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Abstract

While machine planning has attracted great interest among researchers, it has seldom
been used outside research labs. One impediment to wide-spread use is that existing planner:
are often difficult to integrate with other parts of a manufacturing system. We address this
problem by showing how assembly trees (constructs often used by factories identifying how
to construct an object) can easily be converted into HTN operators for our machine planner.
We also demonstrate that our plans can be easily converted to a Petri-Net or matrix
representation which ordinary discrete-event controllers can manipulate. We view our
planner as one portion of a complete control system. We also demonstrate how our system
can combine multiple alternatives into a single representation. Finally, we show that the
combined representation can be converted back into a more conventional plan representation,

allowing machine planners to compactly reason about alternate courses of action.
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1 INTRODUCTION

Global competition has forced manufacturers to continually inovate. Just-In-Time manufacturing, Kanban
systems, and other technologies have allowed factories to reduce their inventory level and adapt quickly to
changing market conditions. Shop floor managers have become increasingly interested in so-called flexible
manufacturing systems which can quickly transition between products with minimal human intervention. We
have addressed this problem from an Al perspective and have shown that a conventional Al planner can use the
same repsentation that shop-floor managers currently use in their manufacturing cells and have outlined how
this planner can be integrated into a complete control system. We have also combined ideas from Al planning

and ideas from manufacturing into a compact representation for alternate courses of action.
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Figure 1: Three-Level Intelligent Control Architecture

Figure 1 shows Saridis's abstraction hierarchy (Saridis, 1983.). In this hierarchy, components in the
Organization level function as managers, components in the Coordination level provide job-sequencing
abilities, and components in the Execution level carry out the prescribed actions. Each level of Saridis's
abstraction hierarchy may have more than one component; each component must sense current conditions, form

a model of the world, make decisions, and give commands or status reports to other components.

Most of our paper discusses our planner, which belongs to the Organization level. Section 2 provides
an introduction to machine planning; Sectiodezscribes our method for easily converting assembly trees into
HTN operators. We discuss resources in Section 4. Section 4 also describes how we convert our plan

representation into a set of matrices usable by our discrete-event controller.

Section 5 describes our control system. The controller belongs to Saridis's Coordination level; it

decides when to execute each step of our plan based on which resources are available. In Section 6, we describe



how our system can combine multiple plans into a single representation; thus, our controller can decide in real-

time which of several methods to use to assemble a particular part.

Section 5 briefly mentions the closed-loop controllers used for each workstation; each such controller

belongs to Saridis's Execution level.

We conclude our discussion in Section 7.

2 MACHINE PLANNING BACKGROUND

This section introduces machine planning terms and gives a brief summary of machine planning research.

2.1 Introduction to Machine Planning

Machine planners seek to find a sequence of steps which can be executed to meet some specified goals in a
particular domain. Machine planners must have a description of the domain and of the specific problem.
Operators encode knowledge of how an agent's actions affect the world. Most planners use a variant of STRIPS

operators, introduced by Fikes, Hart, and Nilsson (Fikes & Nilsson, 1971).

STRIPS operators contain three lists of first-order predicate calculus expressions. The precondition list
contains predicates that must hold for the operator to be applicable. The add list contains predicates that will
hold after the operator is executed and the delete list contains predicates that no longer hold after the operator is
executed. Predicates which do not appear in either the add list or the delete list do not change their truth-values
during the application of the operator. In most planners, the add list and delete list are combined to form the

operator's effects or postconditions.

Here is a sample STRIPS-style operator:

Name: Pickup
Parameters: ?BLOCK

Variables: ?BLOCK ?SUPPORT

Preconditions(HAND-EMPTY) (CLEAR ?BLOCK) (ON ?BLOCK ?SUPPORT)
Delete List: (HAND-EMPTY) (ON ?BLOCK ?SUPPORT)

Add List: (CARRYING ?BLOCK) (CLEAR ?SUPPORT)




This operator, from the Blocksworld domain, describes the action of picking up a block. To
successfully pick up a block, the agent must have an empty hand, and the block the agent is picking up must be
clear (meaning the block has no other blocks on top of it). After executing this operator, the agent's hand is no
longer empty and the block is no longer on its support. Instead, the agent is now carrying the block and the
block's old support is now clear. There are usually many ways to divide a domain into operators and many ways

to encode each operator.

In addition to a domain description, machine planners need a description of a particular problem.
Problems are normally represented by an initial state and a goal state, each a set of predicates from the
appropriate domain. Theitial state consists of the set of predicates completely describing the world's situation
when the planner begins to plan. Tgmal state consists of a set of predicates which should be true when the
plan has finished executing. Since literals not mentioned in the goal state description may be either true or false,

the “goal state” actually describes a set of possible world states.

Originally, generated plans consisted of a totally ordered sequence of steps. Plannepartialng
order planning, introduced with Sacerdoti's NOAH system (Sacerdoti, 1975), produce plans with only a
partially ordered sequence of steps. Partial ordering gives the plant’s executor some flexibility in the exact order

the steps are followed. In a manufacturing context, two or more steps may be executed at the same time.

2.2 Hierarchical Task Network Planning

An alternative to traditional planning is hierarchical task network planningdT& planning'. In HTN
planning, a planning system receives task schemas as well as traditional operator descriptions (Wilkins, 1984).
Task schemas provide a method of grouping operators together to form higher-level operations. For example,

Austin Tate uses this schema in his planner NONLIN (Tate, 1977):

! Other names for HTN planning include Task Network planning, Task Reduction Planning, Task-based
planning, and Action-based planning.



