
International Journal on Artificial Intelligence Tools
Vol. XX, No. X (2007) 1–16

 World Scientific Publishing Company

1

INFERENCE OF EDGE REPLACEMENT GRAPH GRAMMARS

JACEK P. KUKLUK

Dana-Farber/Brigham and Women's Cancer Center

Harvard Medical School

75 Francis Street, Boston, MA 02115

jkukluk@lroc.harvard.edu

LAWRENCE B. HOLDER, and DIANE J. COOK

School of Electrical Engineering and Computer Science

Washington State University

Box 642752, Pullman, WA 99164

holder@wsu.edu, cook@eecs.wsu.edu

Received (Day Month Year)

Revised (Day Month Year)

Accepted (Day Month Year)

We describe an algorithm and experiments for inference of edge replacement graph grammars. This

method generates candidate recursive graph grammar productions based on isomorphic subgraphs

which overlap by two nodes. If there is no edge between the two overlapping nodes, the method

generates a recursive graph grammar production with a virtual edge. We guide the search for the

graph grammar based on the size of the grammar and the portion of the graph described by the

grammar. We show experiments where we generate graphs from known graph grammars, use our

method to infer the grammar from the generated graphs, and then measure the error between the

original and inferred grammars. Experiments show that the method performs well on several types of

grammars, and specifically that error decreases with increased numbers of unique labels in the graph.

Keywords: Grammar Induction, Graph Grammars, Graph Mining.

1. Introduction

There is overlap in the recurring patterns or motifs representing the building blocks of

networks in nature. Palla et al.
12 point out the existence of an overlap between parts of

graphs representing social networks and proteins. They call them overlapping

communities. Most knowledge discovery and data mining approaches look for

independent recurring patterns, but do not consider how these patterns can connect and

overlap iteratively or recursively to generate arbitrary-sized relational data. Graph

grammars provide a representation for such knowledge.

In our method of graph grammar inference we search for overlap between isomorphic

subgraphs of a graph. The overlap allows our method to propose recursive graph-

grammar productions. The first approach was to search for overlap by a single node,

which led to developing a system for inference of Node Replacement Recursive Graph

Grammars8. In this paper we describe an approach that allows inference of Edge

J. Kukluk, L. Holder, and D. Cook

2

Replacement Recursive Graph Grammars. In the next section we will describe related

work. Then, we define the class of grammars, describe the inference algorithm and

discuss inference error. We also address how different numbers of labels used in the

graph affect the inference error. Experiments with the chemical structure of G tetrad and

conclusions close the paper.

2. Related Work

Jeltsch and Kreowski4 analyzed theoretically the inference of hyperedge replacement

graph grammars introducing operations on a set of undirected, unlabeled graphs which

guarantee that the inferred grammar can generate the input set of graphs. Oates, Doshi,

and Huang14 assume that the structure of a graph of a hyperedge replacement context free

graph grammar is given. They are interested in inference of probabilities associated with

every rule of a grammar. Nevill-Manning and Witten11 developed SEQUITUR which

works on strings, but their approach is similar to ours in the sense that it infers

hierarchical structure by replacing substrings by grammar rules. The new, compressed

string is searched for substrings which can be described by grammar rules, and they are

then compressed with the grammar and the process continues iteratively. Similarly, in our

approach we replace the part of a graph described by the inferred graph grammar with a

single node, and we look for grammar rules on the compressed graph and repeat this

process iteratively until the graph is fully compressed.

