost always a concern is how to
reevaluate the accumulated data at each time step in light of newly added data. There is
generally a tradeoff between the amount of data that can be stored and reevaluated and
the quality of the result. A summarization technique is usually employed to capture
salient metrics about the data. The richness of this summarization is a tradeoff between
the speed of the incremental evaluation and the range of new substructures that can be
considered.

3.2.2 Summarization metrics

Our goal for this research is to develop a summarization metric that can be maintained
from each incremental application of Subdue that will allow us to derive the globally best
substructure without reapplying Subdue to the accumulated data.

To accomplish this goal, we rely on a few artifacts of Subdue’s discovery algorithm.
First, Subdue maintains a list of the n best substructures discovered from any dataset,
where n is configurable by the user. The default value for n is 3, but any number of
ranked substructures can be maintained, limited only by constraints on the beam search
that Subdue uses to prune its search space.

Figure 5. Result from applying Subdue to the three aggregated data
increments.

S1

Compressed Graph

Best Substructure

C
om

m
un

ic
at

es
w

ith

Travels
to

C
om

m
un

ic
at

es
w

ith

Riyadh

Travels
to

Beirut

Travels
to

Beirut Travels
to

C
om

m
un

ic
at

es
w

ith

Beirut

Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Travels
to

Tehran

Travels
to

Karachi Travels
to

C
om

m
un

ic
at

es
w

ith

Karachi

Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

Travels
to

Riyadh

Travels
to

Cairo Travels
to

C
om

m
un

ic
at

es
w

ith

Cairo

S1

S1

S1

S1

S1

S1

B

A

D

A

E

A

F

A

E

A

F

A

C

A

Second, we use the value metric Subdue maintains for each substructure. Subdue
measures graph compression with the Minimum Description Length principle as
described in section 2. For I-Subdue, we must use a modified version of the compression
metric to find the globally best substructure, illustrated in Equation 2.

With Equation 2 we calculate the compression achieved by a particular substructure,

Si, up through and including the current data increment m. The DL(Si) term is the
description length of the substructure, Si, under consideration. The term

represents the description length of the accumulated graph after it is compressed by the
substructure Si.
Finally, the term

represents the full description length of the accumulated graph.

At any point we can then reevaluate the substructures using Equation 3 (inverse of

Equation 2), choosing the one with the highest value as globally best.
The process of computing the global substructure value takes place in addition to the

normal operation of Subdue on the isolated data increment. We only need to store the
requisite description length metrics after each iteration for use in our global computation.

(2) ∑ ∑
=

=
+

=
m

j
j

m

j
iji

im

)G(DL

)S|G(DL)S(DL

)S(Compress

1

1∑
=

m

j
ij)S|G(DL

1

 +∑∑
=

=
m

j
iji

m

j
j

)S|G(DL)S(DL

)G(DL

)imax(arg

1

1
(3)

∑
=

m

j
j)G(DL

1

Figure 6. The top n=3 subs from each local increment.

Travels
to CairoS1

Communicates
with

C
om

m
un

ic
at

es
w

ith

Travels
to

Riyadh

S2

S3

Travels
to KarachiS1

Communicates
with

C
om

m
un

ic
at

es
w

ith

Travels
to

Tehran

S2

S3

Travels
to

BeirutS1

Communicates
with

C
om

m
un

ic
at

es
w

ith

Travels
to Beirut

S2

S3

Increment #1 Increment #2 Increment #3

A

A C

C

A

A

A C

C

A

A

A C

E

A

As an illustration of our approach, consider the results from the example depicted in
Figure 3. The top n=3 substructures from each iteration are shown in Figure 6. Table 1
lists the values returned by Subdue for the local top n substructures discovered in each
increment. The second best substructures in increments 2 and 3 (S22, S32) are the same as
the second best substructure in increment 1 (S12), which is why the column corresponding
to S12 has a value for each increment. The values in Table 1 are the result of the
compression evaluation metric from Equation 1. The locally best substructures illustrated
in Figure 3 have the highest values, demarcated by the highlighted cells in Table 1.

