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Abstract 
 

Smart home design has undergone a metamorphosis in recent years. The field has evolved from designing 
theoretical smart home frameworks and performing scripted tasks in laboratories. Instead, we now find 
robust smart home technologies that are commonly used by large segments of the population in a variety 
of settings. Recent smart home applications are focused on activity recognition, health monitoring, and 
automation. In this paper, we take a look at another important role for smart homes: security. We first 
explore the numerous ways smart homes can and do provide protection for their residents. Next, we 
provide a comparative analysis of the alternative tools and research that has been developed for this 
purpose. We investigate not only existing commercial products that have been introduced but also discuss 
the numerous research that has been focused on detecting and identifying potential threats. Finally, we 
close with open challenges and ideas for future research that will keep individuals secure and healthy 
while in their own homes. 
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1. Introduction 

Over twenty years have passed since Mark Weiser proposed the notion of ubiquitous computing as the 
new computational model in which technologies disappear into the fabric of everyday life [1]. In many 
ways, smart homes embody this vision because sensors embedded into everyday environments 
unobtrusively collect data that monitor the state of the physical environment and its residents while 
everyday routines are performed. The computational component then reasons about the collected 
information in order to take an action that optimizes goals such as comfort, safety, or productivity. 

While smart homes initially consisted of theoretical designs and smart laboratory experiments, they 
are rapidly maturing [2]–[5]. The results of this evolution include number of actual prototype smart 
homes [6]–[13], associated public sensor datasets [14]–[23], and commercial products [24]–[26]. Smart 
homes are used for a diverse range of applications including activity recognition [27]–[37], health 
assessment and assistance [38]–[42], environment quality monitoring [43], resource efficiency [44]–[47], 
and home automation [48]. 

In this paper, we take an in-depth look at smart home technologies that can be used for home and 
resident security. Individuals spend a majority of their time in their home or workplace [49], and for 
many, these places are our sanctuaries. As such, smart home technologies need to contribute to 
maintaining the safety of residents by preventing as many threats as possible, accurately detecting threats 
that do occur, and responding quickly and effectively to them. 

As Figure 1 shows, a smart home collects data from sensors embedded in the environment. Based on 
the sensed information, the home reasons about the potential threat and takes an action based on the 
nature and level of threat that is posed. These three steps – sense, assess, and act - serve as the basis for 
our coverage of current research and technologies in secure smart homes.  We initially describe different 
types of security issues that smart homes may face and illustrate ways in which the home technology can 
assist. Second, we then describe current stand-alone sensor systems that detect specific types of threats 
and summarize current approaches that are taken to responding to threats. Third, we focus on the area that 
has received the greatest amount of research attention, namely assessing and identifying threats based on 
sensor data. Finally, we close with a discussion of ongoing challenges for secure smart homes and ideas 
for future research directions. 

Here we motivate the survey of secure smart home technologies through a series of scenarios that 
illustrate the types of threats that can be encountered in smart homes. Each scenario highlights a different 
type of security challenge and the role that smart homes can play in assisting with sensing, assessing, and 
acting on the threat. 

Scenario 1: Intruder detection. 
Mary lives with her family who 
are all away for the day. During 
the morning, the home detects a 
person’s arrival. The house 
recognizes that the time of day 
and the type of car fit those of a 
delivery person. The home 
provides access to the garage to 
drop off the items and notifies 
Mary. When Mary’s husband Bob 
returns home in the afternoon, the 
home registers his presence and 
lets Mary know. Late in the 
evening, the home senses an 
unusual entry through the 
window. The camera is turned on 
to further identify the individual 
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Figure 1. A secure smart home senses threats, assesses them, 
and takes action to keep the home and residents safe. 



 

and to stream the video to Mary and Bob. They confirm that the individual is their son, who did not have 
his key and was entering through a window. 

Scenario 2:  Health event detection. Phil is an 81-year-old man who was diagnosed with Parkinson’s 
Disease five years ago. His mobility has been declining and when getting out of bed one evening he 
stumbles and falls. Phil is unable to get up to call for help but the home detects the sleep interruption and 
the subsequent lack of movement. The home asks Phil to confirm he is okay, and when it receives no 
response, the home contacts emergency services. 

Scenario 3: Building system failure detection. Security of smart homes extends beyond individual 
homes to communities of residents. One complex included fifty apartments, each of which is a smart 
residence and which share some basic information between them such as indoor air quality, temperature, 
and electricity usage. When the apartments noted that the levels of volatile organic compounds (VOCs) in 
five of the residences suddenly rose beyond safe levels, the compound notified the residents in all of the 
apartments to leave their homes and not return until the situation had been addressed.  One of the 
apartments noted that its resident had been smoking in an apartment which was being remodeled and 
suggested that the combination of smoke and open toxic chemicals may have contributed to the problem. 

These scenarios highlight the diverse nature of security issues that are faced by residents and thus by 
smart homes as well. A common theme of home security is detection and prevention of intruders, as 
shown in Scenario 1. However, smart homes that provide security should also be sensitive to health issues 
that can jeopardize the well-being of residents, as described in Scenario 2. This includes detection of falls, 
lack of movement, and significant changes in behavioral patterns [50]–[54]. In the same way that the 
health of a smart home resident can be monitored by a secure smart home system, so the health of the 
physical home environment can and should be monitored. For example, as described in Scenario 3, the 
building can be subject to gas leaks, freezing pipes, fires, and other issues that can threaten the health of 
residents as well as the building [55]. Many of the sensor, assessment, and action strategies can be used 
across these scenarios as we will see throughout the paper. 