(opschenma nakecl ear
:todo (cleartop ?x)
: expansi on (
(stepl :goal (cleartop ?y))
(step2 :action (puton ?y ?z))
)
:orderings ((stepl -> step2))
:conditions (
(:use-when (on ?y ?x) :at step2)
(:use-when (cleartop ?z) :at step2)
(:use-when (not (equal ?z ?y)) :at stepl)
(:use-when (not (equal ?x ?z)) :at stepl)
)
;variabl es (?x

)

?y ?2)

Task schemas allow HTN planners to discover plans faster than conventional planners. A conventional
planner trying to clear block X would need to search for all operators with (cleartop X) as a postcondition. One
such operator, (putdown X), would ultimately need (cleartop X) as its precondition. Thus, the conventional
planner must backtrack until it stumbles upon (pickup Y) as the correct action to achieve (cleartop X). This
particular schema is short and could be represented as a control rule or learned by planners using explanation-
based learning (Minton et al., 1987). In general, however, HTN schemas can become quite complex and more

expressive than conventional operator descriptions (Wilkins, 1994).

2.3 Plan Representation
Planners offer various extensions to the STRIPS paradigm and thus use different internal representations for
their plans. However, each representation has a notion of “primitive” actions which are directly executable by

an agent and a notion of ordering constraints specifying that one operation must complete before another can
begin. Figure 2 shows a sample plan. The plan sayd\imatist be drilled and must be obtained before the

agent can execute the operation “(Attach B C),” but these two steps can be executed in either order, or executed

simultaneously.

(Attach B O

Figure 2: Sample Plan



3 CONVERTINGASSEMBLY TREESTO HTN
OPERATORS

Manufacturers use assembly trees to represent manufacturing operations; machine planners use domain
operators to represent manufacturing operations. In this section, we describe how to easily convert assembly

trees into HTN operators.

3.1 Representing Assembly Trees
Traditionally, manufacturers have used assembly trees (Wolter, Chakrabarty & Tsao, 1992) to represent

knowledge of how to construct a given component. Assembly trees (or, equivalently, a Bill of Materials (Baker,

1974)) can be viewed as a matrix for which enirj has a value of 1 if jop is an immediate prerequisite for

job 1. Assembly trees do not consider the resources needed to execute the jobs; they contain only product-

specific job sequencing information.

We present assembly trees graphically; edges of an assembly tree correspond to manufacturing

operations and nodes correspond to parts or subassemblies. Figure 3 shows a sample assembly tree. A work cel

can create paiB by obtaining parA and drilling it. The cell can assemble padsandC to form the single

componenD.

Asenbl e

Drill

Figure 3: Sample Assembly Tree

3.2 Relating Assembly Trees and HTN Operators
Non-leaf nodes in an assembly tree represent the result of applying some manufacturing operation. Thus, the
node's label identifies the goal accomplished by the corresponding plan operator. Children of an assembly tree

node represent parts used by the manufacturing operation and correspond to subgoals in the domain operator.



Assembly tree arcs represent specific manufacturing operations and correspond to plan steps (primitive actions)
in our plan operator. Figure 4 summarizes these correspondences. Figure 5 shows a sample assembly tree; using

our approach, the interior nodes can be converted into NONLIN (Tate, 1977) operators shown in Figure 6.

Assenmbly Tree Node HTN Oper at or

Node Label L ] :todo & :effects

Children's Node Label s —— subgoal s

Arc Label ———{ prinmitive action

Figure 4: Converting Assembly Trees into HTN Operators

I Drifl Assenbl e

Figure 5: Sample Assembly Trees

(actschenma Buil d-B
:todo (Assenbl ed B)
.expansion ( (stepl :goal (Assenbled A))
(step2 :primtive (Drill A)))
ceffects ( (step2 :assert (Assenbled B)))
:orderings ((stepl -> step2)))

(actschenma Build-Z
:todo (Assenbled 2)
:expansion ( (stepl :goal (Assenbled X))
(step2 :goal (Assenbled Y))
(step3 :primtive (Attach X Y)))
ceffects ( (step3 :assert (Assenbled 2)))
:orderings ((stepl -> step3) (step2 -> step3)))

Figure 6: Operator Descriptions

Leaf nodes in an assembly tree correspond to incoming parts—parts which our manufacturing cell does
not produce locally. These can be represented as HTN operators which have no subgoals. For example, if part

of Figure 5 is not locally produced, the HTN operator shown in Figure 7 can “assemble” it without forming

subgoals.



(actschena Prepare-A
:todo (Assenbl ed A
rexpansion ( (stepl :primtive (PutOn A Pallet)))
ceffects ( (stepl :assert (Assenbled A))))

Figure 7: Handling Product-Ins

3.3 Flowlines, Assembly, and Job-shops
Flowlines represent a sequence of simple manufacturing operations. In assembly trees, flowlines correspond to
a sequence of nodes with only one child each. Our previous section had an example of a very short flow line;

the plan in Figure 8 shows the resulting plan.

(PutOn A Pallet)

Figure 8: Representing Flowlines

Assembly operations represent attaching two (or more) parts together. In assembly trees, steps
corresponding to assembly operations have more than one child. The HTN operators for assembly steps have
more than one subgoal, and the resulting plans use partial ordering to allow the cell to complete the
subassemblies in any order. The right portion of Figure 5 shows a assembly tree containing an assembly
operation; Figure 6 includes the corresponding HTN operators. Figure 9 shows a plan involving assembly; the

two subgoals may be achieved in either order (or simultaneously).