Table 2 depicts our application of I-Subdue to the increments from Figure 3. After
each increment is received, we apply Equation 3 to select the globally best substructure.
The values in Table 2 are the inverse of the compression metric from Equation 2. As an
example, the calculation of the compression metric for substructure S12 after iteration 3
would be:

Consequently the value of S12 would be:

For this computation we rely on the metrics computed by Subdue when it evaluates

substructures in a graph, namely the description length of the discovered substructure, the

14741
74966396639615

116117117
.

...
=

+++
++

)G(DL)G(DL)G(DL

)S|G(DL)S|G(DL)S|G(DL)S(DL

321

12312212112

++
+++

Table 2. Using I-Subdue to calculate the global value of each substructure. The
description length of each graph iteration (Gj) and of each substructure (Si) are shown.
Highlighted cells indicate the global best substructure at each increment.

Global Best
Calculation After

Iteration #

S11 S12 S13 S21 S23 S31 S33 DL(Gj)*

1 1.2182 1.04808 0.981511 117
2 1.0983 1.1235 0.9906 1.0986 0.9906 117

3 1.0636 1.1474 0.9937 1.0638 0.9937 1.0455 0.9884 116

DL(Si)* 15 15 25.75489 15 25.754888 15 26.50978

New Substructures from
Iteration #1

New Substructures
from Iteration #2

New Substructures
from Iteration #3

*measured in bits

Table 1. Substructure values computed independently for each iteration.
Highlighted cells indicate maximum values in each increment.

Increment #

S11 S12 S13 S21 S23 S31 S33

1 1.2182 1.04808 0.9815
2 1.04808 1.21882 0.981511
3 1.03804 1.15126 0.966017

New Substructures from
Increment #1

New Substructures
from Increment #2

New Substructures
from Increment #3

description length of the graph compressed by the substructure, and the description length
of the graph. By storing these values after each increment is processed, we can retrieve
the globally best substructure using Equation 3. Figure 7 illustrates the basic algorithm,
where Subdue is invoked to discover the candidate substructures and the byproduct
evaluation metrics are collected and used to calculate the globally best substructures after
each new data increment is processed.

 In circumstances where a specific substructure is not present in a particular data
increment, such as S31 in iteration 2, then

and the substructure’s value would be calculated as follows:

)DL(G)S|DL(G 2312 =

04551
768511711715

116117117
.

.
=

+++
++

//Call I-Subdue on the new data increment Gj

I-Subdue(Gj)

//Subdue returns description length values and top n substructures for current data increment,

//which are stored for global calculations

CandidateSubstructures[], SubstructureSizes[], CompressedGraphSizes[], size_Gj ⇐ Subdue(Gj)

total_graph_size = total_graph_size + size_Gj

/**/
Get_Global_Best(total_graph_size,CandidateSubstructures[], SubstructureSizes[],
CompressedGraphSizes[])

 best_value = 0

 global_best_substructure = nil

 for(i=1 to sizeof(CandidateSubstructures))

 size_si = CandidateSubstructureSizes[i]

compressed_graph_size = 0

 for(j=1 to num_data_increments)

compressed_graph_size = compressed_graph_size +

CompressedGraphSizes[i][j]) //DL(Gj|Si)

 value_si = graph_size/(size_si + compressed_graph_size)

 if value_si > best_value

 best_value = value_si

 global_best_substructure = CandidateSubstructures[i]

return global_best_substructure

Figure 7. Application of I-Subdue to store metrics returned from running Subdue over a
single data increment, then calculating the global best substructure using the collected
metrics.

Figure 9. Comparison of I-Subdue vs. Subdue on 10 – 50 increments.
Each increment provides 1020 new vertices with 1 to 4 outgoing edges.