While the scenarios illustrate traditional security threats that can be addressed by a smart home, the 
smart home technology itself can introduce new threats. This motivates the need for smart home systems 
to be robust and resilient [56]. In particular, if there is a sensor or system failure, the home must still 
provide protection and needed assistance. Therefore, the smart home itself needs to detect system 
anomalies and failures in its hardware, software, or communication components [57]. Smart home 
technologies and the more general Internet of Things technologies also introduce a whole new type of 
intrusion, namely hacking into the technology infrastructure [58], [59]. Currently smart homes are fairly 
vulnerable to hacking [60] and this can lead not only to costly pranks (e.g., run the washing machine 
multiple times) but also life-threatening manipulations (e.g., instead of turning the oven up to 150 
degrees, turn the sauna up to 150 degrees) [58]. 
 

2. Sensing Threats 

As shown in Figure 1, the first step of a secure smart home is to sense the current state of the environment 
and the residents. Smart home sensors are very diverse and often include a subset of sensors for motion, 
temperature, lighting, humidity, door use, appliance use, and power consumption, as well as cameras and 
microphones. With the advent of the Internet of Things (IoT) [61], there is a wealth of devices that 
provide insights and use the Internet to communicate with each other as well as the resident. In this 
section, we examine a sampling of technologies that provide sensing capabilities specifically for the 
purpose of providing a secure environment. 

Video cameras are a traditional mechanism for monitoring an environment. They are found in many 
public venues and provide records of events as well as remote or even automated sensing of threats. 
Recently, companies including iControl, Nest, SmartThings, Vivint, and Ring have enhanced the 
traditional camera system for the purpose of smart home safety monitoring. Vivint and Nest cameras can 
send alerts to homeowners when they detect activity, at which point the resident takes over the task of 
interpreting the data and acting on it. Ring is unique because it provides a smart doorbell system by 



 

connecting the doorbell to the camera [62]. iControl is even more integrative, because the camera is 
combined with motion detection, sound detection, and an intruder siren [63]. Alternatively, SmartThings 
not only facilitates camera-based monitoring and resident alerts, but other devices can be connected as 
well such as door locks to help residents take remote action in response to possible threats [64]. 

A second source of ambient sensing in the home for security is audio. Zhuang et al. [65] use Gaussian 
mixture models to analyze data from a single microphone to specifically detect human falls. Moncrieff et 
al. [66] scale up the role of the audio signal by quantifying a measure of home “anxiety” based on unusual 
loud noises that are detected by microphones throughout the home. The microphone is accompanied by a 
wearable accelerometer to detect whether the resident has experienced a fall. 

Commercially-available home security sensing technologies often rely on the resident to interpret data 
and suggest actions. This process can be made more automated through the use of biometrics. Biometrics 
will automatically recognize individuals based on unique anatomical traits including voice, gait, retina, 
and face [67], [68], as well as body shape (anthropometry) [69], footstep shape [70], body weight [71], 
and heart beat pattern [72]. While biometrics are used frequently for large buildings and operations, they 
are not as frequently incorporated into individual homes due to the amount of machine learning-based 
model training that is involved as well as privacy issues. In the context of individual homes, researchers 
often instead require that residents carry devices to identify themselves [73], [74]. Another approach to 
recognizing individuals in the home is to recognize behavioral patterns, or behaviometrics [75], rather 
than just physical properties, or biometrics. Behaviometric-based approaches will be discussed in more 
detail in Section 4. 

An advantage of using the sensor packages described in this section is that they provide a rich source 
of fine-grained information obtained from video, audio, and specific biometric devices and can ultimately 
produce a more accurate interpretation of potential threats. This level of information does come at a price, 
however. Most of the sensors operate with a well-defined field of view, which is the total physical area 
that is observable by a sensor. Therefore, they need to be placed at locations that would be most likely to 
encounter the home threats. Employing a large number of such devices would be costly in terms of the 
initial purchase, the maintenance, the processing of a large amount of data, and the power consumption. 
On the other hand, utilizing too few devices or placing them in nonoptimal locations will negate their 
security benefit. 

Another challenge posed by these security devices is the potential loss of privacy. Even if the captured 
information is only stored locally, many individuals feel that the uninterrupted monitoring by the devices 
is an invasion of their privacy. In fact, many residents turn off these devices when they enter the home 
[76], relying on the fact that most crimes happen when the home is empty. However, another frequent 
time for crimes is when the residents are sleeping, and turning off devices in these situations leaves 
residents vulnerable to threats [77]. 
 
3. Acting in Response to Threats 

A smart home is typically infused with sensors to monitor the environment. As we described in the last 
section, these sensors can provide a fairly comprehensive analysis and identification of potential threats.  
Assuming that the collected information is processed and analyzed for the likelihood and type of threat 
(discussed in the next section), a smart home will ideally take appropriate steps to act on the threat. 

Research and technology development in the area of smart homes has evolved to the point where 
homes can take autonomous actions in response to detected security or health risks (see Figure 2).  As 
described in Section 2, existing commercial systems automatically provide residents with real-time 
information when an alert is generated, including notifying them of visitors and providing streaming 
video identification. 