Jonyer, Holder, and Cook5,6 developed an approach to infer node replacement graph

grammars which describe graphs in the from of ‘chains’, where isomorphic copies of

subgraphs are adjacent to each other in a chain connected by a single edge. Their

algorithm starts by finding frequently occurring subgraphs in the input graphs. Frequent

subgraphs are those that when replaced by single nodes minimize the description length

of the graph. They check if isomorphic instances of the subgraphs that minimize the

measure are connected by one edge. If they are, a production S→ PS is proposed, where

P is the frequent subgraph. P and S are connected by one edge. Our approach is similar to

Jonyer’s in that we also start by finding frequently occurring subgraphs, but we test if the

instances of the subgraphs overlap by one node. Jonyer’s method of testing if subgraphs

are adjacent by one edge limits his grammars to descriptions of “chains” of isomorphic

subgraphs connected by one edge. Since an edge of a frequent subgraph connecting it to

the other isomorphic subgraph can be included to the subgraph structure, testing

subgraphs for overlap allows us to propose a class of grammars that have more

expressive power than the graph structures covered by Jonyer’s grammars. For example,

testing for overlap allows us to propose grammars that can describe tree structures, while

Jonyer’s approach does not allow for tree grammars. We conducted experiments with

Jonyer’s approach, called SubdueGL, to illustrate the types of graph grammars it can find

and its limitations. We generated graphs from the grammar and then used SubdueGL to

infer this grammar. We show our results in Figure 1. In this figure, above the

productions, we indicated a percentage that signifies the probability with which we are

using every production. In Figure 1 we show a grammar that generates squares and

 Instructions for Typing Manuscripts (Paper’s Title)

3

triangles connected in series. Every square or triangle is connected to another square or

triangle by one edge. The edge that connects the patterns is labeled nx. The labels on the

vertices and edges of the patterns are distinct. 40% probability is assigned to both the

nonterminal square and nonterminal triangle. Terminal square and triangle are assigned

probability 10%. In Figure 1, below the grammar we drew one generated graph. It

contains four squares and three triangles. The square is found by SubdueGL to be the

pattern that when all occurrences of its instances in the graph would be replaced by a

single node, the description length of the graph is minimized. SubdueGL also detects that

instances of the square in the graph are connected by one edge prompting the inference of

recursive production S1. The graph is compressed with S1, and in the second iteration

instances of triangles are detected and production S2 is found.

Figure 1: SubdueGL finds recursive grammar in two iterations.

In Figure 2 we generated a tree from a grammar that has two productions. The first

production is selected 60% of the time and the second production is a terminal which is a

single vertex and is selected 40% of the time. The inferred grammar and the compressed

graph are shown on the right side of the figure. We see that the graph grammar inferred

by SubdueGL cannot regenerate the tree. It detects only chains of subgraphs connected

by an edge.

Our approach grows isomorphic subgraphs similarly as Cook and Holder’s 2,3

approach to subgraph discovery with the main difference that it checks for overlap

between growing subgraphs. The overlap allows us to propose recursive grammar rules.

There are other systems which search for frequent subgraphs in a graph and therefore

they could possibly be adopted to graph grammar inference. Kuramochi and Karypis9

developed FSG. Yan and Han introduced gSpan 15.

J. Kukluk, L. Holder, and D. Cook

4

a
nx

S

Grammar

b

S

a
bb

S

60% 40%

Grammar found

b

a

bb

a

S

Generated graph

a
nx

b bb

a
nx

b
bb

a a

bb

a a
nx

b
bb

a a
nx

b
bb

a a

nx

S

a
nx

b

b

a

bb

a

Compressed graph

a
nx

S

Figure 2: Graph grammar inference from a tree.

We encountered in the existing literature a classification of graph grammars based on

the embedding mechanism7. The embedding mechanism is important in the generation

process, but if we use graph grammars in parsing or as a tool to mine data and visualize

common patterns, the embedding mechanism may have less importance or can be

omitted. Without the embedding mechanism the graph grammar still conveys information

about graph structures used in productions and relations between them. In Figure 3 we

give the classification of graph grammars based on the type of their productions, not

based on the type of embedding mechanism. The production of the grammars in the

hierarchy is of the form),,(CGd where d is the left hand side of the production, G is a

graph, and C is the embedding mechanism. d can be a single node, a single edge or a

graph, and we respectively call the grammar a node-, edge- or graph replacement

grammar. If the replacement of d with G does not depend on vertices adjacent to d or

edges incident to d, nor any other vertices or edges outside d in a graph hosting d, we call

the grammar context free. Otherwise, the grammar is context sensitive.