I-Subdue vs. Subdue Run-time

0

100

200

300

400

500

10 20 30 40 50

Number of Increments

Ti
m

e
in

 S
ec

on
ds I-Subdue

Subdue

51000
vertices,
102402
edges

40800
vertices,
81974
edges

30600
vertices,
61175
edges

20400
vertices,
40649
edges

10200
vertices,
20490
edges

51000
vertices,
102402
edges

40800
vertices,
81974
edges

30600
vertices,
61175
edges

20400
vertices,
40649
edges

10200
vertices,
20490
edges

A

CB

D

A

CB

D

I-Subdue vs. Subdue Run-time

0

20

40

60

80

10 20 30 40 50

Number of Increments

Ti
m

e
in

 S
ec

on
ds

I-Subdue

Subdue

11000
vertices,

7183
edges

8800
vertices,

6049
edges

6600
vertices,

4409
edges

4400
vertices,

2859
edges

2200
vertices,

1499
edges

11000
vertices,

7183
edges

8800
vertices,

6049
edges

6600
vertices,

4409
edges

4400
vertices,

2859
edges

2200
vertices,

1499
edges

A

CB

D

A

CB

D

Figure 8. Comparison of I-Subdue vs. Subdue on 10-50 increments.
Each increment provides 220 new vertices with 0 or 1 outgoing edges.

3.2.3 Experimental evaluation

To illustrate the relative value of I-Subdue with respect to performance in processing
incremental data, we have conducted experiments with a synthetic data generator. This
data generator takes as input a library of data labels, configuration parameters governing
the size of random graph patterns, and one or more specific substructures to be embedded
within the random data. The random graph segments can also be configured in terms of
the density of the edge connectivity. The data generator produces a new data increment
when invoked by I-Subdue and for comparison purposes archives the cumulative set of
increments into a file for batch processing by Subdue.

For the first experiment, illustrated in Figure 8, we compared the performance of I-
Subdue versus Subdue at benchmarks ranging from 10 to 50 increments. Each increment
introduced 220 new vertices, within which five instances of the four-vertex substructure
pictured in Figure 8 were embedded. The quality of the result, in terms of the number of
instances found, was the same for both I-Subdue and Subdue. The running times were
the only discernable qualitative difference. The major simplifying factor for this first
experiment was the vertex degree. Each vertex had 0 or 1 outgoing edges with a 50%
probably for each. A less densely connected graph greatly simplifies the substructure
search space.

The results from the second experiment are depicted in Figure 9. For this experiment,
we increased the increment size to 1020 vertices and gave each vertex an outward degree
ranging from 1 to 4 edges. Each degree value was chosen with 25% probability, which
means that on average there are about twice as many edges as vertices. This more
densely connected graph begins to illustrate the significance of the run-time difference
between I-Subdue and Subdue. Again, five instances of the four-vertex substructure
shown in Figure 9 were embedded within each increment. The discovery results were the
same for both I-Subdue and Subdue with the only qualitative difference being the running
time.

3.3 Partitioned Discovery

For this work we are concerned with addressing large, monolithic datasets, which are
prevalent in many real-world domains. To address this challenge, we have developed an
algorithm that operates serially on smaller partitions of the graph and then compares the
local results to acquire a measure of the overall best substructures for the entire graph.
We also illustrate a method to recover information lost in the form of edge cuts from the
graph partitioning. We illustrate the scalability with results from experiments performed
using protein databases and artificial datasets.

In SSP-Subdue we partition the input graph into x partitions. The value of x here is
selected by the user to ensure that each partition is small enough to fit in dynamic
memory. We perform Subdue on each partition and collect the b best substructures local
to each partition in a list, where b is the beam used to constrain the number of best
substructures reported. We take care that for each partition, Subdue reports only the
substructures that have not already been reported as locally-best on any of the previously-

processed partitions. By doing so, we implicitly increase the beam dynamically. At the
end of this pass, there are xb substructures in the list. Then we evaluate these xb locally-
best substructures on all partitions in a second pass over the static partitions, similar to
the partition approach applied to association rule mining10. Once all evaluations are

complete, we gather the results and determine the global best discoveries. This is a serial
approach and does not rely on parallel hardware. Figure 10 summarizes the basic
algorithm and the metric used for evaluating substructures globally is described below.

As a part of this research, we have generated a variant of the MDL measure,
described in section 2, which is used to rank discoveries globally.