The variety of steps that a smart home can and should take is not limited to alerting and informing the 
resident, however. In their work, Chitnis et al. [78] surveyed urban, suburban, and rural dwellers from a 
diversity of backgrounds including homeowners with children who are left unsupervised and individuals 
with traditional lock-and-key systems. As a result of the survey they proposed an infrastructure that 



 

granted different types of home access based on biometric matches. As described in Scenario 1 of Section 
1, some individuals may only have access to the garage or front porch while repair technicians would also 
be granted access to areas of the house that need their attention. If an individual manages to enter 
unauthorized areas of the house, the homeowner is notified. 

Homeowners may choose to let ambient sensors run continuously and use the more intensive data-
gathering devices such as cameras only when they are out of the home. In such cases, Petersen et al. [79] 
propose a method to automatically detect these situations and turn on video cameras. In this work, motion 
and door sensors continuously collect data and a machine learning system is trained to map these sensor 
readings onto a label indicating whether the residents are at home or away from the home. This approach 
extracts features including the number of sensor firings during each five-minute interval, an indicator of 
whether or not the resident is in bed, whether the door sensor was the last reading in the interval, whether 
the door sensor was the first firing in the interval, and whether the last sensor in the interval emanated 
from a room connected to an external door. A logistic regressor yielded a sensitivity of 0.939 and a 
specificity of 0.975 on sample data collected from actual smart homes, which are strong preliminary 
results supporting this approach. 

While intrusion detection is a common application for security systems, much of the technology can 
also be applied to health monitoring and assistance as well. In the case of work by Dodge et al. [80], by 
Hodges et al. [81], by Dawadi et al. [82] , and by Lotfi et al. [83], unexpected behavioral patterns are 
viewed as a health risk for individuals who are at risk of cognitive decline. These researchers have found 
that an increase in the number of activity anomalies and variation in behavior patterns such as activity 
times and walking speed are correlated with changes in cognitive health. As in the case with the intrusion 
detection research, these findings provide insights that can be used by smart homes in order to keep 
residents safe. For example, residents and their caregivers can use this information to change the level of 
care that the individual needs. 

In research by Ali et al. [84] and of Das et al. [85], threats are detected in the form of abnormalities in 
how residents perform their daily activities. For many individuals, these variations would not be 
considered a risk. However, for individuals with memory limitations, performing daily activities 
independently is critical. Functional impairment has been associated with increased health care use and 

Figure 2. Technologies found in a secure smart home. 



 

placement in long-term care facilities [86], [87], days in the hospital [88], falls [89], conversion to 
dementia [90], [91], and morbidity and mortality [92]. When an abnormality is detected, the individual 
can be prompted for the next activity step to help them keep on track and successfully complete the 
activity without caregiver intervention. This in turn increases functional independence and reduces the 
burden for caregivers. 

 
4. Detecting and Assessing Threats 

In this section, we close the loop shown in Figure 1. Both research and commercial efforts have made 
contributions in the areas of developing sensors for secure homes and acting autonomously or in 
partnership with residents to response to threats. The largest body of research, however, has focused on 
the middle step, analyzing collected sensor data to detect and assess potential security threats. We 
organize our discussion of threat assessment in order of scale. We start with describing approaches to 
detect specific security-related situations, move toward summarizing approaches that perform general 
detection of threat-based anomalies, and finish with a discussion of security-based research in other fields 
that can impact future work on secure smart homes. 

4.1. Detecting resident-based target states 

As demonstrated by the scenarios at the beginning of this paper, security is a broad term that encompasses 
many aspects of health and safety. Instead of trying to tackle the problem of home-based security as a 
whole, some researchers focus on one piece of the problem. One targeted situation is one in which the 
home resident is inactive for an unusually long period of time. Cuddihy et al. [93] focus on detecting 
times with unusual bouts of inactivity, which can occur when a resident falls or has other health issues 
that may require intervention. This is a situation that is of particular interest for smart home developers 
but is difficult to address without special-purpose hardware. In this approach, Cuddihy employs motion 
and door sensors in smart homes that are trained based on 10 days of data to learn normal ranges of 
activity / inactivity for each 30-minute interval throughout the day. The main challenge with software-
based approaches to detecting inactivity is a high rate of false positives. As a result, their evaluation on 
smart home data focused on reducing the number of alerts to a goal of at most one per month (indicative 
of an acceptable number of false positives), which they satisfied for 91% of the collected data. 

Another situation that has received a great deal of attention is detecting when an individual falls in 
their home [51], [52], [94]. Approximately one in every three older adults experiences a fall [95]. Because 
the global population is aging and individuals want to stay in their own homes, detecting such falls is a 
concern not only for older adults and their caregivers but also for society as a whole. While research on 
using wearable sensors to detect falls based on accelerometer and gyroscope readings abounds [51], [96], 
detecting falls with home-based ambient sensors can be more difficult. Some smart home-based research 
has been pursued, however. These methods typically use microphones [97] or video data [98] to 
determine when a fall has occurred.  