We wanted to place the graph grammars we are able to infer in this hierarchy. We

circled two of them. Edge replacement context free recursive graph grammar is the one

described in this paper. The set of grammars inferred by Jonyer et al.
5,6 we call chain

grammars. Chain grammars are a subset of node replacement recursive graph grammars.

 Instructions for Typing Manuscripts (Paper’s Title)

5

Figure 3: Hierarchy of graph grammars.

3. Edge replacement recursive graph grammar

We define a graph as a set of nodes and edges, where each can have a label. Each edge

can be directed or undirected. We infer an embedding mechanism for recursive

productions which consists of four integers for every non-terminal edge. These integers

are node numbers. Two nodes belong to one instance of a graph and two to the other.

They describe how instance of a graph defined in the grammar production would be

expanded during derivations. In every iteration of the grammar inference algorithm we

are finding only one production, and it is ether non-recursive or recursive. The reader can

refer to examples in Figure 4 and Figure 6 while examining the definition. In Figure 4 (a)

we see an example of the grammar used for generation and in Figure 4 (b) the equivalent

inferred grammar.

A labeled graph G is a 6-tuple, ()LEVG ,,,,, ηνµ= , where V - is the set of nodes,

VVE ×⊆ - is the set of edges, LV →:µ - is a function assigning labels to the

nodes, LEv →: - is a function assigning labels to the edges, }1,0{: →Eη - is a

function assigning direction property to edges (0 if undirected, 1 if directed). L - is a set

of labels on nodes and edges.

An edge replacement recursive graph grammar is a 5-tuple ()PGr ,,,, ΩΓ∆∑= ,

where ∑ - is an alphabet of node labels, ∆ - is an alphabet of terminal node

labels, ∑⊆∆ , Γ - is an alphabet of edge labels, Ω -is an alphabet of terminal edge

labels, ∑⊆Ω , P - is a finite set of productions of the form),,(CGd , G is a graph, and

there are recursive productions, where Ω−Γ∈d , and there is at least one edge in

G labeled d . C is an embedding mechanism with a set of connection instructions,

J. Kukluk, L. Holder, and D. Cook

6

);(VVVVC ××⊆ , where V is the set of nodes of G . A connection instruction

Cvvvv lkji ∈),;,(implies that derivation can take place by replacing iv , kv in one

instance of G with
lj vv , respectively, in another instance of G . All the edges incident

to iv are incident to jv , and all the edges incident to kv are incident to lv . All the edges

incident to jv and kv remain unchanged. If, in derivation process after applying

connection instruction),;,(lkji vvvv , nodes
ji vv , are adjacent by an edge, we call edge

),(ji vve = a real edge, otherwise edge),(ji vve = is used only in the specification of

the grammar, and we draw it to show two nodes where the connection instructions are

applied, and we call this edge a virtual edge..

Figure 4. The original grammar (a) used to generate examples and the inferred grammar (b).

4. The Algorithm

The algorithm operates on a data structure called a substructure. A substructure consists

of a graph definition of the repetitive subgraph and its instances. We illustrate it in Figure

5. Initially, the graph definitions of substructures are single nodes, and there are as many

substructure inserted into the queue Q as there are different labels on nodes in the input

graph. We expand the substructure in all possible ways by a single edge or by single edge

and a node. We allow substructures to grow and their instances to overlap but by no more

than two nodes. We evaluate substructures. The total number of substructures considered

is determined by the input parameter Limit. The input parameter Beam specifies the

width of a beam search, i.e., the length of Q.

If two nodes 21 ,vv in G both belong to two different instances, we propose a

recursive grammar rule. If 21 ,vv are adjacent by an edge, it is a real edge, and we

determine its label which we use to specify the terminating production (see Figure 6). We

insert recursive substructures together with non-recursive substructures into the newQ.

Recursive substructures compete with non-recursive substructures. They are evaluated

with a measure:

()

())|(SGsizeNTSsize

Gsize

++
 (1)

 Instructions for Typing Manuscripts (Paper’s Title)

7

Figure 5. The input graph (a), substructure graph definition (b) and four overlapping instances of repetitive

subgraph (c).

