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 
Abstract—In order to meet the health needs of the coming “age 

wave”, technology needs to be designed that supports remote 
health monitoring and assessment. In this study we design CIL, a 
clinician-in-the-loop visual interface, that provides clinicians with 
patient behavior patterns, derived from smart home data. A total 
of 60 experienced nurses participated in an iterative design of an 
interactive graphical interface for remote behavior monitoring. 
Results of the study indicate that usability of the system improves 
over multiple iterations of participatory design. In addition, the 
resulting interface is useful for identifying behavior patterns that 
are indicative of chronic health conditions and unexpected health 
events. This technology offers the potential to support self-
management and chronic conditions, even for individuals living in 
remote locations.  
 

Index Terms—smart homes, clinician in the loop, visual 
analytics, activity recognition, remote health monitoring 
 

I. INTRODUCTION 

HE world’s population is aging. As a result, costs associated 
with chronic illnesses are soaring with 92% of older adults 

diagnosed with one chronic condition and 77% diagnosed with 
two or more chronic conditions [1]. Because individuals are 
living longer with chronic diseases [2] and a shortage will 
emerge in the care workforce [3], we must consider innovative 
health care options to provide quality care to our aging 
population, particularly those living in rural areas away from 
immediate health care. 

Recent advances have transformed smart homes from 
experimental prototypes to real-world assistive technologies 
[4], [5]. Sensors are embedded in smart homes or other 
environments that collect data on resident behavior and home 
status. This sensor data is analyzed by software algorithms to 
recognize activities, discover behavior patterns, and infer the 
health status of residents in the home. Because the projected 
shortage of healthcare providers will create a challenge in 
providing health assistance to the growing older adult 
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population, the rise of smart home technologies provides a new 
paradigm to deliver remote health monitoring. Our previous 
research suggests that we can harness smart home sensor data 
and machine learning to determine a person’s health status [6]–
[11]. A continuous health monitoring system can provide an 
accurate assessment of physical functionality. Furthermore, 
clinicians can observe behavior fluctuations which allows for 
early detection of health events and decline. 

In this paper, we introduce CIL, a clinician-in-the-loop 
visual analytics system, that provides a way for clinicians to 
remotely monitor and interpret the health status of individuals 
living in smart homes. The analytics are enhanced by partnering 
visual information displays with automatically-collected data 
on individuals, including their daily activities, walking speed, 
sleep quality, and activity level. Working with clinicians, CIL 
is created through two rounds of iterative design [12] with 
individuals new to the use of smart homes followed by three 
rounds of iterative design with individuals familiar with smart 
home technologies and data. 

 Smart home design has been researched for over a decade. 
As a result, researchers have also designed ways to visually 
present specific features of smart home data. As an example, 
Wang et al. [13] created a heat map that shows a smart home 
resident’s overall activity level. In a heat map, a darker or more 
intense color typifies a larger value for that period (in this case, 
more activity). Similarly, Le [14] depicted activity levels in the 
whole home and specific regions of the home using graphics 
that would be meaningful to the older adult residents. These 
included a streamed graphical display of data over long periods 
of time and radial curves that indicate the time of day when 
location-based activity is occurring. Kim et al. [15] took an 
approach similar to ours in providing a clinician-focused 
interface, although this is based on self-report rather than sensor 
data. In the QuietCare project, Kutzik et al. [16] used expert-
crafted rules together with red, yellow, and green traffic-light 
circles to indicate the status of a resident in an assisted care 
facility with respect to bathroom falls, completed meals and 
medication, use of the bathroom, and activity level. 
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As emphasized in previous studies, visualization of data is 
most effective when it is tailored to the specific tasks it supports 
(in these cases, identifying behavior changes) [17] and to a 
particular user group  [18]. The previously-cited studies created 
visualizations for groups including older adults and assisted 
care facility staff members. Visualizations were evaluated by 
determining whether changes in activity levels could be 
explained by known health conditions [13], or through open-
ended discussion with clinicians and other end users [15], [16]. 