Of these approaches, video methods have been shown to be the most able to discern falls because of 
the fine-grained information that is available. However, video approaches also raise concerns for 
maintaining resident privacy. This concern can be addressed in part by using depth cameras to capture 
only figure silhouettes rather than detailed images. Stone and Skubic [94] introduce such a method using 
the Microsoft Kinect. Theirs is a two-stage method that first extracts the foreground information and 
second generates a confidence that a fall has occurred. This method is trained and tested on 3,339 days of 
continuous data for 16 residents in independent apartments containing 454 falls (9 of which naturally 
occurred during the data collection). To highlight the foreground information, the background is 
subtracted from the Kinect data by maintaining a distribution of pixel values as shown in Figure 3. 
Assuming that background information is less dynamic, depth camera data is subtracted if it matches the 
earlier distributions, indicating that it represents “inactive” information. The resulting extracted 
information is the dynamic foreground information.  Once features are extracted from the foreground 



 

depth information, an 
ensemble of decision 
stumps (single-feature 
decision trees) is used to 
generate a confidence that 
a fall has occurred. 

Another approach that 
does not rely on video 
data is to use vibration 
sensors in the floor to 
detect falls. As an 
example, Alwan et al. 
[99] embed a piezoelectric 
sensor in the floor. 
Vibration patterns are 
learned for typical 

movements such as walking and used to distinguish typical movements from possible falls. The challenge 
for all of these systems is obtaining enough training data to detect and recognize the many types of falls 
that can occur such as slips, trips, stumbles, and slumps. 

Audio sensors face similar benefits and concerns. Microphone arrays can provide fine-grained 
information to sense the state of the home. With the increasing popularity of voice-interactive products 
such Amazon Echo or Google Home, they will be easy to integrate into lifestyles and serve multiple 
purposes. As with other sources of rich information, however, they do provide a privacy challenge that 
will need to be addressed in ongoing research. 

 
4.2. Detecting home-based target states 

In this previous section, we described methods that detect target states for a smart home resident that can 
represent health or security risks. In contrast, here we examine approaches to detecting specific home 
states that highlight security needs. These approaches target recognizing whether individuals are in the 
home and whether the individuals that are present are residents, visitors, or intruders. The first method we 
include is a machine learning method that Teoh and Tan [76] designed specifically to recognize intruders. 
The authors intend homeowners to use this method as a precaution to maintain security when they are out 
of the home. A neural network is trained based on input from motion sensors, closed-circuit televisions, 
RFID tags, magnetic contact switches, and glass breakage sensors. The neural network maps extracted 
features from these sensors onto a binary output indicating whether the current scenario is an intrusion or 
not. As can be imagined, the most difficult challenges with this approach are obtaining realistic training 
data (without inviting criminals to break into test homes!) and dealing with the severe class imbalance 
that will result. 

The next step in recognizing anomalous home behavior is to model movement patterns through the 
home with the purpose of determining whether or not visitors are present. This goal is complementary to 
the work of Teoh and Tan because it operates effectively when the resident is at home. In this case, the 
algorithm can be used to inform the resident that others are in the home. If the visitors are unexpected 
then this can represent a risk not only to the home and belongings but to the resident as well. In this work, 
Aicha et al. [100] model transitions between sensors that are typical when the resident is alone and when 
visitors are present. For a particular time slice t, NM(t) represents the number of transitions between 
motion sensors that are not near either other in the smart home and ND(t) represents transitions that 
include the front door sensor. The approach employs a Markov Modulated Poisson Process, or MMPP. 
Because the MMPP is built on a Markov chain it follows expected sequences between resident alone 
time, visitor time, and unusual absence of visitors, as shown in Figure 4. In addition, the MMPP utilizes a 
Poisson process that can model periodic influences such as daily visits from a caregiver, weekly visits 

Figure 3. Original images and extracted foregrounds. 



 

from a maid service, and monthly visits from children. The model outputs a value, z(t), that indicates 
whether the current activity in the home is normal, if there is an unusual visit, or if there is an unusual 
lack of visits. An appealing feature of this approach is that it can scale to larger numbers of residents and 
visitors. In contrast to work by Petersen et al. that also detect whether visitors are in the home [101], the 
approach described by Aicha is unsupervised. As a result, it does not require that large amounts of labeled 
training data are available. The approach was tested on continuous data collected in actual smart homes 
for 16 residents. The data was based on documented visits from cleaners, care providers, and family 
members. 

The final work we include in this section considers the final piece of the home state puzzle, namely 
whether the resident is at home. Petersen et al. [79] seek to determine whether the resident is in or out of 
the home in order to assess loneliness and well-being of older adults. However, this is valuable for 
security purposes because times when the resident is out of the home are particularly at risk for intruders 
or for dangerous changes in the environment (e.g., gas leaks, water leaks) that may need to receive a 
timely intervention. These researchers collected data from smart home sensors and extracted relevant 
features for each five-minute time window including number of sensor firings, presence in bed, and front 
door usage. The smart homes included a video camera that was used for ground truth labels. Instead of 
collecting continuous video data, video was only recorded for 5 seconds each time motion was detected. 
A logistic regressor yielded a sensitivity of 0.393 and specificity of 0.975 for data collected from 150 
older adults for 30 days each.  
 
