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We describe an algorithm and experiments for inference of edge replacement graph grammars. This 

method generates candidate recursive graph grammar productions based on isomorphic subgraphs 

which overlap by two nodes. If there is no edge between the two overlapping nodes, the method 

generates a recursive graph grammar production with a virtual edge. We guide the search for the 

graph grammar based on the size of the grammar and the portion of the graph described by the 

grammar. We show experiments where we generate graphs from known graph grammars, use our 

method to infer the grammar from the generated graphs, and then measure the error between the 

original and inferred grammars. Experiments show that the method performs well on several types of 

grammars, and specifically that error decreases with increased numbers of unique labels in the graph. 

Keywords: Grammar Induction, Graph Grammars, Graph Mining. 

1.   Introduction 

There is overlap in the recurring patterns or motifs representing the building blocks of 

networks in nature. Palla et al.
12 point out the existence of an overlap between parts of 

graphs representing social networks and proteins. They call them overlapping 

communities. Most knowledge discovery and data mining approaches look for 

independent recurring patterns, but do not consider how these patterns can connect and 

overlap iteratively or recursively to generate arbitrary-sized relational data. Graph 

grammars provide a representation for such knowledge. 

In our method of graph grammar inference we search for overlap between isomorphic 

subgraphs of a graph. The overlap allows our method to propose recursive graph-

grammar productions. The first approach was to search for overlap by a single node, 

which led to developing a system for inference of Node Replacement Recursive Graph 

Grammars8. In this paper we describe an approach that allows inference of Edge 
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Replacement Recursive Graph Grammars. In the next section we will describe related 

work. Then, we define the class of grammars, describe the inference algorithm and 

discuss inference error. We also address how different numbers of labels used in the 

graph affect the inference error. Experiments with the chemical structure of G tetrad and 

conclusions close the paper.  

2.   Related Work 

Jeltsch and Kreowski4 analyzed theoretically the inference of hyperedge replacement 

graph grammars introducing operations on a set of undirected, unlabeled graphs which 

guarantee that the inferred grammar can generate the input set of graphs. Oates, Doshi, 

and Huang14 assume that the structure of a graph of a hyperedge replacement context free 

graph grammar is given. They are interested in inference of probabilities associated with 

every rule of a grammar. Nevill-Manning and Witten11 developed SEQUITUR which 

works on strings, but their approach is similar to ours in the sense that it infers 

hierarchical structure by replacing substrings by grammar rules. The new, compressed 

string is searched for substrings which can be described by grammar rules, and they are 

then compressed with the grammar and the process continues iteratively. Similarly, in our 

approach we replace the part of a graph described by the inferred graph grammar with a 

single node, and we look for grammar rules on the compressed graph and repeat this 

process iteratively until the graph is fully compressed.  

Jonyer, Holder, and Cook5,6 developed an approach to infer node replacement graph 

grammars which describe graphs in the from of ‘chains’, where isomorphic copies of 

subgraphs are adjacent to each other in a chain connected by a single edge. Their 

algorithm starts by finding frequently occurring subgraphs in the input graphs. Frequent 

subgraphs are those that when replaced by single nodes minimize the description length 

of the graph. They check if isomorphic instances of the subgraphs that minimize the 

measure are connected by one edge.  If they are, a production S→ PS is proposed, where 

P is the frequent subgraph. P and S are connected by one edge. Our approach is similar to 

Jonyer’s in that we also start by finding frequently occurring subgraphs, but we test if the 

instances of the subgraphs overlap by one node. Jonyer’s method of testing if subgraphs 

are adjacent by one edge limits his grammars to descriptions of “chains” of isomorphic 

subgraphs connected by one edge. Since an edge of a frequent subgraph connecting it to 

the other isomorphic subgraph can be included to the subgraph structure, testing 

subgraphs for overlap allows us to propose a class of grammars that have more 

expressive power than the graph structures covered by Jonyer’s grammars. For example, 

testing for overlap allows us to propose grammars that can describe tree structures, while 

Jonyer’s approach does not allow for tree grammars. We conducted experiments with 