SSP-Subdue measures graph compression using our measure variant given in
Equation 4, where DL(S) is the description length of the substructure S being evaluated,
DL(Gj|S) is the description length of the graph corresponding to the jth partition as
compressed by substructure S, and DL(Gj) is the description length of the uncompressed
jth partition. The substructure that minimizes the sum of DL(S) and DL(Gj|S) is the most
descriptive substructure, and thus is locally the best.

(4)

)(

)|()(
)(

j

j
j

GDL

SGDLSDL
SnRatioCompressio

+=

Figure 10. SSP-Subdue Algorithm

//Invoke serial Subdue on each partition Gj, which returns top b substructures for the //jth partition

for each partition Gj

localBest[] = Subdue(Gj);

//Store local best substructures for global evaluation

bestSubstructures[] = Union(bestSubstructures[],localBest[]);

//Reevaluate each locally-best substructure on all partitions

sizeOfGraph = 0;

for each substructure Si in bestSubstructures[]

sizeOfSubSi = MDL(Si);

sizeCompressedGraph = 0; //initialize

for each partition Gj

//size of graph (in bits) is the sum of sizes of individual partitions

sizeCompressedGraph = sizeCompressedGraph + MDL(Gj|Si);

sizeOfGraph = sizeOfGraph + MDL(Gj);

//Calculate global value of substructure

subValueSi = sizeOfGraph / (sizeOfSubSi + sizeCompressedGraph);

bestSubstructures[i].globalValue = subValueSi;

//Return the top b substructures in bestSubstructures[] as the top b global best //substructures

The smaller the value of the compression ratio of a substructure, the higher will
Subdue rank that substructure locally for the jth partition.

The global best substructures are found by reevaluating the locally best substructures
using Equation 5 on the other partitions. Here, S is a substructure in the common list. The
common list represents a collection of all local best substructures. The variable x
represents the number of partitions, DL(S) is the description length of the substructure S
under consideration, ∑x

j=1DL(Gj|S) is the sum of description lengths of all the partitions
after being compressed by the substructure S, and ∑x

j=1DL(Gj) is the description length
of the entire graph.

The substructure with the minimum value of the compression ratio obtained from

Equation 5 is ranked as globally the best substructure.

(5) ∑∑
=

=

+
=

x

j

j

x

j

j

GDL

SGDLSDL

SnCompressio

1

1

)(

)|()(

)(

square

ellipse

circle

ellipse

circle
square

triangle

below near

below below

below

near

Figure 11. Partition 1

square

rectangle

trangle

circle

ellipse rectangle

triangle

below near

below below

below

near

Figure 13. Partition 2

circle

below

Figure 12. Local best substructures of partition 1

ellipse

circle

below

ellipse

circle

below

square

below

ellipse

circle square

below near

rectangle

triangle

below

rectangle

triangle

below

square

below

Figure 14. Local best substructures of partition 2

rectangle

triangle

below

circle

near

ellipse

circle

below

triangle

rectangle

below

rectangle

triangle

below

circle

near

Figure 15. Global best substructures

The following example illustrates the SSP-Subdue algorithm concepts. For this

example input graph is split into two partitions. Subdue is run on partition 1 shown in
Figure 11 and the best substructures local to this partition, shown in Figure 12, are stored
for global evaluation. Next, Subdue is run on partition 2 shown in Figure 13 and the best
substructures local to this partition, shown in Figure 14, are stored for global evaluation.
In a second pass over both of the static partitions, all of the locally-best substructures are
evaluated using Equation 5 to produce the globally-best substructures shown in Figure

square

Figure 16. Unpartitioned graph G'

rectangle

triangle

ellipse

circle

rectangle

triangle

circle

rectangle

ellipse

triangle

circle

ellipse

rectangle

triangle

square

Figure 19. Compressed graph

below below

belowbelow
below

belowbelowbelow

belowbelow

belownear

near

near

square

rectangle

SUB_2_5

ellipse

circle

rectangle

SUB_2_1

square

SUB_2_2

SUB_2_2

SUB_2_5

ellipse

below

below
near

below

near

near

below

below

below

below

circle

ellipse

rectangle

ellipse

rectangle

triangle

below

below

below
below

near

ellipse

rectangle

below

ellipse

rectangle

belownear

Figure 20. Global best substructures

square

rectanglecircle

rectangle

rectangle

ellipse

ellipse

rectangle

below

below

below

belownear

near

near

ellipse

rectangle

rectangle

triangle

below
below

ellipse

rectangle

below

rectangle

Figure 17. Partition 1 and 2 of graph G'