In this study, we design visual analytics specifically for 
trained clinicians (i.e., Registered Nurses) to use in remote 
monitoring of a patient’s health status. As a result, we involve 
clinicians in iterative design of the analytics. This offers a 
unique approach to the system design, the extraction of features, 
and the visualization of the information because they are 
created based on clinician feedback for the purpose of 
assistance clinicians with data interpretation. Another unique 
aspect of the work is the automatic identification of activity 
labels and incorporation of this and other data mined-insights 
into the visualized information. Finally, to evaluate our visual 
analytics tool (CIL), we collect quantitative usability scores, 
compute the agreement level between clinician interpretations 
of the data, and align clinician-identified concerns that arise 
from use of CIL with actual reported health events. This 
evaluation is based on data from ongoing smart home data 
collections. The results indicate that CIL can assist with remote 
health monitoring and help identify possible health concerns. 

II. SMART HOME DATA COLLECTION 

Health management can be boosted using automated 
monitoring systems that take advantage of recent advances in 
pervasive computing and machine learning. The core of these 
technologies is the ability to unobtrusively sense and identify 
routine behavior. Clinicians can use this information to assess 
health, even at remote locations. 

As a basis for remote health monitoring and visual analytics, 
we deployed the CASAS “smart home in a box” (SHiB, see Fig. 
1) [19] in the homes of older adult participants. The SHiB 
collects sensor data in any physical environment while residents 
perform their normal daily routines. Sensors collect data for 
motion, door usage, light levels, and temperature levels. 
Sensors post readings as text messages to middleware on a 
Raspberry Pi [20]. The middleware assigns timestamps and 
sensor identifiers to the readings and stores the resulting sensor 
“events” locally as well as securely transmitting them to a 
remote relational database. 

III. ITERATIVE DESIGN ROUND 1: UNTRAINED CLINICIANS 

The smart home-based analytics system, called CIL, is 
designed as part of a clinician-in-the-loop smart home (see Fig. 
2). In this approach, data regarding behavior are collected using 
smart home ambient sensors. Data are analyzed by machine 
learning algorithms to generate behavior features. The visual 
behavior analytics are displayed to a remotely-located clinician 
who regularly uses them to monitor the well-being of the 
resident. Clinician findings can be used to manually intervene 
in the case of detected health events or to suggest new healthy 
behaviors for the resident to adopt. 

Because all visual analytics will be interpreted by clinicians, 
we involve clinicians in the design of the analytics as part of a 
participatory design process. Participatory design has been 
shown to be effective at identifying features that are most 
relevant to target audiences and increasing acceptance of the 
technology as a result [21]. This design process was conducted 
through two rounds. In the first round, experienced nurses 
enrolled in a graduate informatics nursing course provided 
feedback on CIL that was iteratively used to improve the 
system. During the second round, clinicians familiar with smart 
home data interpretation provided feedback to refine the system 
and use it for health event detection. 

The first round started with an open discussion of smart 
home technologies and their use for health monitoring. Based 
on the discussion, 40 nursing students suggested features 
important for monitoring patient health that would be most 
useful as part of CIL. Initial smart home-based features were 
designed based on this discussion. 

A. Smart Home Features 

Daily smart home features that were identified as clinically 
useful to our first round of nursing study participants and that 
could be detected by the smart home included: 
 Distribution of time spent in different areas of the home 
 Time spent sleeping 
 Overall activity level in home 
 Number of sleep interruptions (i.e., bed toilet transitions) 

Figure 1. (left) Motion/light sensors and door/temperature sensors 
are installed in a smart home; (right) the SHiB kit includes sensors, 
computer, and networking equipment. 

Fig. 2. The clinician-in-the-loop smart environment.
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Because sensors are marked with their corresponding 
locations in the home and sensor events are timestamped, 
duration in each area of the home is straightforward to compute. 
To compute overall activity level, we can tally the number of 
motion sensor events that occur each day. Ambient sensors are 
discrete event sensors. As a result, they send a message when 
there is a change in state. Motion sensors send an “on” message 
when movement occurs within the sensor’s field of view. The 
number of such messages thus serves as an estimation of the 
amount that the resident is moving in the home. 