4.3. Detecting home-based anomalies 

Targeting specific resident states or house states is valuable for home-based security because the targeted 
states are known to be security risks. While recognizing these states is challenging, they are simpler than 
the task of finding a more varied class of security threats using a single technique. To find a larger 
collection of possible threats, researchers often turn to anomaly detection. As Chandola states, anomaly 
detection is “the problem of finding patterns in data that do not conform to expected behavior” [102]. We 
first focus on specific classes of anomalies that can be detected directly with smart home sensors then 
transition in the next section to finding anomalies based on activities that a resident performs in the home. 
There are several standard techniques for finding anomalies or outliers that are commonly employed. One 
such technique is to cluster, or group, data points into clusters based on their distance to the cluster center. 
Once the data is clustered, points that are far from all of the cluster centers can be labeled as outliers and 
can be considered as anomalies. In cases where the data is normally distributed, z scores can also be 
computed. The z score for any data point is its distance from the sample mean, divided by the sample 
standard deviation. Z scores greater than 3.5 are typically considered to be outliers. Although the methods 
in this section do not rely on activity recognition, they are still more complex than is found with many 
anomaly and outlier detection methods. This is because such methods are typically univariate and thus 
cannot handle the multi-variable, complex data collected by smart home sensors. 

In our treatment of home-based anomalies, we start at the lowest information level and work our way 
up to more abstract information. As described by Youngblood and Cook [103], the lowest level of a smart 
home infrastructure is the physical sensors. Correspondingly, there are research groups who identify 
anomalies based on unusual sensor readings and unusual sequences of sensor firings. As an example, 
Ordonez et al. [104] use low-level sensor data to identify outliers indicative of behavioral anomalies. This 
group collects data of typical sensor timings for motion, pressure mat, and door switch sensors. From this 
data, Bayesian statistics are used to capture the typical sensor firing time, the sensor firing sequence, and 
the duration of each sensor state. Outliers can be detected based on a Bayesian model and used to indicate 
anomalies.  



 

Haque et al. [105] recognize the fact that some sensor-
based outliers may be due to sensor faults rather than 
changes in the system being monitored. To mitigate the false 
alarms that can be generated due to sensor failures, they 
dynamically adjust decision thresholds. Traditional SMO-
based regression is used to generate a predicted sensor 
reading. If the difference between predicted and actual 
values is greater than a threshold than an anomaly is 
reported, and the threshold is adjusted incrementally to 
reflect the actual amount of error that is normal for a given 
individual. Majority voting is then used to combine anomaly 
scores for all of the sen sors and an anomaly is reported only 
if the majority votes for this label. The combination of 
threshold adjusting and majority voting reduces the 
occurrence of false alarms that can happen due to issues 
such as failure of individual sensors. 

In a smart home, the location of residents within a home 
can be fairly easily to triangulate using infrared motion sensors that fire whenever a heat mass the size of 
a small child or larger moves in its field of regard. Door sensors, window sensors, and object sensors also 
help to identify where people are located inside the home. There is thus a natural progression toward 
monitoring time spent in locations throughout the home in order to determine anomalies.  Lotfi et al. [83] 
take this approach to analyzing smart home data collected in the homes of older adults. Each firing of a 
motion or door sensor is represented as a tuple consisting of the sensor location, the sensor firing time, 
and amount of time the sensor remains in the “ON” or “OPEN” state, indicating that the resident is 
staying in one location. They cluster all of the data points and use the techniques described earlier such as 
distance from cluster centers to identify points that are potential anomalies in terms of a resident’s 
location. These points can be used to inform a care provider to check on the health of the resident. 

Aran et al. [106] take a similar approach to the one proposed by Lotfi et al. Like Lotfi’s work, Aran 
infers the current location of a smart home resident and uses k means clustering to group similar data 
points based on time of day, location, and time spent in the location. The clustering algorithm provides a 
convenient basis for determining outliers as data points that do not fit well in any of the existing clusters. 
Unlike the Lotfi study, Aran includes not only locations in the home but also time spent out of the home. 
Anywhere outside the sensed home is treated as yet another location and can be monitored for unusual 
times the resident is out of the home, unusual-length stays in the home without going out, and unusually 
long or short outings. 

Novák et al. [107] also represent data points as a combination of sensor location, time, and duration in 
a particular state. Like Lotfi, the goal of this group is to provide early alerts for anomalous behavior based 
on unusual location-based activity in terms of being in an unusual place at an unusual time, staying in the 
location an unusually long period of time, or staying in the location an unusually short period of time. 
Instead of applying a k means clustering algorithm, Novák uses the collected data to learn a Self 
Organization Map (SOM), which is a type of self-structuring neural network. The SOM itself visualizes 
points that are far from its neighbors and can therefore be further analyzed as potential anomalies. 

Virone et al. [108] integrate their anomaly detection algorithm into a complete graphical alert system 
for residents and caregivers that provides a visual indication of behavioral outliers at different time scales. 
This group observes the amount of time that is spent in a room of the house on each occasion as a 
separate data point. Data is broken into single-hour time windows and these points produce circadian 
rhythms over a twenty four-hour period that can be analyzed for normalcy and anomalies. As with the 
other projects, this group detects unusually long or short durations spent in a room and also detects 
unusually high or low levels of activity within the room at a given time. Figure 5 shows the interface 
displaying various alarms, where each activity is associated with a particular location in the house. 

Figure 4. MMPP to detect visitors. 
Here z(t) = -1 if there is an unusual 
lack of visitors, 0 if activity is normal, 
and 1 if there is an unusual visit. 