ellipse

ellipse

rectangle

below

near

ellipse

rectangle

below

triangle

circle

below

SUB_2_1 SUB_2_2 SUB_2_3

triangle

SUB_2_4 SUB_2_5 SUB_2_6

circle

ellipse

rectangle

below

near

triangle

ellipse

below

Figure 18. Global best substructures after first
pass

15. The instances of these globally best substructures are highlighted in the two
partitions.

3.3.1 Edge-loss recovery approach

The partitions are compressed using the globally best substructures found by running
SSP-Subdue and then combined in pairs. Then the edges that were lost due to the original
partitioning are reinserted between the combined partitions.

Since merging all possible combinations of two partitions that have edges cut between
them could lead to a total of x(x-1)/2 combinations, each partition is constrained to be
combined at most once with another partition. The pair of partitions that have the
maximum number of edges cut between them are merged. Then the pair of partitions that
have the second maximum number of edges cut between them are combined, and so on.
This guarantees that two partitions are not combined unless they had any edges cut
between them. However, this might sometimes lead to a matching such that some
partitions are left that cannot be combined with any of the remaining unpaired partitions
due to no edges cut at the boundaries. Here we are assuming that the compression and
combining of partitions will not lead to a partition with a size too large to fit in dynamic
memory. Finally, SSP-Subdue is executed on the combined partitions to get the globally-
best substructures. The following example illustrates our approach. The input graph,
shown in Figure 16, is divided into two parts. As a result of this partitioning, all the
instances of one of the most frequently occurring substructures, “rectangle below
triangle”, are lost.

After running SSP-Subdue on the partitions shown in Figure 17, the substructures
illustrated in Figure 18 are reported as the global best substructures.

The two partitions are compressed using the above substructures and combined to
form the graph shown in Figure 19

After running SSP-Subdue on the compressed graph shown in Figure 19, the
substructures in Figure 20 were reported as the best substructures. Clearly this set
includes larger substructures encompassing the frequently-occurring substructure,
“rectangle below triangle,” which was initially lost due to the original partitioning. Thus,
this approach proves useful in recovering the instances of those interesting substructures
that are lost due to the original partitioning.

However, a problem can occur when the best substructure is broken across partition
boundaries, and subgraphs within this substructure are discovered in local partitions in
different combinations with other subgraphs. The local discoveries would be used to
compress the partitions and the original substructure will not be reformed and discovered
in the second iteration. To remain consistent with the original Subdue algorithm, the
compression could be performed using only the single best substructure found as opposed
to the beam number of best substructures. Then the compressed subgraph would still
appear as part of the original substructure and the best could be found. However, this
problem can still exist in other forms. As shown in Figure 21, suppose that
ellipse→rectangle→triangle is the desired substructure (the same label is applied to every

edge here), and appears half the time as ellipse→rectangle→triangle→square and the
other half as ellipse→rectangle→triangle→oval. If one boundary occurs between ellipse
and rectangle and another between rectangle and triangle, it is possible that
triangle→square or triangle→oval will be the best local discoveries, and after
compression the overall best substructure will still not be found as half of the triangles
are now parts of the compressed substructure.

3.3.2 Experimental evaluation

Experiments that demonstrate scalability of a serial partitioned version of Subdue were
performed using artificially-generated datasets and protein databases.

3.3.2.1 Artificial datasets

The artificial graphs have been generated using a graph generator that takes as input one
or more substructures and the number of instances of each substructure to be embedded
in the target graph. Random vertices are then added and random edges are inserted
between the vertices to generate a graph of the user-specified size. A post-processing step
of randomizing the distribution of the vertices in the graph is performed for our
experiments to ensure that all of the embedded substructures are not localized in one part
of the graph. The size of the graphs are indicated by the notation xxKVyyKE, where KV
stands for kilo vertices (1000 vertices) and KE stand for kilo edges (1000 edges). Also, in
some cases a suffix of the type Nw has been added to the above notation where N denotes
the number of partitions.