To automatically generate the remaining two features, sleep 
duration and bed-toilet transitions, CIL relies on automatic 
activity recognition. Activity recognition maps a sequence of 
sensor events, =(1,2,..,n), onto an activity label, a. These 
labels provide a way of describing daily behaviors in terms of 
identifiable activities of daily living. While many diverse 
approaches  have been explored for activity recognition that 
draw from machine learning techniques such as support vector 
machines, Gaussian mixture models, decision trees, and 
probabilistic graphs [22]–[30], many of these approaches also 
perform activity recognition on pre-segmented data in scripted 
settings. Clinicians use CIL to identify health events as soon as 
possible. As a result, activities need to be recognized in near-
real-time. 

To identify activities as they occur in naturalistic settings, 
CIL’s activity recognition algorithm, called AR, extracts 
features from a sliding window that moves over the data as it is 
collected. AR generates a vector of features that include time-
weighted bag-of-sensor counts, time of day, window duration, 
window entropy, window activity level, most recent resident 
location, most recent sensor location, and elapsed time since the 
previous event for each sensor. AR trains a random forest 
classifier on this data which is both efficient and effective for 
the task. This method has reported an activity recognition 
accuracy of 95% for 30 activities, including bed-toilet transition 
and sleep, in a collection of 30 smart homes [31]. AR labels 
each sensor event with a corresponding activity label as shown 
in Fig. 3. The bed-toilet and sleep features are calculated based 
on this labeled data. 

B. Round 1 Results 

In the first round of participatory design, we presented 13 
experienced nurses with paper-based prototype visual displays 
of one week of data from three different smart homes. Visual 
displays consisted of bar charts, pie charts, and line graphs for 
each smart home feature. Each smart home dataset contained a 
known health event. Participants were asked to provide free-
form text-based suggestions for improvement. The participants 
were randomly assigned to one of 2 design iterations. After each 
iteration, participant feedback was used to improve the design.  

Feedback from this first round of participatory design 
reflected the need for an interactive display. Specifically, 
participants wanted to be able to zoom in on selected time 
windows and compare different features for the selected 
timeframe. Feedback on the exact type of graphical display was 
mixed. However, a consistent request was to add a baseline 
measure for each feature, together with standard deviation lines. 

This measure would allow clinicians to determine points in time 
that are unusual and warrant closer inspection. 

IV. ITERATIVE DESIGN ROUND 2: TRAINED CLINICIANS 

For the second round of iterative design, 7 experienced 
nurses provided feedback on the design of the CIL visual 
analytics. Three of the participants also have experience 
analyzing smart home data. We conducted three rounds of 
design. For each round, we provided the clinicians with a 
graphical interface for 3 homes. The final version of the system 
is shown in Fig. 4. In this system, users can select a testbed 
(upper left) and period of time (upper right) to observe. 

The main display provides a view of the home’s floorplan 
and of the raw sensor events for the entire observed time period. 
In addition, graphs are included that plot values for daytime and 
nighttime sleep duration, number of sleep interruptions (bed-
toilet), time spent in different activities and different areas of 
the house, and overall activity level. Hovering over any point in 
a graph pops up a window with more information about that 
data point. To protect the privacy of smart home residents, 
access to the interface is password protected. 

A. New CIL Features 

A clear direction that the clinicians wanted to pursue was 
for CIL to present the data in a manner that would make 
understanding sensor events and identifying anomalies easier. 
Toward that end, the following design elements were added 
over the three iterations of participatory design: 

Baseline for comparison. To help analyze changes in a 
person’s behavior over time, clinicians requested that baselines 
be provided for each feature. The baselines are calculated based 
either on the first week of data for the home or (as requested by 
clinicians) on a rolling weekly average. The baseline is graphed 
together with standard deviation lines. These lines were 
requested to be indicated with red (0.5 standard deviations), 
orange (1.0 standard deviation), and yellow (1.5 standard 
deviations) lines that are calculated based on all of the data 
collected to date for that home. 