Jonyer’s approach, called SubdueGL, to illustrate the types of graph grammars it can find 

and its limitations. We generated graphs from the grammar and then used SubdueGL to 

infer this grammar. We show our results in Figure 1. In this figure, above the 

productions, we indicated a percentage that signifies the probability with which we are 

using every production. In Figure 1 we show a grammar that generates squares and 
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triangles connected in series. Every square or triangle is connected to another square or 

triangle by one edge. The edge that connects the patterns is labeled nx. The labels on the 

vertices and edges of the patterns are distinct. 40% probability is assigned to both the 

nonterminal square and nonterminal triangle. Terminal square and triangle are assigned 

probability 10%. In Figure 1, below the grammar we drew one generated graph. It 

contains four squares and three triangles. The square is found by SubdueGL to be the 

pattern that when all occurrences of its instances in the graph would be replaced by a 

single node, the description length of the graph is minimized. SubdueGL also detects that 

instances of the square in the graph are connected by one edge prompting the inference of 

recursive production S1. The graph is compressed with S1, and in the second iteration 

instances of triangles are detected and production S2 is found.  

 

Figure 1: SubdueGL finds recursive grammar in two iterations. 

 
In Figure 2 we generated a tree from a grammar that has two productions. The first 

production is selected 60% of the time and the second production is a terminal which is a 

single vertex and is selected 40% of the time. The inferred grammar and the compressed 

graph are shown on the right side of the figure. We see that the graph grammar inferred 

by SubdueGL cannot regenerate the tree. It detects only chains of subgraphs connected 

by an edge.  

Our approach grows isomorphic subgraphs similarly as Cook and Holder’s 2,3 

approach to subgraph discovery with the main difference that it checks for overlap 

between growing subgraphs. The overlap allows us to propose recursive grammar rules. 

There are other systems which search for frequent subgraphs in a graph and therefore 

they could possibly be adopted to graph grammar inference. Kuramochi and Karypis9 

developed FSG. Yan and Han introduced gSpan 15. 
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Figure 2: Graph grammar inference from a tree. 

 

We encountered in the existing literature a classification of graph grammars based on 

the embedding mechanism7. The embedding mechanism is important in the generation 

process, but if we use graph grammars in parsing or as a tool to mine data and visualize 

common patterns, the embedding mechanism may have less importance or can be 

omitted. Without the embedding mechanism the graph grammar still conveys information 

about graph structures used in productions and relations between them. In Figure 3 we 

give the classification of graph grammars based on the type of their productions, not 

based on the type of embedding mechanism.  The production of the grammars in the 

hierarchy is of the form ),,( CGd  where d is the left hand side of the production, G is a 

graph, and C is the embedding mechanism. d can be a single node, a single edge or a 

graph, and we respectively call the grammar a node-, edge- or graph replacement 

grammar. If the replacement of d with G does not depend on vertices adjacent to d or 

edges incident to d, nor any other vertices or edges outside d in a graph hosting d, we call 

the grammar context free. Otherwise, the grammar is context sensitive.   

We wanted to place the graph grammars we are able to infer in this hierarchy. We 

circled two of them. Edge replacement context free recursive graph grammar is the one 

described in this paper. The set of grammars inferred by Jonyer et al.
5,6  we call chain 

grammars. Chain grammars are a subset of node replacement recursive graph grammars.   
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Figure 3: Hierarchy of graph grammars. 

3.   Edge replacement recursive graph grammar  

We define a graph as a set of nodes and edges, where each can have a label. Each edge 

can be directed or undirected. We infer an embedding mechanism for recursive 

productions which consists of four integers for every non-terminal edge. These integers 

are node numbers. Two nodes belong to one instance of a graph and two to the other. 

They describe how instance of a graph defined in the grammar production would be 

expanded during derivations. In every iteration of the grammar inference algorithm we 

are finding only one production, and it is ether non-recursive or recursive. The reader can 

refer to examples in Figure 4 and Figure 6 while examining the definition. In Figure 4 (a) 

we see an example of the grammar used for generation and in Figure 4 (b) the equivalent 

inferred grammar.  