Figure 21 Best substructure broken across partition boundaries, its
subgraph occurring as best local substructure

ellipse ellipse ellipse ellipse
near near near

rect rect rect rect

below below below below

triangle triangle triangle triangle

below below below below

square oval square oval

below below below below

Compressed
node

Partition 3

Partition 2

Partition 1

Compressed
node

Figure 22 plots the run time of SSP-Subdue on the artificial graphs of varying sizes as

the number of partitions increases. For this experiment, the substructures shown in Figure
23 are embedded into the artificial graphs, each with about 35% coverage. The execution

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

500000

Number of Partitions

E
xe

cu
tio

n
 T

im
e(

se
c)

80KV160KE

40KV80KE

10KV20KE
80KV160KE 465499 243286 21788 11443 4590 3906

40KV80KE 165099 20251 5191 2253 1359 1300

10KV20KE 19686 1070 3237 730 28 18

1 2 3 4 6 8

0

5000

10000

15000

20000

25000

3 4 6 8

80KV160KE

40KV80KE

10KV20KE

Figure 22. SSP-Subdue execution time on artificial graphs of varying size
and varying number of partitions

Figure 23. Substructures embedded in artificial datasets

e1

V4

e2

V1

V2 V3

V4 V5

e1

e4
e4

V6 V8

V7

e1 e1

Substructure1 Substructure2

times plotted for Number Of Partitions = 1 represents the execution time for the baseline
Subdue algorithm. It is clear that SSP-Subdue achieves a substantial speedup. This is
because the run time of Subdue is nonlinear in the size of the input graph. In SSP-
Subdue, the Subdue algorithm is applied serially to small portions of the graph, so the
combined run time is less than that of Subdue.

SSP-Subdue spent about 15% of its total run-time on the global evaluation of locally-
discovered substructures in order to select the globally-optimal substructures.

3.3.2.2 Protein database

The Protein Data Bank (PDB) is a worldwide repository for processing and distributing
3-D data structures for large molecules of proteins and nucleic acids. We converted the
information in the given PDB file to a Subdue-formatted graph file corresponding to the
compound described in the PDB file. Each atom is represented as a vertex whose label is
the element name of that atom. For any two atoms whose Euclidean distance is between
0.4 and 1.9 angstroms (or 0.4 and 1.2 angstroms if one or both of the atoms are
hydrogen), the program outputs a "bond" edge between the vertices of the two atoms.
These bond distances are based on the technique used in the RasMol molecular
visualizer. The graphs are not heavily connected and all the edges have the same label
(i.e., “bond”). Since we were mainly concerned with experimenting on graphs of varying
sizes, the files from PDB used for our experiments were selected randomly and inclusion
of no particular chemical compound was emphasized. We browsed the database to obtain
the graphs of the required sizes.

Figure 24 plots the run time of SSP-Subdue on PDB graphs of varying sizes as the

number of partitions increases. The execution times plotted for Number Of Partitions = 1
represents the execution time for Subdue. As in the case of artificial graphs, it is observed
that a substantial speedup is achieved over Subdue. Here, we have observed an

0

10000

20000

30000

40000

50000

60000

70000

80000

1 2 3 4 6 8

Number of Partitions

E
xe

cu
ti

o
n

 T
im

e
(s

ec
s)

24KV25KE

10KV10KE

4KV5KE

Figure 24 SSP-Subdue execution time on graphs of varying
size and varying number of partitions from protein database

anomalous small increase in the run time for four partitions as compared to that of three
partitions for the 24KV25KE graph. This can be attributed to the fact that the random
partitioning can lead to partitions that have varying degrees of connectivity (very highly
connected or very sparsely connected) between vertices when partitioned into different

number of partitions. The more highly connected a graph/partition is, the more time
Subdue takes to process it.