Activity heat map. The clinicians felt that a heat map was a 
helpful way for them to interpret overall activity level by hour 
of the day and across multiple days. This is consistent with the 
findings of Wang et al. [13]. 

Time-aligned location and activity distribution. The 
clinicians observed that activities were particularly interesting 
if they were performed in unusual locations (e.g., sleeping in a 
living room recliner rather than a bed may be consistent with 
breathing difficulties). To highlight this, they requested charts 
of these two features be aligned over time. The location and 
activity charts indicate the specific in-home location and 
activity with a corresponding color. Hovering over a point in 

2014-06-15 03:38:28.094897 BedroomMotion ON Sleep
2014-06-15 03:38:29.213955 BedroomMotion OFF Sleep
2014-06-15 03:38:17.814393 BathroomMotion ON Bed-Toilet
2014-06-15 03:38:22.584179 BathroomMotion OFF Bed-Toilet
2014-06-15 03:39:17.814393 BedroomMotion ON Sleep

Fig. 3. Sample sensor events with AR-generated activity label.
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the chart brings up a text box with the name of the 
corresponding location or activity. 

Walking speed. In this round we used smart home data to 
calculate walking speed. We focused on nighttime bed-to-toilet 
and times as they reflect the most direct paths with the fewest 
number of pauses. Because actual floorplan sizes are not always 
available, we calculate a relative walking speed based on the 
time required to navigate between these points. 

Clear use of colors and indicators. In addition to plotting 
each feature over the entire time window, dials were included 
on the right side of each line graph that indicated the current 
(most recent data point) value of the feature along with the 
maximum, minimum, and average value of the feature for the 
time period. Values are color coded per clinician request. 
Consistent with colors used for traffic indicators, nearness to 
the baseline for the feature is represented by green, moderate 

distance is represented by yellow, and far distance is 
represented by red. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 4. (left) CIL interface. (upper right) Expanded view of line graph depicting daily number of bed-toilet transitions, together with rolling 
baseline. (middle right) Expanded view of time-aligned graph showing distribution of time spent among different activities and home 
locations. (lower right) Expanded view of activity level heat map.
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TABLE I. MEAN PSSUQ SCORES FROM PARTICIPANTS (LOWER 

SCORES INDICATE GREATER SATISFACTION WITH CIL). 
 

PSSUQ Scores, Participants with Smart Home Experience
Factor Pre-Refinement Post-Refinement
Overall 3.7 3.6 
System usability 3.8 3.9 
Information quality 3.4 3.2 
Interface quality 4.2 3.8 

PSSUQ Scores, Participants with no Smart Home Experience
Factor Pre-Refinement Post-Refinement
Total 5.2 3.3 
System usability 5.2 3.4 
Information quality 5.3 3.4 
Interface quality 1.8 2.7 

Another feature we added in this round is activity 
segmentation. While AR labels each sensor event with a 
corresponding activity class, it does not indicate the beginning 
or ending of each activity occurrence, which is needed to 
calculate activity durations. To segment sensor events into 
individual activity occurrences and calculate activity durations, 
we utilize an unsupervised change point detection algorithm 
called SEP [32] to detect changes in the time-ordered data 
indicating transitions between activities. The segment that 
occurs between change points is assigned the majority-label 
activity class. 

B. Quantitative Feedback 

To obtain quantitative feedback on CIL design, 7 
participants (3 with smart home experience and 4 nurses 
randomly assigned to one iteration of analytics) completed the 
19-item Post-Study System Usability Questionnaire (PSSUQ) 
[33] survey. The questionnaire assessed users’ perceived 
satisfaction with the system based on three factors (system 
usability, information quality, interface quality) as well as 
overall satisfaction. For each question, response choices ranged 
from 1 (indicating satisfaction) to 7 (indicating dissatisfaction). 