 

The papers summarized in this section focus on locations where a smart home resident spends time. 
This focus simplifies the data analysis to an extent because the current activity does not need to be 
inferred. Some of the papers categorized as location-based anomaly detection do refer to monitoring 
activities but they equate activity with a distinct region of the home (or outside the home). For some 
activities this approach will work, but in other cases a single room may be used for multiple activity 
functions (e.g., the bedroom may be used for reading, working, and watching TV in addition to sleeping). 
In the next section, we consider approaches that look for anomalies at the level of individual activities. 

 
4.4. Detecting activity anomalies 

We now look at detection of anomalies at a deeper level of detail, namely within and among activities 
that are tracked in a smart home. Learning and understanding observed activities is at the center of many 
fields of study. The challenge of activity recognition is to automate activity learning by mapping smart 
home sensor data to a label that indicates the corresponding activity that an individual is performing. 
Activity recognition data consists of sensor firings with the corresponding sensor identifier and time. 
Features are extracted from sensor data at a particular time and a supervised learning algorithm maps the 
features onto a value from a list of possible activities (e.g., sleep, eat, cook, take medicine, exercise, work, 
read) which indicates the activity that is currently being performed. Because of the insight that automated 
activity recognition sheds on human behavior and the valuable context activity labels bring to smart 
homes, activity recognition is a highly-investigated area of research [27], [29], [30], [109], [110]. Activity 
models are created from a variety of methods including support vector machines, Gaussian mixture 
models, decision trees, and probabilistic graphs. 

As in earlier sections, we first examine approaches that investigate specific constrained situations then 
transition to consider more general approaches.  An example that falls into the first category is work by 
Han et al. [111]. This approach assumes that an activity recognizer is available that labels sensor data 
with activity labels for eating, toileting, and sleeping. They also monitor overall movement in the home 
and participant weight. Han uses recognized activities to identify specific changes in behavior. If the 
participant is diagnosed as depressed they look for changes of concern that include less movement around 
the house, decrease in hygiene and eating, and more severe sleep disturbances. If the participant is 

Figure 5. The 
graphical user 
interface by 
Virone et al. [108] 
shows anomalies 
for each activity 
(room) by hour 
and by day. The 
plots at the bottom 
of the screen 
provide a view of 
the typical 
location-based 
circadian activity 
rhythm and 
deviations from 
normal rhythms. 



 

diagnosed as diabetic they look for more frequent eating, drinking, sleeping, and toileting. These specific 
changes are known to be problematic for the target populations and represent a health risk when they are 
recognized by a smart home. 

Williams and Cook [112] also use activity recognition to look for specific classes of changes. They are 
particularly interested in using smart homes to perform health monitoring for individuals who may be 
experiencing sleep disturbances due to PTSD or decline in cognitive health. After labeling sensor data 
with forty possible activity labels, they segment the data into waketime behavior and sleeptime behavior, 
then collapse all of the activity-based behavior parameters into two scores, one for wake and one for 
sleep. They then use past and current wake scores to forecast the upcoming sleep value and use past and 
current sleep scores to forecast the next day’s wake value. Their motivation is to predict and detect sleep 
disturbances in order to circumvent them by suggesting changes in wake behavior that may prevent the 
predicted sleep problems. 

Analysis of the literature reveals a number of approaches that apply activity recognition to label sensor 
data, then look for anomalies in the sequences of activities that are observed. These methods are very 
similar to those of the location-based anomaly detection approaches described earlier in this section, 
although they are applied to activity sequences rather than location sequences. Work by Mocanu and 
Florea [113], Cardinaux et al. [114], Elbert et al. [115], and Mori et al. [116] all develop automated 
approaches to detecting deviations in daily activity patterns. These include activity start times, activity 
durations, activity locations, and activity orders. These methods employ different models of activities but 
all share a motivation of finding changes in activity routines that indicate a health or security risk. In all 
cases the method is tested on a very small set of constrained activities but have the potential to be scaled 
to a richer set of activity details. 

All anomaly detection algorithms suffer from a common problem: detecting too many false positive 
anomalies. Without constraining the type of anomalies that are of interest, most methods find excessive 
numbers of outliers. Many of these can be due to harmless situations such as visitors, trips away from 
home, and changes in smart home hardware. Hoque et al. [117], [118] address this challenge by 
integrating expert-provided explanations for known situations that may appear anomalous. In their 
approach, this group uses hierarchical clustering to group activity data points. Expert-provided rules are 
integrated for known events that may look like anomalies to an automated system. This approach could be 
further extended to continually obtain expert feedback that explains detected anomalies so that the 
number of false positives decreases and the number of true positives increases over time, not just for the 
detected anomalous situations but for others that are similar. 

The activity-based anomaly methods that have been described up to this point model anywhere from 3 
to 40 activities. In everyday behavior, though, these predefined activities only comprise at most 50% of 
an individual’s daily routine [29]. In order to be thorough, smart home security systems need to model all 
aspects of a normal routine in order to catch every possible anomaly and important behavior change. 
Wang et al. [119] partially address this situation by discovering frequent sensor firing sequences that 
represent “activities”, then detecting anomalies among occurrences of these sequences. This is a 
promising direction for research but is extremely dependent upon the discovery method. This particular 
approach focuses purely on sensor state duration and resident trajectory, which may be insufficient for 
representing and analyzing complex activities. 