Figure 25 indicates the number of instances of the best substructure found by SSP-
Subdue for graphs of varying sizes with a varying number of partitions. The best
substructure discovered by Subdue and SSP-Subdue was the same for each of these
graphs. As the graphs in the protein database are sparsely connected, the information loss
at the partition boundaries is relatively less and thus the quality of discovery is not
degraded drastically. An enlarged plot depicting the trend in the quality of discovery for
the 10KV10KE graph with varying number of partitions has been inserted in Figure 25 to
emphasize the point that the quality is affected, though not drastically.

4. Conclusion and Future Work

4.1 Sequentially-connected data

The focus of incremental discovery in this paper has been on developing the fundamental
algorithms for iterative discovery refinement and was tested on data that was not

Figure 25 Number of instances of best substructure found in graphs of varying size
and varying number of partitions from protein database

Quality of Discovery Protein DB

0

200

400

600

800

1000

1200

1400

Number of Partitions

N
u

m
b

er
 o

f
In

st
an

ce
s

F
o

u
n

d

24KV25KE

10KV10KE

4KV5KE

24KV25KE 1308 1307 1308 1305 1305 1303

10KV10KE 533 532 531 530 529 528

4KV5KE 246 246 244 244 242 242

1 2 3 4 5 6

525

526

527

528

529

530

531

532

533

534
10KV10KE

10KV10KE 533 532 531 530 529 528

1 2 3 4 5 6

connected across temporal increment boundaries. However, many domains, including
the counter-terrorism domain we discussed, will include event correlations that transcend
multiple data iterations. For example, a terrorist suspect introduced in one data increment
may be correlated to events that are introduced on latter increments. As each new data
increment is received, it may contain new edges that extend from vertices in the new data
increment to vertices received in previous increments.

Figure 26 illustrates an example where two data increments are introduced over
successive time steps. Common substructures have been identified and two instances of
the common substructure extend across the increment boundary.

4.2 Shifting concepts

In the traditional machine learning problem,15,16 it is generally stated that some function
F(x) is generating an attribute vector x, based on a fixed relationship, whether
probabilistic or deterministic. The attribute vector x represents the observable features of
the problem space. This definition extends intuitively to data mining. However, in
sequential discovery problems, the domains are such that the underlying relationships
between system variables often change over time. Referring back to our counter-
terrorism application, it is certainly the case that terrorist organizations change their
behaviors in unpredictable ways and adapt to counter-terrorism efforts. There are
approaches to machine learning in the presence of shifting concepts, such as the sliding
window approach,17 where only the last n data points are used to update the learned
model, but such approaches are often naïve in the sense that they disregard valuable
information learned outside of the data window. This is akin to forgetting everything
discovered about a terrorist organization’s behaviors and capabilities when in fact only a
small portion of their behaviors have changed, like an alteration in communication
patterns. Our future work will focus on developing methods for structure discovery when
the underlying system is undergoing change.

4.3 Graph partitioning

We have developed a naïve graph partitioner for use in our current research. The main
motivation behind developing our own partitioner was that the entire input graph need

A

D

C

B

E

C
B

A

Y

X Z

Common
Substructures

N

M

Y

C

A
L

B

A

R

X

Z

J

B

C

O

H

Increment
Boundary

A

B

C

Figure 26. Sequentially connected data

not be placed in dynamic memory at once. Graphs that are too large to fit in main
memory can be streamed and partitioned using this naïve partitioner. It also records the
edge cuts in a separate file, which is helpful for edge loss recovery as described in section
3.3.1. We have been able to show that the quality of substructures discovered by SSP-
Subdue is good, even with an unsophisticated graph partitioner. The use of a more
sophisticated graph partitioner should lead to improved performance of the SSP-Subdue
system.

The quality of discovered substructures as well as the speedup achieved by SSP-
Subdue depends highly on the graph partitioning step. Subdue does not have any
information about the structure of its input graphs and therefore graph partitioning
algorithms, like the multi-level Kerninghan-Lin algorithm18 or the Fiduccia-Matheyses
algorithm,19 are best suited for use in Subdue. However, we are investigating additional
partitioning heuristics, beyond frequency of occurrence, which may help reduce the loss
of edges that represent important information and are a part of important pattern
discoveries.