Table 1 summarizes the ratings of the 7 participants before 
and after refinement of the CIL design. We use a permutation-
based analysis [34] to obtain statistical significance result with 
100 shuffles and found that all of the pre-refinement and post-
refinement comparisons are statistically significant (p<.05). For 
the participants with smart home experience, the overall mean 
for the PSSUQ total, information quality, and interface quality 
scores decreased, suggesting some improvement in overall 
usability, quality of information provided by CIL, and quality 
of the interface across design iterations. For participants 
without smart home experience, means for the PSSUQ total, 
system usability, and information quality were lower for 
participants who evaluated a post-refinement iteration than for 
those who evaluated the initial CIL design. This is consistent 
with the conclusion that some improvement was made between 
the design iterations. An interesting observation is that the 
overall decrease in mean values is greater for the participants 
without smart home experience than for the ones with smart 
home experience. One possible interpretation is that increasing 
familiarity with the system actually caused clinicians to raise 
their quality standard. The consistent decrease in means 
assessing satisfaction with the system for all of the participants 

suggests that the visualizations may not be unreasonably 
difficult to learn to interpret, even for individuals who have 
limited experience analyzing sensor data. 

C. Clinical Validation 

The long-term goal of this work is to use the CIL visual 
analytics to aid clinicians in remote monitoring of patients and 
timely detection of health events that require intervention. To 
determine the usefulness of CIL for detection of health events, 
we asked the three trained clinicians to indicate potential health 
events that provoked an action. Specifically, they indicated 
times during the observation period at which, based on the 
observed visual analytics, they would recommend taking an 
action such as a phone call or home visit. 

Three homes were monitored for this purpose. Home #1 
housed a male in the age range 80-90 who has Parkinson’s 
Disease. In addition, he has an enlarged prostate and severe 
thirst due to Sjorgren’s disorder. This condition makes him 
constantly thirsty (with dry mouth). Effects of these conditions 
can be observed in the smart home data and include sleeping in 
the living room recliner rather than bed if there is too much 
pain, frequent trips to the kitchen for water, and frequent trips 
during the night to the bathroom. 

Home #2 housed a female in the age range 80-90 with 
diagnosis of COPD, atrial fibrillation, suprapubic catheter, and 
chronic constipation. Because of her chronic conditions she 
spends a long period of time in the bathroom each morning 
maintaining her suprapubic catheter and a long period of time 
in the bathroom during evenings due to constipation or pain 
associated with her prolapsed uterus. 

Home #3 housed a female in the age range 90-100. This 
individual has a diagnosis of a tumor on her spinal column 
which affects her legs. At the beginning of the observation 
period she could walk slowly with a walker. However, over the 
course of the observation period she transitioned to using a 
wheelchair. She receives help in the mornings with physical 
therapy, getting dressed, fixing breakfast, and grooming her 
hair. 

To obtain ground truth information on participant overall 
health and descriptions of health events, clinicians visited 
participants on a weekly basis. During the visits, clinicians 
asked residents about their overall health, perform clinical 
assessments, and discussed doctor visits and health events that 
occurred during the previous week. 

For our validation of CIL analytics, we examined three 
components of clinician responses. First, we analyzed time 
periods that the clinician identified as needing a phone visit or 
home visit response. We calculated the amount of agreement 
between the three clinicians for these time periods. We then 
analyzed the clinician observations based on the pre-existing 
chronic conditions for each participant. Third, we determined 
the percentage of actionable detected health events that were 
also identified by participants as health events or changes in 
health status. Finally, we analyze the clinician’s overall 
observations about the patient’s health to determine the 
consistency between the clinicians’ interpretations and the 
patient’s diagnosis. 
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TABLE II. IDENTIFIED DAYS WITH POSSIBLE HEALTH EVENTS 

FOR EACH OBSERVED SMART HOME. 
Home Observed 

days 
Actionable 
days 

Agreement 

1 289 40 67.5%
2 54 21 42.9%
3 54 24 91.7%

 
As Table 2 indicates, for Home #1 the clinicians agreed on 

67.5% of the days that would warrant a phone call or visit. In 
fact, 2 of the 3 clinicians differed in their list by only 1 day, 
while the third clinician listed all of these days along with other 
possible concerning days. Fig. 5 shows the CIL bed-to-toilet 
graph for one of the identified periods of time. During this time 
the number of sleep interruptions for toileting increased while 
the overall sleep total decreased. These types of patterns 
occurred frequently during the observed period due to Sjogren’s 
dry mouth syndrome and an enlarged prostate. The patterns 
were distinctive enough that the clinicians’ overall assessment 
was possible prostate issues resulting in a large number of night 
toileting and low nighttime sleep in bed due to possible pain. 
One clinician also wondered about possible dementia due to 
wandering around the home at night. While the patient-
provided explanation was a need for frequent drinks of water, 
this was a consistent observation. 