If two or more operations must be performed on the same part, but the operations may be executed in
any order, then the job dispatcher faces a job-shop choice. Assembly trees do not have a standard method of
representing job-shop choices; Figure 10a shows two possible methods of representing choices. The left
assembly tree shows a “compound” operation in which one arc incorporates two distinct steps which may be
performed in either order. The assembly trees on the right explicitly represent the alternate orderings as separate

but related assembly trees.

Figure 10b shows HTN operators for this representation. Plan operators provide an intuitive

representation of the job-shop choice; pArmust be drilled and sanded but these two operations may be



performed in any order. The resulting plan (in Figure 10c) splits into two different sections and then rejoins. In
Figure 9, the joining of two plan strands represents an assembly operation; the two “threads” which join are
operating on different parts and the manufacturing step at the merged node (Attach X Y) indicates that this
portion of the plan corresponds to an assembly operation. In contrast, the threads in Figure 10 correspond to
operations on an identical part, and the manufacturing step at the merged node (Clean A) does not imply an
assembly operation. Thus, the merging of two threads in Figure 10 corresponds to the end of a job-shop choice

and not to an assembly operation.

Assenbl e

(actschema Build-Z
:todo (Assenbled 2)
:expansion ( (stepl :goal (Assenbled X))
(step2 :goal (Assenbled Y))
(step3 :primative (Attach X Y)))
.effects ( (step3 :assert (Assenbled 2)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschena Prepare-X
:todo (Assenbled X)
cexpansion ( (stepl :primtive (PutOn X Pallet)))
.effects ( (stepl :assert (Assenbled X))))

(actschema Prepare-Y
:todo (Assenbled V)
cexpansion ( (stepl :primtive (PutOn Y Pallet)))
ceffects ( (stepl :assert (Assenbled Y))))

(PutOn X Pallet)
(PutOn Y Pall et)

Figure 9: Representing Assembly

Thus, HTN operators can represent all information stored in an assembly tree and can also represent job-shop

scheduling choices that are difficult to represent in assembly trees. We will later show in Section 6 that a



planner can also consider alternate methods of constructing parts (corresponding to multiple assembly trees).

d ean C ean Cl ean
A) (® (D) A®)
Drill & Sand Sand Drill
Drill Sand

(actschema Buil d-C

:todo (Assenbled C
cexpansion ( (stepl :goal (Drilled A))

(step2 :goal (Sanded A))

(step3 :printive (Cean A)))
corderings ((stepl -> step3) (step2 -> step3l))

(actschma Drill-A
:todo (Drilled A)
B) :expansion ( (stepl :goal (Assenbled A))

(step2 :primtive (Drill A)))
ceffects ( (step2 :assert (Drilled A)))
:orderings ((stepl -> step2)))

(actschma Sand- A
:todo (Sanded A)
:expansion ( (stepl :goal (Assenbled A))
(step2 :prinmtive (Sand A)))
ceffects ( (step2 :assert (Sanded A)))
:orderings ((stepl -> step2)))

(actschena Prepare-A
:todo (Assnebl ed A)
.expansion ( (stepl :primtive (PutOn A Pallet)))

.effects (stepl :assert (Assenbled A)))
Figure 10: Representing Job-Shop Choices

C)




4  CONVERTINGPLANSTO MATRICES

Current controllers used in manufacturing systems use matrices to describe the ordering of jobs and the

resources needed to perform the jobs. In this section, we describe how our plans may be converted into two
matricesF, andS,,which incorporate the plan’s job sequencing information. We describe how the structure of
the plan and information on which resources are currently available can be combined into two additional
matrices,F, andS;, which describe the resources needed to perform the plan steps. These matrices can be

interpreted as a Petri-Net, so we begin by describing Petri-Nets.

4.1 Petri-Nets

Petri-Nets can be represented mathematically by several sets:

* P, a set of places. Initially, each place represents a particular action of our plan. Later, we add places

representing resources needed by plan actions. Each place can hold one tokensrélokens
residing in an action place mean that the action has been performed on one ormore parts. Tokens
residing in a resource place indicate that one or more instances of that resource are available for

consumption.

« T, a set of transitions. Each transition indicates the cessation of one action and the initiation of another

action, and the corresponding release of one resource and the acquisition of another resource.

* |, an “Input Set” mapping places to transitions. When transifidires, tokens are removed from each

placeP; for which (P,, T;) is an element of.

* O, an “Output Set” mapping transitions to places. When transiiofires, tokens are inserted into

each placd for which (T;, P;) is an element dD.
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Figure 11: A Sample Petri-Net

Figure 11 shows a sample Petri-Net. In this Petri-Net, both (Drill A) and (Obtain B) must be complete
(have tokens in them) before transiti¥p can fire, but the two tasks may be performed in either order. When
X, fires, tokens are removed from (Drill A) and (Obtain B), and the controller executes the (Attach B C) task.

When this task completes, a token is placed in the (Attach B C) node and other transitions may then fire.

Manufacturing researchers have studied Petri Nets extensively (Desrochers, 1990; Jeng & DiCesare,
1992; Murata et al., 1986; Zhou & DiCesare, 1993); researchers have investigated job sequencing controller

design, deadlock avoidance, reachability analysis, and system liveness tests.