Once activities are modeled and understood, anomalies can then be found within each activity. These 
anomalies may indicate that an intruder is attempting to emulate a known activity (and is making some 
mistakes) or that the resident is experiencing difficult in remembering how to successfully complete an 
activity. A secure smart home can detect such a situation and alert the resident in order to ensure that the 
home is safe and to assist the resident if needed in completing a task.  Tong et al. [120] tackle this 
problem using hidden state conditional random fields (HCRF). A HCRF can be used to compare an 
observed activity with a database of activities performed normally. The most similar activity from the 
database provides a basis of comparison and the degree of dissimilarity between the observed activity and 
its closest match indicates the “abnormality” of the observe behavior. 



 

Das et al. [85] take this a step further by 
decomposing each modeled activity into 
individual steps. A one-class classifier is used to 
determine whether an activity occurrence is 
“normal”. If it is not, the type of error can be 
identified as an error of omission (a step is 
missing), substitution (an incorrect tool is used), 
irrelevant action (unnecessary steps are 
included), or inefficient action (a step is included 
that slows down or compromises the efficiency 
of action completion). This method can be used 
to not only determine if activity steps are 
unusual and therefore suspect, but also the type 
of error that was committed in order to identify a 
security risk or to correct the incomplete activity. 

The paper that we have discussed come 
directly from the literature on behavior-based 
anomaly detection. However, techniques have 
been introduced in related fields that can be 
employed for activity-based anomaly detection 

and maintaining secure smart homes. As an example, the field of active learning for activity modeling is 
focused on detecting unusual activity-based data points. In this case, however, the reason for detecting 
these points is to determine the data points that will most greatly benefit from expert guidance in terms of 
providing an explanation and label for the data point. Active learning employs a machine learning 
algorithm to interactively query an expert (for example, a human annotator) to obtain a label for a sensor 
data point pulled from a pool of unlabeled data, U. Once the label is provided the data point is added to 
the labeled training set, L, and used to update the activity models for improved recognition performance, 
as shown in Figure 6. Active learning techniques often select data points that exhibit properties such as 
the most labeling uncertainty [121], [122] or the least consensus among a committee of classifiers [123]. 
As an example, the Optimized Probabilistic Active Learning (OPAL) [124] algorithm picks data points 
for labels that are not well understood by the current activity models and which are outliers with respect 
to the entire set of data points. These methods work closely with existing anomaly detection algorithms 
and activity classifiers and therefore can be useful as a component of behavior-based anomaly detection. 

The last topic we consider in this section is rare event detection [125]–[128]. Rare events are events 
that occur very infrequently. While they may not be considered as anomalies by methods described in this 
section, they are found in less than 10% of the data and when they do occur the consequences are often 
negative and can be dramatic. This is a topic that is often investigated in areas such as insurance risk 
modeling, web modeling, and hardware fault detection. In many cases, researchers have found that 
normal events are similar to each other and rare events are quite different not only from normal events but 
from each other. For example, in the arena of credit card transactions normal transactions are very 
standard but fraudulent use varies in many ways. Anomaly detection can be used in some cases for rare 
event detection. However, the nature of rare events may be better understood than the general class of 
anomalies. For example, intrusion into a home is rare and negative but is understood. Similarly, a fall in 
the home is understood and while it may therefore not be considered an anomaly, it is important to detect. 
For this reason, supervised machine learning techniques can be used but researchers must design 
specialized methods to deal with the extreme class imbalance that occurs in these cases. 

As we conclude the discussion of threat detection, we point out that much of the existing research in 
the field has focused on detecting behavior-based anomalies for health applications (such as the one 
described in Scenario 2 at the beginning of the paper) rather than for home security. Monitoring the health 
of a smart home resident is indeed a critical part of ensuring that the resident is safe and secure in his or 
her own home. However, these techniques can be easily adapted to for intrusion detection and building-
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Figure 6. The active learning cycle. 



 

based anomalies, as well. Changes in a well-established routine may indicate that the person in the home 
is not the resident or that the building is not operating as normal. In any of these situations, steps should 
be taken by the home and/or the resident to make sure they are protected. 

 
4.5. Security research in related areas 

Much of the discussion in this paper has encompassed papers published on the topic of smart homes, 
behavior analysis, and building automation. To be thorough, we also need to highlight work in related 
areas that can be valuable when creating smart secure homes. Sensor data collected in smart homes is 
temporal by nature and anomaly detection techniques for time series data are abundant. These techniques 
often employ statistical methods like a moving average, an autoregressive moving average (ARMA), or 
an autoregressive integrated moving average (ARIMA) to predict a future value of a variable given past 
values. If the observed value is unexpected given the mean and variance of the prediction then an 
anomaly is detected. Kalman filters can extend these basic ideas to combine multiple sources of 
information when the information is possibly noisy. Change point detection methods [129] can also be 
applied to time series data such as smart home sensor firings. In this case, data from two consecutive time 
periods are examined to determine if they come from the same probability distribution. If the data are 
sufficiently different then a change has occurred, possibly due to a transition to a new activity or due to an 
anomaly. 

There are also a number of approaches to anomaly detection in graph-based data [130]–[133]. Graphs 
provide a natural representation for data that is rich in structure because independence is not assumed 
between individual data points. Instead, the nodes of a graph can represent the individual data points, or 
features, and nodes are connected by labeled or unlabeled edges when a relationship is exhibited between 
the points. While these methods employ some of the same basic ideas for anomaly detection as we have 
described for activity analysis and time series analysis, additional features can be extracted and integrated 
into the analysis which have been shown to be particularly valuable for security applications [134]–[136]. 