A labeled graph G is a 6-tuple, ( )LEVG ,,,,, ηνµ= , where V - is the set of nodes, 

VVE ×⊆ - is the set of edges, LV →:µ  - is a function assigning labels to the 

nodes, LEv →:  - is a function assigning labels to the edges, }1,0{: →Eη - is a 

function assigning direction property to edges (0 if undirected, 1 if directed).  L - is a set 

of labels on nodes and edges.  

An edge replacement recursive graph grammar is a 5-tuple ( )PGr ,,,, ΩΓ∆∑= , 

where ∑ - is an alphabet of node labels, ∆ - is an alphabet of terminal node 

labels, ∑⊆∆ , Γ - is an alphabet of edge labels, Ω -is an alphabet of terminal edge 

labels, ∑⊆Ω , P - is a finite set of productions of the form ),,( CGd , G is a graph, and 

there are recursive productions, where Ω−Γ∈d , and there is at least one edge in 

G labeled d . C  is an embedding mechanism with a set of connection instructions, 
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);( VVVVC ××⊆ , where V  is the set of nodes of G . A connection instruction 

Cvvvv lkji ∈),;,(  implies that derivation can take place by replacing iv , kv  in one 

instance of G  with 
lj vv ,  respectively, in another instance of G . All the edges incident 

to iv are incident to jv , and all the edges incident to kv  are incident to lv . All the edges 

incident to jv and kv remain unchanged. If, in derivation process after applying 

connection instruction ),;,( lkji vvvv , nodes 
ji vv , are adjacent by an edge, we call edge 

),( ji vve =  a real edge, otherwise edge  ),( ji vve = is used only in the specification of 

the grammar, and we draw it to show two nodes where the connection instructions are 

applied, and we call this edge a virtual edge.. 

 

 
Figure 4. The original grammar (a) used to generate examples and the inferred grammar (b). 

 

4.   The Algorithm 

The algorithm operates on a data structure called a substructure. A substructure consists 

of a graph definition of the repetitive subgraph and its instances. We illustrate it in Figure 

5. Initially, the graph definitions of substructures are single nodes, and there are as many 

substructure inserted into the queue Q as there are different labels on nodes in the input 

graph. We expand the substructure in all possible ways by a single edge or by single edge 

and a node. We allow substructures to grow and their instances to overlap but by no more 

than two nodes. We evaluate substructures. The total number of substructures considered 

is determined by the input parameter Limit. The input parameter Beam specifies the 

width of a beam search, i.e., the length of Q.  

If two nodes 21 ,vv  in G both belong to two different instances, we propose a 

recursive grammar rule. If 21 ,vv  are adjacent by an edge, it is a real edge, and we 

determine its label which we use to specify the terminating production (see Figure 6). We 

insert recursive substructures together with non-recursive substructures into the newQ. 

Recursive substructures compete with non-recursive substructures. They are evaluated 

with a measure: 

 

                                                  
( )

( ) )|( SGsizeNTSsize

Gsize

++
                                            (1) 
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Figure 5. The input graph (a), substructure graph definition (b) and four overlapping instances of repetitive 

subgraph (c). 

 
 

 

NT is the number of connection instructions. G|S is a graph G where we compress all 

instances of the substructure S to a single node. The size is number of nodes plus number 

of edges. The algorithm uses a heuristic search whose complexity is polynomial in the 

size of the input graph to find frequent subgraphs. Checking for overlap between 

instances of substructures, do not change the complexity of this algorithm.  

The algorithm can learn grammars with multiple productions. When we find 

production we compress portion of the graph described by the production. Every 

connected subgraph described by the production is compressed into a node.  Then we 

perform again inference on the compressed graph. We progress with alternating inference 

and compression until we cannot compress the graph any more.  