4.2 Converting Plans to Petri-Nets

Figure 12 shows a sample plan which includes assembly steps and routing choices. In particular, to complete
the plan, an agent must perform both stepnd sted5, but the agent may perform these two steps in either
order. Figure 13 shows the corresponding Petri-Net in which the possible routing choices have been explicitly
listed. The agent can either perform stedsandG1, meaning the agent performs stefirst, or the agent can
perform step€52 andF2, meaning the agent performs stegfirst. Each alternative is given a unique label to

prevent the alternatives from being merged by our algorithm for combining multiple plans (described in

Section 6).



© (®
Start 9 e‘@ CGoal
©

Figure 12: A Sample Plan

Pout

Figure 13: Petri Net Representation of Plan

4.3 Converting Plans to Matrices

The Petri-Net in Figure 13 is equivalent to the two matrices shown in Figurel4r Thatrix maps actions to
transitions and corresponds to theet of the Petri-Net; a 1 in locatidn] means that transitioX; cannot fire

until actionAj completes. Th&, matrix maps transitions into actions and corresponds t@tket of the Petri-

Net; a 1 in locationi, | of this matrix means that when transitib@ fires, actionA is started. Assembly
operations are signaled by two or more 1s in a single rok,.ofn our exampleD is the action of assembling

the parts produced Hy andC; the X, transition has two 1s indicating the assembly step. The start of a routing
decision is signaled by having more than one 1 in a colurfr,af our exampleE can enable eitheXg or X,.

The end of a routing decision is signaled by two or more 1s in the same BwactionH will be started after

eitherX,, or X, fires.
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x, |1 0000O0O0O0O0O0OO
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X, |0 00110000000
X, [0 000010000 O00O
= X |0 00000100000
V™ x, [0 00000100000
X, |0 0 0000010000
X, [0 0 0000O0O0T10 00
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g - B 010000000000
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H |0000O0OUOT O T 1T1a0
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Figure 14: F, andS, Matrices

4.4 IncorporatingResource Information

When we execute our plan, we will need to use some resources. For exampleCatiaour plan may
correspond to a painting operation; to perform this action (i.e. to fire tran¥iflorwe must use some type of
painting tool. We use two additional matricks,andS , to represent the resources needed to perform the jobs.
A 1 in positioni, | of theF, matrix means that resour% must be secured before transitipcan fire. A 1 in
positioni, | in the§ matrix means that when transitiof fires, resourcdR, is released. If a columpof F,

contains more than one 1, resoujcis being shared by more than one job. Mafrixhas been called the

resource requirements matrix (Kusiak, 1992).

Initially, we assume that every aatibias a dedicated resource. That is, if a transition starts &gtidn

will also reserve a dedicated resouraa and if the completion of an actidy causes a transition to fire, the



transition will also release a resour%. Figure 15 shows the Petri-Net describing these dedicated resources.
Notice that this Petri-Net is identical to the one in Figure 13 except for the direction of the arcs. Because of this

similarity, we can quickly form resource matrices for our dedicated resources:

F = S,T with the product-out column(s) removed.

A

S = FVT, with the product-in row(s) removed.

Figure 16 shows the resulting matrices.

10
@ Pout

X2

A1

Figure 15: Petri Net for Dedicated Resources

4.5 Resource Assignment

We formed our initial resource matrices by assuming that each action has a dedicated resource. In most cases,
this assumption is unrealistic. For example, if actidnd, andE all involve drilling operations but we only

have one drill, our drill must be shared by the three operations. In terms of dedicated resources, this sharing
means thata, a and € all correspond to the same actual resource. We represent the sharing in a resource

assignment matrik,. If F, contains a 1 in positiohj, then our actual resour& is performing the duties of

our idealized dedicated resour€®. Shared resources are represented by columing ofntaining two or more
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Figure 16: é andlfr Matrices

1s. Figure 17 shows a resource assignment matrix containing two shared resources; a singleadssource
performs the functions of the generic resour@esd , and € (and thus will be shared among actiégnd, and

E) and a single resourdewill perform the functions of generic resourcfgft and f2 (and thus will be shared

by actiong=1 andF2).

Once we have formed our resource assignment matrix, we can easily compute ofy éindF,

matrices:



adeb ¢ f glg2h
ali 000000
b|0 1 00000
c|0 010000
d|1 000000

_ el1L 000000
F>= fljooo1000
gl|/0 0 00100
92(0 0 0 0 0 1 0
20 001000
hjo ooo0o0o01

Figure 17: F, Assigns Resources

In some cases, our values foy andS may contain self-loops. For example, consider resonde

With dedicated resources, transiti¥g reserves€ and releasesl. Now, transitionX; reserves resourcade
and releases the same reso@de. This behavior is not correct; intuitively, it means that at the ing{afires,
two uses of resourc@de are held. We eliminate this self-loop by findirig) pairs such that

F.[i,J]] = S[j,i] =1 and changing both values to 0. This action corresponds to three matrix equations, in which
“&" represents an element-by-element logical AND operation and “-” represents ordinary matrix subtraction:

T=F&§
F_=F -T,

Tnew Tal

Sne/v - Sold - TST

Figure 18 shows th&, and S matrices we get after applying the resource assignment shown in
Figure 17 and removing the self-loop. Note that places fronfrjlend S, matrices (Figure 14) describe actions

and places from thE, andS matrices describe resources. Figure 19 shows the complete Petri-Net with both

job places and resource places. When one action completes and when the resource needed for the next actior
becomes available, our controller will fire the appropriate transition to start a new action and release the

resource used by the old action.
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Figure 18: Final S andF, Matrices

Figure 19: Our Completed Petri Net

5 EXECUTING MANUFACTURINGPLANS

So far, we have focused on the operators used by our planner and the completed plans formed by our planner.