We are also pursuing analytical methods that could be used to determine if it is
possible to bound the probability that any of the edges in a subgraph of a randomly-
partitioned graph straddle a partition boundary. It may be possible to bound the number
of random partitions that should be considered to ensure that with a high probability most
matching subgraphs are found. This would suggest that the algorithm be modified to try
many different random partitions.

5. Acknowledgments
This research is sponsored by the Air Force Research Laboratory (AFRL) under contract
F30602-01-2-0570. The views and conclusions contained in this document are those of
the authors and should not be interpreted as necessarily representing the official policies,
either expressed or implied of AFRL or the United States Government.

6. References
1. L. Holder, D. Cook, J. Gonzalez, and I. Jonyer 2002. Structural Pattern Recognition

in Graphs. In Pattern Recognition and String Matching, Chen, D. and Cheng, X. eds.
Kluwer Academic Publishers, 2002.

2. J. Rissanen, Stochastic Complexity in Statistical Inquiry. World Scientific Publishing
Company, 1989.

3. D. Cook, and L. Holder,. Substructure Discovery Using Minimum Description
Length and Background Knowledge. In Journal of Artificial Intelligence Research,
Volume 1, pages 231-255, 1994.

4. A. Blum. On-line Algorithms in Machine Learning. In Proceedings of the Workshop
on On-Line Algorithms, Dagstuhl, 1996.

5. N. Friedman and M. Goldszmidt. Sequential Update of Bayesian Network Structure.
In Proceedings 13th Conf. on Uncertainty in Artificial Intelligence, 1997.

6. R. Agrawal, R. Srikant: Mining Sequential Patterns, Proceedings of the Int'l
Conference on Data Engineering, Taipei, Taiwan, 1995.

7. G. Hulten, L. Spencer, and P. Domingos. Mining Time-Changing Data Streams.
KDD-01, San Francisco, CA, 2001.

8. H. Wang, W. Fan, P. Yu and J. Han. Mining Concept-Drifting Data Streams Using
Ensemble Classifiers, in the 9th ACM International Conference on Knowledge
Discovery and Data Mining, 2003.

9. R. Agrawal, and G. Psaila. Active Data Mining. In Proceedings of the 1st Int'l
Conference on Knowledge Discovery in Databases and Data Mining, 1995.

10. A. Savasere, E. Omiecinsky, and S. Navathe. An Efficient Algorithm for Mining
Association Rules in Large Databases. 21st Int'l Cong. on Very Large Databases
(VLDB), Zurich, Switzerland, 1995.

11. P. Shenoy, J.R. Haritsa, S. Sudarshan, G. Bhalotia, M. Bawa, and D. Shah. Turbo-
charging Vertical Mining of Large Databases. ACM SIGMOD Int'l Conference on
Managementof Data, 2000.

12. J. Han, J. Pei, and Y. Yin. Mining Frequent Patterns without Candidate Generation.
ACM SIGMOD Int'lConference on Management of Data, 2000.

13. H. Toivonen. Sampling Large Databases for Association Rules. In Proceedings Int.
Conf. Very Large Data Bases. Morgan Kaufman, 1996.

14. D. J. Cook, L. B. Holder, G. Galal, and R. Maglothin, Approaches to Parallel Graph-
Based Knowledge Discovery, Journal of Parallel and Distributed Computing, 61(3),
pages 427-446, 2001.

15. T. Mitchell. Machine Learning. McGraw Hill, 1997.
16. V. N. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, NY,

USA, 1995.
17. G. Widmer. and M. Kubat. Learning in the Presence of Concept Drift and Hidden

Contexts. Machine Learning, 23, 69-101, 1996.
18. B. W. Kerninghan and S. Lin. An Efficient Heuristic for Partitioning Graphs. Bell

Systems Tech. J., 49:421-308, 1970.
19. C. Fiduccia and R. Matheyses, A Linear-Time Heuristic for Improving Network

Partitions. In ACM/IEEE Design Automation Conference, pp. 175-181, 1982.