In Algorithm 1 we represent a substructure by S. We define two functions in 

Algorithm 1: INFER_GRAMMAR and RECURSIFY_SUBSTRUCTURE. The first 

function is consistent with Cook et al.’s 2 algorithm. Initially, the graph definitions of 

substructures are single nodes, and there are as many substructures inserted into the 

queue Q at line 3 as there are different labels on nodes in the input graph. At line 8 we 

expand the substructure in all possible ways by a single edge or by a single edge and a 

node. We allow substructures to grow and their instances to overlap but by no more than 

two nodes. We evaluate substructures at line 12. For more details about the algorithm see 

Ref. 2,5,6.  
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Algorithm 1 Graph grammar discovery.  

INFER_GRAMMAR (graph G, integer Beam,  
      integer Limit) 
1. grammar={} 
2. repeat  
3.   queue Q ={v | v is a node in G having a unique   
          label} 
4.    bestSub= first substructure in Q 
5.     repeat 
6.       newQ ={} 
7.       for each substructure S ∈  Q 
8.         newSubs = extend substructure S in all  
               possible ways by a single edge and a node  
9.        recursiveSub = RECURSIFY_SUBSTRUCTURE (S) 
10.        newQ = newQ ∪ newSubs ∪ recursiveSub 
11.        Limit=Limit-1 
12.        evaluate substructures in newQ  
13.       end for   
14.      if best substructure in newQ better than bestSub 
15.      then bestSub = best substructure in newQ 
16.      Q=newQ  
17.     until Q is empty or Limit ≤ 0 
18.     grammar = grammar ∪ bestSub  
19.     G = G compressed by bestSub 
20. until bestSub cannot compress the graph G 
21. return grammar 

 
RECURSIFY_SUBSTRUCTURE (substructure S) 
1. recS → connectList = {} 
2. recS →Instances = {} 
3. for all pairs of instances (I1, I2),   I1∈S, I2∈S 

4.   if (I1  and I2 overlap on two nodes Gvv ∈21 , )  

5.     if  (v1, v2 adjacent by an edge in G)  
6.        edge.type=real, edge.label=label(v1, v2) else 

7.        edge.type=virtual, edge.label=NULL  

8.      ( )
lkji

vvvv ,;,  = GET_CONNEC(
2121

,,, IIvv ) 

9.      if ( ( )∉edgevvvv
lkji
,,;,  (recS → connectList)) 

10.    add ( )edgevvvv lkji ,,;,  to (recS → connectList) 

11.      if  I1 ∩ IRk ≠ Ø  or I2 ∩ IRk ≠ Ø  , where IRk is any member of recS →Instances 
12.          IRk= IRk ∪  I1 ∪  I2 else 

13.          create new entry IRk= I1 ∪  I2 and add it to  
                recS →Instances 

return recS 
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5.   Experiments   

5.1.   Methodology 

In our experiments we generate thirty graphs from a known grammar, and then we infer 
the grammar from every generated graph. We compute the average inference error over 
these thirty examples.  The generated graphs have 40 to 60 nodes. Our generator can 
assign a random label to a node or an edge. We compare the original grammar and 
inferred grammar using the following measure of the error:  
 

                              














+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21
                         (2) 

 

where )g,matchCost( 21g  is the  

minimal number of operations required to transform 1g into a graph isomorphic to 2g , or 

2g into a graph isomorphic to 1g . The operations are: insertion of an edge or node, 

deletion of an edge or node, or substitution of a node or edge label. CI#  is the number 

of inferred connection instructions, NT#  is the number of non-terminal edges in the 

original grammar, )size( 1g  is the sum of the number of nodes and edges in the graph 

used in the grammar production 

)g,matchCost( 21g  measures the structural difference between two graphs with an 

algorithm for inexact graph match initially proposed by Bunke and Allermann1. For more 

details see also Ref. 1, 2. Our definition of an error has two aspects. First, there is the 

structural difference between the inferred and the original graph used in the productions. 

Second, there is the difference between the number of non-terminals and the number of 

connection instructions. If there is no error, the number of non-terminals in the original 

grammar is the same as the number of connection instructions in the inferred grammar. 

We would like our error to be a value between 0 and 1; therefore, we normalize the error 

by having in the denominator the sum of the size of the graph used in the original 

grammar and the number of non-terminals. We do not allow an error to be larger than 1; 

therefore, we take the minimum of 1 and our measure as a final value. The restriction that 

the error is not larger than 1 prohibits unnecessary influence on the average error by 

inferred graph structures significantly larger than the graph used in the original grammar. 