Actually, the planner is only one component of a complete system. In this section, we describe the other
components of our manufacturing cell. Our planner provides a partially-ordered list of manufacturing steps in
the F, and S, matrices. Assigned resources are described irf-thend S matrices. A dispatcher uses the

matrices, along with real-time status information, to decide when to commence the next manufacturing
operation. In a Petri-Net, commencing a manufacturing operation corresponds to firing a transition; new

resources will be reserved, old resources will be released, and the cell will switch tasks.

5.1 Introduction to Manufacturing

Flexible manufacturing systems have four major components (Buzacott & Yao, 1986):

1. A set of machines or workstations.

2. An automated material handling system allowing flexible job routing.

3. Distributed buffer storage sites.

4. A computer-basedupervisory controller which monitors the status of jobs and directs pad

machine job selections.

Flexible manufacturing systems can produce different products by varying their supervisory controller.
If the same resource is used for more than one task, then the controller must disgatching to determine
the order in which the resource performs the tasks. In addition to optimizing some performance measure (such
as maximizing throughput or machine utilization), the dispatcher must deailtbck. In a deadlocked system,
some resource is being held pending an event which will never occur. Thus, the deadlocked resource will never

again become available.

5.2 Coordination
Figure 20 shows our complete manufacturing system. The planner performs high-level job sequencing; it

belongs to the Organization level of Saridis's hierarchy (Figure 1). The resource assignment module decides

which actual resources will be used to implement the plan and feym$hese two modules provide the

controller with four task matricdd=,, S,, F,, S).
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Figure 20: Matrix-based Supervisory Controller

Our supervisory controller belongs to the “Coordination Level” of Figure 1. The rule-based controller is

described by several equations:



Matrix Controller State Equation

X=FVv,+Er +FU+ R0, 1)
Job Start Equation
Vv, = §X (@)
Resource Release Equation
r,=8X (3)
Task Complete Equation
y=§x (4)

These matrix operations use tbgand algebra, where “+” denotes logicalDl and “X” denotes
logical and. The overbar in (1) denotes logical negation (e.g. so that jobs complete are denoted by 0). Thus,

equation (1) amounts t@and operations (for assignment of resources) while equations (2)-(4) amo0iit to

operations (for release of resources). In Petri-Net parlance, the controller state equation (1) is responsible for
firing the transitions; the controller state vector x is isomorphic to the vector of Petri-Net transitions. These are
logical equations, and so formrale base. The coefficient matrices are sparse, so that real-time computations
are easy even for large interconnected systems; the rules can be fired using efficient algorithms sirebeas the

algorithm.

The matrix formulation allows: (1) computer simulation and (2) computer implementation of the
controller on an actual work-cell. Inputrepresents raw parts entering the cell yndpresents completed tasks
or products leaving the cell. The controller, shown in Figure 20, observetathe outputs of the system or
work-cell, namely, job vectov., whose entries of ‘1’ represent ‘completed jobs’ and resource ectwhose

entries of ‘1’ represent ‘resources currently available’. The ve®tdi js isomorphic to the Petri-Net place

vector. (SubscriptC’' denotes ‘complete’ or ‘available’ status, while subscriptdenotes ‘start’ or ‘release’
commands.) Theontroller state equation (1) checks the conditions required for performing the next jobs in the
system. Based on these conditions, stored in the logical wedtoe job start equation (2) computes which jobs

are activated and may be started, and the resource release equation (3) computes which resources should b



released (due to completed jobs). Then, the controller sandwands to the system, namely, vectdy, whose

‘1’ entries denote which jobs are to be started, and végtarhose ‘1’ entries denote which resources are to be

released. Completed tasks are given by (4).

The matrix-based logical controller has thaltiloop feedback control structure shown in Figure 20,

with inner loops where there are no shared resources, aner loops containing shared resources where
dispatching and/or routing decisions are needed to detetiginghich is aconflict resolution input that selects

which jobs to initiate when there are simultaneous requests involving shared resourcdispdtetsng input is
selected in higher-level control loops using priority assignment techniques (e.g. (Panwalker & Iskander 1977))
in accordance with prescribed performance objectives such as minimum resource idle time, task priority

orderings, task due dates, minimum time of task accomplishment, and so on as prescribed by the user.

The T, T,, T, and T, matrices shown in Figure 20 describe the job durations and resource set-up
times. These matrices are described in (Tacconi & Lewis, 1997). It is easy to show that a Petri Net description

can be derived from the matrices. In fact, we defineattizvity completion matrix F and theactivity start

matrix Sas

F=[F, E]'SZEE 5)

We define transition vectoX as the set of elements of controller state vext@nd place vectoh (activities)

as the set of elements of the job and resource veetansir. Then(A,X,F,S) is a Petri-Net. The new matrix

model overcomes one of the prime deficiencies of Petri-Net theory-- it proxigeous computational

techniques for dynamic systems. It has been shown (in (Tacconi & Lewis, 1997) and (Lewis et al., 1995)) that
one may compute directly in termslef, F,, S, S all the resource loopp{invariants), all the circular waits

of resources, and give algorithms for dispatching shared resources with guaranteed avoidance of deadlock.



6 COMBINING ALTERNATE PLANS

So far, we have shown that an assembly tree can be converted into a set of HTN operators and that a machine
planner can use these operators to form a plan which in turn can be converted into four matrices usable by our
supervisory controller. In this section, we show how multiple assembly trees can result in more than one
possible plan; these plans can be combined into a single set of matrices. We present a polynomial-time

algorithm for combining the plans into a single matrix representation.