NT is the number of connection instructions. G|S is a graph G where we compress all

instances of the substructure S to a single node. The size is number of nodes plus number

of edges. The algorithm uses a heuristic search whose complexity is polynomial in the

size of the input graph to find frequent subgraphs. Checking for overlap between

instances of substructures, do not change the complexity of this algorithm.

The algorithm can learn grammars with multiple productions. When we find

production we compress portion of the graph described by the production. Every

connected subgraph described by the production is compressed into a node. Then we

perform again inference on the compressed graph. We progress with alternating inference

and compression until we cannot compress the graph any more.

In Algorithm 1 we represent a substructure by S. We define two functions in

Algorithm 1: INFER_GRAMMAR and RECURSIFY_SUBSTRUCTURE. The first

function is consistent with Cook et al.’s 2 algorithm. Initially, the graph definitions of

substructures are single nodes, and there are as many substructures inserted into the

queue Q at line 3 as there are different labels on nodes in the input graph. At line 8 we

expand the substructure in all possible ways by a single edge or by a single edge and a

node. We allow substructures to grow and their instances to overlap but by no more than

two nodes. We evaluate substructures at line 12. For more details about the algorithm see

Ref. 2,5,6.

J. Kukluk, L. Holder, and D. Cook

8

Algorithm 1 Graph grammar discovery.

INFER_GRAMMAR (graph G, integer Beam,
 integer Limit)
1. grammar={}
2. repeat
3. queue Q ={v | v is a node in G having a unique
 label}
4. bestSub= first substructure in Q
5. repeat
6. newQ ={}
7. for each substructure S ∈ Q
8. newSubs = extend substructure S in all
 possible ways by a single edge and a node
9. recursiveSub = RECURSIFY_SUBSTRUCTURE (S)
10. newQ = newQ ∪ newSubs ∪ recursiveSub
11. Limit=Limit-1
12. evaluate substructures in newQ
13. end for
14. if best substructure in newQ better than bestSub
15. then bestSub = best substructure in newQ
16. Q=newQ
17. until Q is empty or Limit ≤ 0
18. grammar = grammar ∪ bestSub
19. G = G compressed by bestSub
20. until bestSub cannot compress the graph G
21. return grammar

RECURSIFY_SUBSTRUCTURE (substructure S)
1. recS → connectList = {}
2. recS →Instances = {}
3. for all pairs of instances (I1, I2), I1∈S, I2∈S

4. if (I1 and I2 overlap on two nodes Gvv ∈21 ,)

5. if (v1, v2 adjacent by an edge in G)
6. edge.type=real, edge.label=label(v1, v2) else

7. edge.type=virtual, edge.label=NULL

8. ()
lkji

vvvv ,;, = GET_CONNEC(
2121

,,, IIvv)

9. if (()∉edgevvvv
lkji
,,;, (recS → connectList))

10. add ()edgevvvv lkji ,,;, to (recS → connectList)

11. if I1 ∩ IRk ≠ Ø or I2 ∩ IRk ≠ Ø , where IRk is any member of recS →Instances
12. IRk= IRk ∪ I1 ∪ I2 else

13. create new entry IRk= I1 ∪ I2 and add it to
 recS →Instances

return recS

 Instructions for Typing Manuscripts (Paper’s Title)

9

5. Experiments

5.1. Methodology

In our experiments we generate thirty graphs from a known grammar, and then we infer
the grammar from every generated graph. We compute the average inference error over
these thirty examples. The generated graphs have 40 to 60 nodes. Our generator can
assign a random label to a node or an edge. We compare the original grammar and
inferred grammar using the following measure of the error:















+
−+

=
NTg

NTCIgg
Error

#)size(

##),(matchCost
,1min

1

21
 (2)

where)g,matchCost(21g is the

minimal number of operations required to transform 1g into a graph isomorphic to 2g , or

2g into a graph isomorphic to 1g . The operations are: insertion of an edge or node,

deletion of an edge or node, or substitution of a node or edge label. CI# is the number

of inferred connection instructions, NT# is the number of non-terminal edges in the

original grammar,)size(1g is the sum of the number of nodes and edges in the graph

used in the grammar production

)g,matchCost(21g measures the structural difference between two graphs with an

algorithm for inexact graph match initially proposed by Bunke and Allermann1. For more

details see also Ref. 1, 2. Our definition of an error has two aspects. First, there is the

structural difference between the inferred and the original graph used in the productions.