We now describe several experiments showing different aspects of the edge replacement 

graph grammar inference system.  

5.2.   Experiment 1: Virtual and real edges in productions 

In Figure 6 we see the graph on the top where all nodes have the same label and on the 

bottom of the figure the grammar inferred from this graph. We intend to demonstrate 

verity of productions and the nature of edge replacement grammars our approach can 

handle. The input graph has four different repetitive patterns.  In every pattern subgraphs 
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overlap on two nodes. The part of the graph with overlapping squares is isolated. The rest 

of the graph is a connected graph. The four patterns correspond to nodes S1, S2, S3, S4  
 

 

 

Figure 6. The graph and inferred grammar from this graph. 

 

of the first production S. Our approach finds production S last. Production S is a non-
recursive node replacement production. We find production S by compressing the input 
graph with recursive edge replacement productions found earlier. Production S1 we find 
first because it compresses the graph the most. This production has two non-terminal 
edges. Edge S1a is virtual. Edge S1b is real. We can replace both S1a and S1b non-
terminal edges with the graph on the right hand side of production S1 or terminate. 
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Connection instructions for S1a and S1b are different as is their termination. The 
terminating edge of S1b is an edge with label q. The termination of S1a is by taking no 
action. We mark it by two nodes without an edge. We compress to a single node the part 
of the input graph described by the S1 production before we repeat the inference process. 
We also do similar compression after finding S2, S3, and S4. The second production we 
find is S2. This production has two virtual edges as non-terminals. The production S3 has 
two non-terminal real edges and production S4 has one non-terminal real edge. 

5.3.   Experiment 3: Inference error with different graph structures 

We are interested in how inference error depends on grammar structure. We tested 

several structures. We show results in Figure 7. Every point in the plots in Figure 7 was 

an average of the inference error from thirty experiments. In every experiment we 

generated graphs with 40 to 60 nodes. Every label of an edge and a node of the graphs 

not marked in the Figure 7 and Figure 8 was assigned a label chosen from k distinct 

labels, where k is an integer from 1 to 7 in Figure 7 and from 1 to 16 in Figure 8. We see 

that the smallest error we achieved is for the tree structure. As we complicate the 

structure and increase the average degree of nodes and the ratio of the number of edges to 

the number of nodes, the error increases. The highest error we had with complete graph. 

We show this case separately in Figure 8. We observed the average value of the inference 

error for a complete graph with six nodes. Then we removed from the complete graph 

four edges and repeated the experiment. Next, we remove from the complete graph eight 

edges and repeated the experiments again. As we see in Figure 8, the more edges we have 

in the graph and the closer the graph is to the complete graph, the higher the average 

error. In other words, the closer the graph is to the complete graph the more unique labels 

we need to decrease the error.  

 
Figure 7. The influence on the error of different graph structures used in grammar productions. 
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Figure 8. The change in the error with reduced number of edges from the complete graph structure (top) and an 

example of the inferred grammar (bottom).  

 

5.4.   Experiment 4: Inference error in the presence of noise 

In Figure 9 we show the results of an experiment where we generated graphs with the 

number of nodes from 40 to 60. The Peterson graph (Figure 9 (a)) was the structure we 

used in the graph grammar. The Peterson graph has 10 nodes and 15 edges which allowed 

us to vary the number of non-terminal edges in the structure. We assigned distinct labels 

to all nodes except six and all edges except six. We generated graphs with 1, 2, 3, 4, and 

5 non-terminals and noise value, 0.1, 0.2, …, 0.8. For every value of noise and number of 

non-terminals we generated thirty graphs from the grammar and computed average 

inference error over thirty values. We distinguish two types of noise: corrupted and not 

corrupted. Not corrupted noise is the addition of nodes and edges to the graph structure 

generated from the grammar. We add the number of nodes equal to (noise/(1- 

noise))*number_of_nodes and number of edges equal to (noise/(1- 

noise))*number_of_edges. Every new edge randomly connects two nodes of the graph. 