6.1 Forming more than one Plan
In (Gracanin, et al., 1994), Gracanin uses the two assembly trees shown in in Figure 21. Gracanin combines the
two trees using a parameterized Petri-net. We incorporate the alternatives into a matrix notation, which is

computationally easier to manipulate.

S R
NoA
AAB C/%D /<\ )

Figure 21: Alternate Assembly Trees

The assembly trees correspond to the HTN operators shown in Figure 22. The planner has more than
one sequence of steps which can solve the goal correspondfsg tbwe can determine in advance the
conditions under which one sequence of steps will be “better”, then we can encode this information into the
planner (possibly adding subgoals not shown in the assembly tree) and allow our planner to determine the best
plan based on relatively static information. Alternatively, we can have the planner generate all possible plans

and allow a lower-level dispatcher to switch between them based on real-time (dynamic) conditions.



(actschema Buil d-s4-w th-s2
:todo (Assenbl ed s4)
:expansion ( (stepl :goal (Assenbled sl))
(step2 :goal (Assenbled s2))
(step3 :primtive (Attach sl s2)))
ceffects ( (step3 :assert (Assenbled s4)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschema Build-s4-with-D
:todo (Assenbl ed s4)
;expansion ( (stepl :goal (Assenbled s3))
(step2 :goal (Assenbled D))
(step3 :primtive (Attach s3 D)))
ceffects ( (step3 :assert (Assenbled s4)))
corderings ((stepl -> step3) (step2 -> step3)))

(actschema Buil d-s1
:todo (Assenbl ed sl)
:expansion ( (stepl :goal (Assenbled A))
(step2 :goal (Assenbled B))
(step3 :primtive (Attach A B)))
ceffects ( (step3 :assert (Assenbled sl)))
;orderings ((stepl -> step3) (step2 -> step3)))

(act schema Buil d-s2
:todo (Assenbl ed s2)
:expansion ( (stepl :goal (Assenbled C))
(step2 :goal (Assenmbled D))
(step3 :primtive (Attach CD)))
ceffects ( (step3 :assert (Assenbled s2)))
:orderings ((stepl -> step3) (step2 -> step3)))

(actschema Buil d-s3
:todo (Assenbl ed s3)
;expansion ( (stepl :goal (Assenbled sl))
(step2 :goal (Assenbled C))
(step3 :primtive (Attach s1 Q)))
ceffects ( (step3 :assert (Assenbled s3)))
corderings ((stepl -> step3) (step2 -> step3)))

(actschema Prepare-A
:todo (Assenbl ed A)
:expansion ( (stepl :primtve (Collect A)))
ceffects ( (stepl :assert (Assenbled A))))

(act schema Prepare-B
:todo (Assenbl ed B)
:expansion ( (stepl :primtve (Collect B)))
ceffects ( (stepl :assert (Assenbled B))))

(actschema Prepare-C
:todo (Assenbled O
;expansion ( (stepl :primtive (Collect Q)))
ceffects ( (stepl :assert (Assenbled C))))
(actschema Prepare-D
:todo (Assenbl ed D)
cexpansion ( (stepl :prinmtive (Collect D)))
ceffects ( (stepl :assert (Assenbled D))))

Figure 22: HTN Operators for Figure 21

Figure 23 shows the two possible plans for assembling, grart. As described in Section 4, we can

use each plan to form from a Petri-Net and a set of maffigesmdS,. Figure 24 shows the two Petri Nets for

this problem, and Figure 25 shows the corresponding pairs of matrices.



X4

Figure 24: Multiple Petri Nets for Assembling &) Part
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(Prep A)  (Prep Q) (Attach A B) (Attach sl s2) XL X2 X3 X4 X5 X6 X7 X8
Pin, Ping PincPin, (Prep B) (Prep D) (Attach C D) (Prep A 1 0 0 00 0 0 O
xt]|1 o 0 0 0 0 0 0 0 0 0 (Prep B) c 100 0 0 0O
x2|o 1 0 0 0 0 0 0 0 0 0 (Prep Q c 01 00 00O
X3 o o 1 0 0 0 0 0 0 0 0 (Prep D) c 00 100 00
X410 o 0 1 0 0 0 0 0 0 0 (Attach AB) |0 0 0 0 1 0 0 O
Xs |0 o 0 0 1 1 0 0 0 0 0 (Attach CD) 0 0 0 0 0 1 0 O
X6 |0 O 0 0 0 0 1 1 0 0 0 (Attach S1s2) o 0 0 0 0 0 1 O
X7 |0 0 0 0 0 0 0 0 1 1 0 Pout 00 0 0 0 01
X8 0 0 0 0 0 0 0 0 0 1
(Prep A (Prep O (Attach A B) (Attach D s3)
Pin, Ping PincPing (Prep B) (Prep D (Attach C sl) XL X2 X3 X4 X5 X6 X7 X8
X1 |1 0 0 0 0 0 0 0 0 0 0 (Prep A 1 0 0 0 0 0 O O
X2 o 1 0 0 0 0 0 0 0 0 0 (Prep B) 0O 1. 0 0 0 00 O
X3 |0 0 1 0 0 0 0 0 0 0 0 (Prep O 0O 0 1. 0 0 0 0 O
X4 |0 0 0 1 0 0 0 0 0 0 0 (Prep D) 0O 0 010 0 0 O
X5 |0 0 0 0 1 1 0 0 0 0 0 (Attach A B) 0O 0 0 01 0 0 O
X6 |0 0 0 0 0 0 1 0 1 0 0 (Attach Csl) |0 0 0 0 0 1 0 O
X7 [0 0 0 0 0 0 0 1 0 1 0 (Attach Ds3) [0 0 0 0 0 0 1 O
X8 0 0 0 0 0 0 0 0 0 1 Pout 0O 0 0 0 0 0 1