Second, there is the difference between the number of non-terminals and the number of

connection instructions. If there is no error, the number of non-terminals in the original

grammar is the same as the number of connection instructions in the inferred grammar.

We would like our error to be a value between 0 and 1; therefore, we normalize the error

by having in the denominator the sum of the size of the graph used in the original

grammar and the number of non-terminals. We do not allow an error to be larger than 1;

therefore, we take the minimum of 1 and our measure as a final value. The restriction that

the error is not larger than 1 prohibits unnecessary influence on the average error by

inferred graph structures significantly larger than the graph used in the original grammar.

We now describe several experiments showing different aspects of the edge replacement

graph grammar inference system.

5.2. Experiment 1: Virtual and real edges in productions

In Figure 6 we see the graph on the top where all nodes have the same label and on the

bottom of the figure the grammar inferred from this graph. We intend to demonstrate

verity of productions and the nature of edge replacement grammars our approach can

handle. The input graph has four different repetitive patterns. In every pattern subgraphs

J. Kukluk, L. Holder, and D. Cook

10

overlap on two nodes. The part of the graph with overlapping squares is isolated. The rest

of the graph is a connected graph. The four patterns correspond to nodes S1, S2, S3, S4

Figure 6. The graph and inferred grammar from this graph.

of the first production S. Our approach finds production S last. Production S is a non-
recursive node replacement production. We find production S by compressing the input
graph with recursive edge replacement productions found earlier. Production S1 we find
first because it compresses the graph the most. This production has two non-terminal
edges. Edge S1a is virtual. Edge S1b is real. We can replace both S1a and S1b non-
terminal edges with the graph on the right hand side of production S1 or terminate.

 Instructions for Typing Manuscripts (Paper’s Title)

11

Connection instructions for S1a and S1b are different as is their termination. The
terminating edge of S1b is an edge with label q. The termination of S1a is by taking no
action. We mark it by two nodes without an edge. We compress to a single node the part
of the input graph described by the S1 production before we repeat the inference process.
We also do similar compression after finding S2, S3, and S4. The second production we
find is S2. This production has two virtual edges as non-terminals. The production S3 has
two non-terminal real edges and production S4 has one non-terminal real edge.

5.3. Experiment 3: Inference error with different graph structures

We are interested in how inference error depends on grammar structure. We tested

several structures. We show results in Figure 7. Every point in the plots in Figure 7 was

an average of the inference error from thirty experiments. In every experiment we

generated graphs with 40 to 60 nodes. Every label of an edge and a node of the graphs

not marked in the Figure 7 and Figure 8 was assigned a label chosen from k distinct

labels, where k is an integer from 1 to 7 in Figure 7 and from 1 to 16 in Figure 8. We see

that the smallest error we achieved is for the tree structure. As we complicate the

structure and increase the average degree of nodes and the ratio of the number of edges to

the number of nodes, the error increases. The highest error we had with complete graph.

We show this case separately in Figure 8. We observed the average value of the inference

error for a complete graph with six nodes. Then we removed from the complete graph

four edges and repeated the experiment. Next, we remove from the complete graph eight

edges and repeated the experiments again. As we see in Figure 8, the more edges we have

in the graph and the closer the graph is to the complete graph, the higher the average

error. In other words, the closer the graph is to the complete graph the more unique labels

we need to decrease the error.

Figure 7. The influence on the error of different graph structures used in grammar productions.

J. Kukluk, L. Holder, and D. Cook

12

Figure 8. The change in the error with reduced number of edges from the complete graph structure (top) and an

example of the inferred grammar (bottom).