We randomly assigned the labels to added edges and nodes from labels already existing 

in the graph. We do not change the structure generated from the graph grammar in the 

not-corrupted version. However, in the corrupted version we change the structure of that 

generated from the grammar graph. After adding additional nodes and edges, in the way 

we do for non-corrupted version, we redirect randomly selected edges. The number of 
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edges of a graph multiplied by noise gives the number of redirected edges. We randomly 

assign two new nodes to every selected edge.  

The results in Figure 9 show that there is little influence on error from the number of 

non-terminals. We see an increase in the error in the not-corrupted version when the 

number of non-terminals reaches 5, but for number of non-terminals 1-4 we do not see 

any significant changes. Also, the error in the not-corrupted version does not increase 

significantly as long as the value of noise is less than about 0.5. Corruption of the graph 

structure, as expected, causes greater error than non-corruption. The error increases 

significantly even with 0.1 noise, and is close to 100% for noise 0.3 and higher.  
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Figure 9. Inference error of a graph grammar with the Peterson graph structure in the presence of noise and 

different number of non-terminals. 

5.5.   Experiment 5: Chemical structure 

In Figure 10 (a) we show the chemical structure of G tetrad 10. Versions of this structure 
are used in research on the HIV-1 virus 13. We converted this structure to a graph which 
we use as an input to our grammar inference system. We found the grammar which 
represents the repetitive pattern of this chemical structure. We show the grammar in 
Figure 10 (b). This experiment demonstrates the potential application of our approach 
and also a weakness for further study. Although the grammar production we found 
captures the underlying motifs of the chemical structure, it cannot regenerate the original 
structure which has the ring form.  

We also performed experiments with biological networks, XML file structures and 

other chemical structures, which we will report in other publications. In general, our 
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graph-grammar inference methods have been able to capture known recursive structure in 

these domains. 

 

 

 

Figure 10. The chemical structure of G tetrad (a) and inferred grammar structure (b). 

6.   Conclusions and future work 

We described an algorithm for inference of edge replacement graph grammars. The 

performance of the algorithm depends on the number of distinct labels in the input graph. 

If there is only one label, the algorithm finds a two edge grammar. If we use three or 

more labels in the input graph, the inference error drops to zero or to a value close to zero 

in inference of grammars with a graph structure of a tree, cycle, Peterson graph, and 

tetrahedron. However, as we complicate the structure and increase the average degree of 

nodes and the ratio of the number of edges to number of nodes, the error increases. The 

highest error we had is with a complete graph. The closer the graph structure of the 

grammar is to a complete graph, the more unique labels we need to use in the graph to 

achieve the same level of average inference error. If we generate graphs from a graph 

grammar and then add nodes and edges to this graph, it does not influence significantly 

the inference error in the range of noise 0 to 0.5. There is little influence on error from the 

number of non-terminal edges in the Peterson graph grammar structure when the number 

of non-terminals changes from 1 to 4. 
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In this paper we described the approach to graph grammar inference which extends 

the class of learnable graph grammars. Node Replacement Recursive Graph Grammar 

inference was limited to the patterns where instances overlap on exactly one node. In the 

approach presented in this paper allowing instances to overlap on two nodes led to the 

definition of real and virtual non-terminal edges. With this approach we can infer the 

grammar generating chains of squares overlapping on one edge which was not possible 

with node replacement grammars. Patterns often overlap on two nodes in chemical 

structures, as we saw in the example of the previous section; therefore, we have a tool 

which can find and represent important patterns in the chemical domain.  

The approach has higher error when inferring more complete graphs. The inferred 

grammars, as in the example of chemical structure, can represent the underlying pattern 

of the structure, but cannot regenerate the structure if it has the ring form. The approach 

requires the existence in the input graph of frequently occurring isomorphic subgraphs 

and their overlap by one edge to infer recursive productions. Otherwise, the approach can 

infer non-recursive productions. Eventually, we will integrate inference of non-recursive, 

node-replacement and edge-replacement productions into one graph-grammar inference 

system. All these issues represent directions for future research.  
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