_n
0

=)
@
=2

Vnew

Figure 25: Multiple Matrices for Assembling a8, Part

6.2 Combining Multiple Plas

We will incorporate the two matrix pairs in Figure 25 into a single matrix pair in polynomial F()geand S,c

will hold our combined job sequence. We initialiE@c to theF, matrix of our first plan and we initializE,c

to the S, matrix of our first plan. For each additional plan, we use our algorithm to incorporate additional

choices into the matrices; after we have finishE;!, and Fvc contain information on all possible plans. Once

V,

we form F, and F, , we can assign resources as described in Section 4 and allow our controller (Section 5) to
C C

decide in real-time which method it will use to produce the desired part. Our algorithm makes two assumptions:
1. Parts with the same label on two different assembly trees represent the same part.
2. The uses of a part are independent of the method used to construct the part.

Without assumption 1, made implicitly in (Gracanin et al., 1994), it would be extremely difficult to
combine multiple assembly trees at all. Assumption 2 means that if two nodes in different plans have the same
node labels, then they are identical nodes. Without this assumption, combining plans becomes an instance of

subgraph isomorphism, an NP-Complete problem (Garey & Johnson, 1979). Assumption 2 is reasonable for

manufacturing operators; the results of the action “[ilto produceD” do not normally depend on which



previous actions we used to produce@part.

Figure 26 shows our algorithm. First, we associate each place in our new Petri-Net with a (possibly
new) place in our old Petri-Net. Second, we examine each transition in the new Petri-Net and decide if that

transition should be added to our old Petri-Net.

Conbi neMatrix(F, ~S,.. K S, )

new

For each pl ace |nFV .
Does the place exist inF
I f so:

Associate the place with the correspondi ng pl ace ofF

Associ ate the correspondi ng pl ace ofSVnew wit S
If not:

Create a new place inF, andS .

Associate the place ink, W|th the new pl ace i,

Associ ate the correspondi ng pl ace ofS Viey W EH the new pl ace i ﬁS

"
Vold °

V old
V old

old

For each transition inF, S,
Does the corresponding transition exist irFVold SV o
I f so:
(do not hi ng)
If not:

Create the transition

Figure 26: Combining Multiple Plans

Rows in S, and columns of, correspond to primitive actions, or to places in a Petri-Net. Our

algorithm begins by associating each place in our new matrix pair with a (possibly new) place in our
accumulating matrix pair. If the current place has a label identical to a place in our accumulating matrices, then
(by Assumption 2), the current place is equivalent to the accumulating place with the matching label. If no place
label in our accumulating matrix pair matches the current place, we create a new place in our accumulating
matrix pair; the current place is equivalent to this new place. Initially, new places are formed without any

incoming or outgoing transitions; the newly created rowsSpéind columns of-, are initialized to zero.

Figure 27 shows the associations formed by this phase of our algorithm. Rows and coliiatits are newly

added places.

After we associate each place in our new matrix pair with a (possibly new) place in our accumulating

pair, we examine each transitions in our new matrix pair. Our algorithm examines the accumulated plan to



decide whether the current transition already exia$sd on the associated nodes of our accumulated plan. Our

algorithm judges transitions based on the node labels of the places the transitions link rather than on the place

F
Vol d S’ol d
(Prep A)  (Prep O (Attach A B) (Attach sl s2) (Attach D s3) X1 X2 X3 X4 X5 X6 X7 X8

Pin, Ping PincPing, (Prep B) (Prep D) (Attach C D) (Attach C s1) = Prep A) 1 0 0 000 0 O
X1 1 o0 0 0 0 0 0 0 0 0 0 0 0 (Prep B) 0 100 00 00
x2lo 1 0 0 0 0 0 0 0 0 0 0 0 =(Prep C) 0 01 000 OO
X3 |0 0 1 0 0 0 0 0 0 0 0 0 0 = Prep D) O 0 01 0 0 0 O
X4 |0 0 0 1 0 0 0 0 0 0 0 0 0 = Attach A B) 0O 0 0 01 0 0 O
X5 |10 0 0 0 1 1 0 0 0 0 0 0 0 (Attach C D) o 0 0 0O 0O1 0 O
X6 |0 0 0 0 0 0 1 1 0 0 0 0 0 V(Attach S1s2)/0 0 0 0 00 1 O
X7 |0 0 0 0 0 0 0 0 1 1 0 0 0 Pout 0O 0 0 0 00 0 1
x8lo o 0 0 0 0 0 0 0 0 1 0 0 - (Attach C s1) 00 0 00 OO0 O

/ Lam(Attach D s3) 00 0 0O0 0O O

‘ ‘ (Prep A (Prep O (Attach A B) (Attach D s3)