5.4. Experiment 4: Inference error in the presence of noise

In Figure 9 we show the results of an experiment where we generated graphs with the

number of nodes from 40 to 60. The Peterson graph (Figure 9 (a)) was the structure we

used in the graph grammar. The Peterson graph has 10 nodes and 15 edges which allowed

us to vary the number of non-terminal edges in the structure. We assigned distinct labels

to all nodes except six and all edges except six. We generated graphs with 1, 2, 3, 4, and

5 non-terminals and noise value, 0.1, 0.2, …, 0.8. For every value of noise and number of

non-terminals we generated thirty graphs from the grammar and computed average

inference error over thirty values. We distinguish two types of noise: corrupted and not

corrupted. Not corrupted noise is the addition of nodes and edges to the graph structure

generated from the grammar. We add the number of nodes equal to (noise/(1-

noise))*number_of_nodes and number of edges equal to (noise/(1-

noise))*number_of_edges. Every new edge randomly connects two nodes of the graph.

We randomly assigned the labels to added edges and nodes from labels already existing

in the graph. We do not change the structure generated from the graph grammar in the

not-corrupted version. However, in the corrupted version we change the structure of that

generated from the grammar graph. After adding additional nodes and edges, in the way

we do for non-corrupted version, we redirect randomly selected edges. The number of

 Instructions for Typing Manuscripts (Paper’s Title)

13

edges of a graph multiplied by noise gives the number of redirected edges. We randomly

assign two new nodes to every selected edge.

The results in Figure 9 show that there is little influence on error from the number of

non-terminals. We see an increase in the error in the not-corrupted version when the

number of non-terminals reaches 5, but for number of non-terminals 1-4 we do not see

any significant changes. Also, the error in the not-corrupted version does not increase

significantly as long as the value of noise is less than about 0.5. Corruption of the graph

structure, as expected, causes greater error than non-corruption. The error increases

significantly even with 0.1 noise, and is close to 100% for noise 0.3 and higher.

0

0.2

0.4

0.6

0.8 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8 1

2

3

4

5

0

0.2

0.4

0.6

0.8

1

Figure 9. Inference error of a graph grammar with the Peterson graph structure in the presence of noise and

different number of non-terminals.

5.5. Experiment 5: Chemical structure

In Figure 10 (a) we show the chemical structure of G tetrad 10. Versions of this structure
are used in research on the HIV-1 virus 13. We converted this structure to a graph which
we use as an input to our grammar inference system. We found the grammar which
represents the repetitive pattern of this chemical structure. We show the grammar in
Figure 10 (b). This experiment demonstrates the potential application of our approach
and also a weakness for further study. Although the grammar production we found
captures the underlying motifs of the chemical structure, it cannot regenerate the original
structure which has the ring form.

We also performed experiments with biological networks, XML file structures and

other chemical structures, which we will report in other publications. In general, our

J. Kukluk, L. Holder, and D. Cook

14

graph-grammar inference methods have been able to capture known recursive structure in

these domains.

Figure 10. The chemical structure of G tetrad (a) and inferred grammar structure (b).

6. Conclusions and future work

We described an algorithm for inference of edge replacement graph grammars. The

performance of the algorithm depends on the number of distinct labels in the input graph.

If there is only one label, the algorithm finds a two edge grammar. If we use three or

more labels in the input graph, the inference error drops to zero or to a value close to zero

in inference of grammars with a graph structure of a tree, cycle, Peterson graph, and

tetrahedron. However, as we complicate the structure and increase the average degree of

nodes and the ratio of the number of edges to number of nodes, the error increases. The

highest error we had is with a complete graph. The closer the graph structure of the

grammar is to a complete graph, the more unique labels we need to use in the graph to

achieve the same level of average inference error. If we generate graphs from a graph

grammar and then add nodes and edges to this graph, it does not influence significantly

the inference error in the range of noise 0 to 0.5. There is little influence on error from the

number of non-terminal edges in the Peterson graph grammar structure when the number

of non-terminals changes from 1 to 4.