Many of the time series-based anomaly detection methods quantify the degree of surprise that a data 
point exhibits and if the value is greater than a threshold, an anomaly is reported. As we have discussed 
throughout this paper, though, the methods frequently generate a large number of false positive 
anomalies. In the time series literature, randomization tests [137] are employed to reduce the number of 
false positives and this technique may be valuable for smart home applications as well. In this method, a 
generative model such as a hidden Markov model is learned from actual data and used to create synthetic 
data that is similar to the real data. A large number (e.g., n=1000) of anomaly detection runs can be 
performed on the simulated data. The fraction of runs in which the surprise value of the data exceeded the 
real data surprise value can then be used as a p-value for the real anomaly and provides a method of 
quantifying confidence in the detected anomaly. 

We have focused up to this point on services that a smart home can provide in terms of preventing, 
detecting, and responding to security threats. A natural issue arises when the smart home capabilities 
themselves are compromised. In such a case, the smart home can become a liability for a resident rather 
than an asset. Cases in which smart homes and smart home components are hacked are becoming well 
documented. Some investigators such as Hill [60] and Fernandes et al. [138] actually broke into and 
controlled other homes in order to assess the security of smart home infrastructures. Others have virtually 
entered private homes for nefarious reasons and have taken over the home’s web cameras or devices 
[139], [140]. Recent efforts [141] have demonstrated that smart lighting technologies are susceptible to 
infiltration and even smart door locks themselves are vulnerable to a whole new breed of burglar: the 
computer hacker [142]. 

Smart home hackers often enter the premises by gaining access to a network [143]. However, relying 
on stand-alone security technologies does not ensure that they cannot be broken. For example, spoofing 
techniques can be used to imitate (spoof) picture or video of a resident in order to fool a camera [144] and 
can be accomplished on portable devices for ease of use by intruders [145]. Research such as the work by 



 

Lai and Tai [146] on detecting biometric spoofing thus needs to regularly be pursued to detect and 
prevent such attempts. 

The ability to hack into connected systems is by no means a new issue that researchers face [58], 
[147]. Computer networks regularly face password attackers, sniffers that spy on network user traffic, IP 
spoofers, and man-in-the-middle attackers by individuals to intercept and alter communication between 
people or devices. Attackers may seek to steal information, gain access to devices, corrupt data, or 
introduce malicious data and programs. Because of the increasing maturity of smart homes, however, 
smart home researchers, designers, and residents now need to be aware of these issues. Just as we have 
demonstrated in this paper for smart home data, anomaly detection is a popular topic for network 
researchers as well [148] to detect and prevent these threats [143]. Smart homes offer unprecedented 
means to provide safety, security, comfort and productivity. Continued research is necessary to ensure 
that the security benefits from these homes outweigh the potential risks. 
 

 
5. Conclusions and Future Research Directions 

In this paper, we examined the potential and existing technologies that can transform any home into a 
smart secure home. As the summary in Figure 7 shows, a wide range of individual technology 
components have been developed to sense, detect, assess, and respond to a variety of secure threats in 
home settings. As our summary has made clear, there is also a tremendous need for ongoing research to 
improve these technologies and to prevent new security risks from arising as a result of transforming 
homes into smart homes. 

This look at existing work raises issues that can be addressed with new research efforts. Throughout 
the discussion we highlighted the fact that it is difficult to characterize what type of anomaly will be of 
interest for smart home residents. In fact, the distinguishing factor between data outliers, behavioral 

Figure 7. Existing smart secure home technologies. 



 

anomalies, and rare events of interest is the explanation for the event. Continued research can thus help to 
formalize the nature of behavioral anomalies that are particularly critical for security application. This 
step will allow data mining techniques to focus more effectively on detecting appropriate patterns in 
smart home data. 

Another direction for continued research is to automate the explanation of anomalous events. For 
example, Sprint et al. [54] employ a virtual classifier to distinguish normal from abnormal behavior in a 
way that generates rule-based explanations for the differences. This approach could be used to more 
quickly verify the accuracy and criticality of the detected anomaly. It would also be interesting to see if 
anomaly explanations can generalize to entire populations. For example, what may first seem like an 
anomaly may indeed be a fall that occurred in the home and is thus a rare event. This type of event can 
then be learned for all smart homes, lowering false positive rates for new smart homes and reducing the 
amount of efforts residents must expend in explaining the events and training the system. 

Yet another consideration for future research and development is sensor fusion. Instead of relying on a 
single activity-based anomaly detector or biometric device, information can be combined from multiple 
sources to increase confidence in the assessment of collected information. They can also complement 
each other’s strengths and weaknesses. For example, when behavior analysis detects a potential anomaly, 
other components such as a camera system can be initiated to confirm to deny that the situation is 
threatening. 

Finally, ongoing research must consider human factors when designing smart secure homes. Research 
would be valuable to consider how many false positives residents will tolerate as well as what type of 
system training they can provide. The actions that a home takes to ensure resident safety must be 
understandable and comfortable for residents or users will quickly remove all smart components from 
their home. Once the user understands the workings of the system and comes to know what to expect in 
its actions, he or she can trust that the home will truly act in a way to keep them secure and comfortable. 
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