Pin, Ping PincPing (Prep B) (Prep D) (Attach C s1) XL X2 X3 X4 X5 X6 X7 X8
X111 0 0 0 0 0 0 0 0 0 0 —(Prep A 10 0 0 0O O O O
X2 |0 1 0 0 0 0 0 0 0 0 0 —(Prep B) 0O 1 0 0 0 0 0 O
X3 |0 0 1 0 0 0 0 0 0 0 0 —(Prep C 0O 01 0 0 0 O O
X410 0 0 1 0 0 0 0 0 0 0 —(Prep D) 0O 0 01 0 0 O O
X510 0 0 0 1 1 0 0 0 0 0 —(Attach A B) 0O 0 0 01 0 0 O
X6 |0 0 0 0 0 0 1 0 1 0 0 (Attach Cs1) |0 0 0 0 0 1 0 O
X7 |0 0 0 0 0 0 0 1 0 1 0 Attach Ds3) |0 0 0 0 0 0 1 O
X8 Lo 0 0 0 0 0 0 0 0 0 1 Pout 0 0 0 0 O 0 1

F
Vnew S’new

Figure 27: Intermediate Results: Combining Places from Multiple Plans

numbering used by our new matrices. For example, transfjoof the new matrix set IinkPinD and (Prepare
D). Our accumulating matrix set has an existing link (by coincidenceXa)swhich links its copy ofF’inD and

(Prepare D), so our algorithm does nothing for this transition. In contrast, tranéjtiohthe new matrix set

links (Attach A B) and (Attach C s1) to (Attach D s3). No existing transition in our accumulating set makes this

connection, so we create a new transi¥qgincorporating this link.

Figure 28 shows the finaiFvc and Fvc matrices. Transitions in the new matrix set which do not have

corresponding transitions in the accumulating set are marked with a *, and the newly created transitions are in

italic type. The single set of matriceE,old and S/old now represent two different methods of producgarts.

Figure 29 shows the combined Petri Net.



6.3 Complexity Analysis

Suppose we hav® plans and, after converting the plans to Petri-Nets, each plan has an avdtagepst The

number of transitions i€(n).

F
Vord S"md
(Prep A (Prep O (Attach A B) (Attach s1 s2) (Attach D s3) X1 X2 X3 X4 X5 X6 X7 X8 X9 X10X11
Pin, Ping PincPin, (Prep B) (Prep D) (Attach C D) (Attach C s1) _ = Prep A) 00 0 0 00 O 0 0
xt|1 o 0 0 0 0 0 0 0 0 0 0 0 l=~(Prep B) 100000O0 OO0O
x|o 1 0 0 0 0 0 0 0 0 0 0 0 [=(Prep C) 010000GO0 OO0
x3[o o 1 0 0 0 0 0 0 0 0 0 0 l=( Prep D) 0010000 O OO
x40 o0 0 1 0 0 0 0 0 0 0 0 0 l=(Attach A B) 0001000 00O
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x3 o o0 1 0 0 0 0 0 0 0 0 Prep C) 0 01 00O0TO0O
X4 o 0 0 1 0 0 0 0 0 0 0 Prep D) 0 001 0O0O0O
X5 o 0 0 0 1 1 0 0 0 0 0 —(Attach AB) [0 0 0 0 1 0 0 O
*x6 10 0 0 0 0 0 1 1 0 0 0 (Attach Csl) [0 0 0 0 0 1 0 O
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Figure 29: Combined Petri Net

Our algorithm is rurm-1 times. The algorithm will trace throughplaces andd(n) transitions. We

can create a place or transition in amortized constant time. The amount of time to decide whether a place or

transition exits depends on the number of places/transitions we have accumulated so far.

One (unlikely) possibility is that each plan is completely different from every other plan and thus our



final matrix will accumulat€O(mM* n) places. In this case (assuming linear-time search), it will @™ n)

time to decide whether a given place or transition exists in our matrix, for a totafaf * O(m*n) or

Oo(n? * n®) time.

A more likely possibility is that most plans are nearly identical and that a given pass through our

algorithm adds only a constant number of places, giving a final tot@(6ftm) places. This gives (still
assuming linear-time searc@)(mM+n) time to decide whether or not a given place or transition exists in our

matrix, for a total afn * n * O(m#+n) = O(n NP + mn®) time.

6.4 Converting Matrices into Plans

Once we have combined our matrices into a sikglandS, matrix pair, we can convert the matrices back into
a more traditional plan representation. The column&pfnd the rows ofS, (the places of a Petri-Net)

correspond to primitive steps or plan nodes. The rows,aind the columns o8, (the transitions of a Petri-

Net) correspond to ordering constraints on the primitive steps, or links between plan nodes. Using this
correspondence, we can convert our combined matrix set (presented as a Petri-Net in Figure 29) into the plan

shown in Figure30. Dashed lines represent alternatives; solid lines represent ordinary temporal constraints.

In Section 4, we described how partially-ordered plans could be represented in matrix form as a choice
between different totally-ordered alternatives. In simple cases, we can recombine the alternatives into traditional
planning notation, but after incorporating other plans into a single representation, the combined plan may be too
complex to automatically reconvert a choice of totally ordered plan segments into the traditional partial-order

notation.

Notice that because of the correspondance between places and primitive steps and between transitions
and plan orderings, future planners may use our algorithm for combining plans without commiting to our matrix

notation.



7/ CONCLUSION

In this paper we have shown how machine planners can be integrated with real-time intelligent control systems.
Planners can use existing documentation (assembly trees) to form their operators. Plan operators can represent
flow-lines, assembly operations, and routing choices. Our completed plan can be converted into a set of

matrices which can be executed by a rule-based controller.

— Tenporal Ordering (normal)

-——-—» Alternatives (new)

Collect B

Figure 30: Combined Plan

We have presented a polynomial-time algorithm for combining multiple plans. Our method of
combining multiple plans into a single framework simplifies re-planning, and allows an agent to choose in real

time which of several alternatives will best accomplish a goal.
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