 

For Home #2, 2 of the clinicians identified the same 6 days 
of concern. The third clinician listed 6 of those days plus 
additional time periods of interest. All three focused on a period 
at the end of December which was marked by a greater than 
normal daily amount of sleep and little time out of the house. 
The clinicians overall assessment was possible depression. This 
was consistent with the patient’s own assessment of situational 
depression during the holiday period. Fig. 6 shows sleep data 
during this period of concern as well as the corresponding 
walking speed data. 

For Home #3, the primary concerns were decreased walking 
speed over the observed time period as well as occasional 
increases in bathroom visit durations. The variation in walking 
speed was difficult f or the clinicians to assess remotely. This 
was consistent with the patient’s increased difficulties in 
walking and subsequent transition to using a wheelchair. The 

Figure 5. Bed to toilet transition graph for Home #1. Many of 
the most recent readings are above the 1.5 standard deviation 
line and the rolling average is increasing. 

Figure 7. (top) Bed-toilet transitions is higher than normal, 
which may partly account for (bottom) relative walking speed 
being dramatically lower than normal for Home #3.

Figure 6. (top) Total sleep is unusually high and (bottom) 
relative walking speed is unusually low during the Home #2 
time period noted by clinician participants. 
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clinicians did observe high levels of activity overall, which may 
be reflected not only by the patient moving about the house but 
also by the visitors that helped the patient on a daily basis. 

V. DISCUSSION 

This study revealed how valuable it is to involve a target 
group in participatory design of a visual interface that will be 
used for remote health monitoring. One participant pointed out 
that “It is clinically meaningful to not only know something like 
how much a person is sleeping at night, but how much are they 
sleeping relative to their baseline.” The participants felt that 
CIL is valuable at highlighting patterns so clinicians can detect 
changes in these patterns. 

At the same time, we discovered a great amount of 
individual variability in participant preferences and 
suggestions, a number of which contradicted each other. We 
found that refining CIL in response to the consistent 
suggestions improved satisfaction overall. However, where 
suggestions conflicted, there may be a need to customize the 
interface for individual participants. There may also be a need 
to prioritize information. Participants required an average of 71 
minutes to become familiar with the visual analytics and 
identify concerns. Future studies can analyze how time spent 
analyzing data on a regular basis may decrease with usage. 

The current clinician-in-the-loop visual interface is limited 
by the type of information that can be provided by smart home 
sensors and activity labelers. For example, while the smart 
home may be able to detect that a person is cooking, there is 
currently not a straightforward method of determining the 
quality of the resident’s diet, which is information that 
clinicians requested. In addition, distinguishing activities 
between the person of interest and visitors in the home is 
currently challenging. 

VI. CONCLUSIONS 

Ongoing research indicates that ambient sensor data 
embedded into smart homes can be used to monitor patient 
activities and to identify behavior changes that are related to 
important health events. This study demonstrates that the 
information can be translated from sensors to visual analytics 
for use by a clinician-in-the-loop smart home. The iterative 
design of CIL resulted in an interactive visual interface. This 
interface aided participants in identifying changes in behavior 
over time, to identify health concerns, and to make decisions 
about appropriate actions to take. 

Future work may include generating alternative versions of 
CIL for different end-user groups that facilitate different 
sensor-based features and interaction mechanisms. A specific 
use case is to design, evaluate and utilize clinician-in-the-loop 
visual analytics for wearable sensors, particularly for real-time 
detection and interpretation of health events [35]. 
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