 Instructions for Typing Manuscripts (Paper’s Title)

15

In this paper we described the approach to graph grammar inference which extends

the class of learnable graph grammars. Node Replacement Recursive Graph Grammar

inference was limited to the patterns where instances overlap on exactly one node. In the

approach presented in this paper allowing instances to overlap on two nodes led to the

definition of real and virtual non-terminal edges. With this approach we can infer the

grammar generating chains of squares overlapping on one edge which was not possible

with node replacement grammars. Patterns often overlap on two nodes in chemical

structures, as we saw in the example of the previous section; therefore, we have a tool

which can find and represent important patterns in the chemical domain.

The approach has higher error when inferring more complete graphs. The inferred

grammars, as in the example of chemical structure, can represent the underlying pattern

of the structure, but cannot regenerate the structure if it has the ring form. The approach

requires the existence in the input graph of frequently occurring isomorphic subgraphs

and their overlap by one edge to infer recursive productions. Otherwise, the approach can

infer non-recursive productions. Eventually, we will integrate inference of non-recursive,

node-replacement and edge-replacement productions into one graph-grammar inference

system. All these issues represent directions for future research.

References

1. H. Bunke,. G. Allermann, Inexact graph matching for structural pattern recognition, in Pattern

Recognition Letters, 1(4), (1983), pp. 245-253.

2. D. Cook and L. Holder, Substructure Discovery Using Minimum Description Length and

Background Knowledge, in Journal of Artificial Intelligence Research, Vol 1, (1994), pp.

231-255

3. D. Cook and L. Holder, Graph-Based Data Mining, in IEEE Intelligent Systems, 15(2),

(2000), pp 32-41.

4. E. Jeltsch and H. Kreowski, Grammatical Inference Based on Hyperedge Replacement.

Graph-Grammars, in Lecture Notes in Computer Science 532, (1990), pp. 461-474.

5. I. Jonyer, L. Holder, and D. Cook, Concept Formation Using Graph Grammars, in

Proceedings of the KDD Workshop on Multi-Relational Data Mining, (2002).

6. I. Jonyer. L. Holder, and. D. Cook, MDL-Based Context-Free Graph Grammar Induction and

Applications, in International Journal of Artificial Intelligence Tools, Volume 13, No. 1,

(2004), pp. 65-79.

7. C. Kim, A hierarchy of eNCE families of graph languages, in Theoretical Computer Science

186, (1997), pp. 157-169.

8. J. Kukluk, L. Holder, and D. Cook, Inference of Node Replacement Recursive Graph

Grammars, in Sixth SIAM International Conference on Data Mining, (2006)

9. M. Kuramochi and G. Karypis, Frequent subgraph discovery, in Proceedings of IEEE 2001

International Conference on Data Mining (ICDM '01), (2001), pp. 313-320.

10. S. Neidle (editor), Oxford Handbook of Nucleic Acid Structure, (Oxford University Press,

1999), pp. 326.

11. G. Nevill-Manning and H. Witten, Identifying hierarchical structure in sequences: A linear-

time algorithm, in Journal of Artificial Intelligence Research, Vol 7, (1997), 67-82

J. Kukluk, L. Holder, and D. Cook

16

12. G. Palla, I. Derényi, I. Farkas and T. Vicsek, Uncovering the overlapping community

structure of complex networks in nature and society, (Nature 435, 2005), pp. 814-818.

13. A. Phan, V. Kuryavyi, J. Ma, A. Faure, M. Andreola, and D. Patel, An interlocked dimeric

parallel-stranded DNA quadruplex: A potent inhibitor of HIV-1 integrase, in

Proc.Natl.Acad.Sci, (2005) 102, pp. 634 – 639.

14. T. Oates, S. Doshi, and F. Huang, Estimating maximum likelihood parameters for stochastic

context-free graph grammars. in Lecture Notes in Artificial Intelligence. 2835 (Springer-

Verlag, 2003), 281--298

15. X. Yan and J. Han, gSpan: Graph-based substructure pattern mining, In IEEE International

Conference on Data Mining, (Maebashi City, Japan, 2000)

