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Abstract Wearable sensor-based devices are increasingly applied in free living and clinical settings to collect fine-grained, 
objective data about activity and sleep behavior. The manufacturers of these devices provide proprietary software that labels the 
sensor data at specified time intervals with activity and sleep information. If the device wearer is an unhealthy individual, such as 
a patient undergoing inpatient rehabilitation, these labels and their values can vary greatly from manufacturer to manufacturer. 
Consequently, generating outcome predictions based on data collected from patients attending inpatient rehabilitation wearing 
different wearable sensor devices can be challenging, which hampers usefulness of these data for patient care decisions. In this 
paper, we present a data-driven approach to combining datasets collected from different device manufacturers. With the ability to 
combine datasets, we merge data from three different device manufacturers to form a larger dataset of time series data collected 
from 44 patients receiving inpatient therapy services. In order to gain insights into the recovery process, we use this dataset to 
build models that predict a patient’s next day physical activity duration and next night sleep duration. Using our data-driven 
approach and the combined dataset, we obtained a normalized root mean square error prediction of 9.11% for daytime physical 
activity and 11.18% for nighttime sleep duration. Our sleep result is comparable to the accuracy we achieved using the 
manufacturer’s sleep labels (12.26%). Our device-independent predictions are suitable for both point-of-care and remote 
monitoring applications to provide information to clinicians for customizing therapy services and potentially decreasing recovery 
time. 
 
Index Terms—Actigraphy, activity and sleep prediction, inpatient rehabilitation, machine learning, wearable sensors 
 

I. INTRODUCTION 
HEN an individual experiences an injury or illness 
that requires inpatient rehabilitation, the individual’s 
physical activity and sleeping patterns are often 

affected. Common reasons for undergoing inpatient 
rehabilitation include recovering from a traumatic brain 
injury (TBI), a stroke, cardiac disorders, lower extremity 
fractures, and various orthopedic surgeries. Specifically for 
patients with TBI, research has found that more than 66% 
of patients experience sleep disorders [1], while that 
number is as high as 78% for individuals recovering from a 
stroke [2]. Individuals recovering from TBI or stroke are 
often admitted to an inpatient rehabilitation facility to 
receive therapy services. Unfortunately, prescribed therapy 
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may not be equally effective for each patient due to fatigue 
during the day and sleep disorders at night. Together, 
fatigue and sleep disorders can negatively impact the rest-
activity circadian rhythm cycle that may slow the recovery 
from an injury or illness, even affecting quality of life [3]. 
Therefore, in inpatient rehabilitation, objective physical 
activity and sleep data can offer insights for clinicians to 
help customize therapy sessions with the goal of shortening 
the recovery process.  

Objective data can be collected using wearable sensor-
based devices that collect fine-grained physical activity and 
sleep data. Sensor-based physical activity and sleep 
measurements offer several benefits over human 
observation by therapists and by the patients themselves. 
Data collected from sensors remove the inaccuracy that is 
common amongst measurements that are self-reported by 
patients. For both healthy and unhealthy individuals, it is 
difficult to objectively self-characterize activity and sleep. 
We often tend to either overestimate or underestimate our 
activity, with correlations to direct measurement varying 
from -0.71 to 0.96 [4]. Secondly, data collected from 
sensors is not subject to variability due to inter-rater 
reliability. Sensor-based devices continuously track 24-hour 
physical activity and sleep in the same format and under the 
same conditions, allowing consistent data collection. Also, 
the technology has advanced enough to require minimal 
effort on the part of the clinician. This is primarily due to 
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shorter device setup times and longer battery lives, 
permitting 24-hour recordings without the subjectivity that 
is frequently introduced by human observation. 

Despite these advantages of sensor-based devices, their 
efficacy, accuracy, and applicability in inpatient 
rehabilitation settings remain areas of significant research. 
The majority of studies have focused on evaluating sensor-
devices as well as their associated activity and sleep 
algorithms for healthy populations. It is difficult to 
generalize such results to unhealthy populations, such as 
those undergoing inpatient rehabilitation. Typically when 
these devices and their algorithms are applied to individuals 
with mobility impairments or sleep disorders, the results are 
highly variable [5] and can produce inexplicable results [6]. 
Additional challenges that arise from analyzing data 
collected from clinical settings include how to combine 
datasets from different sensor devices and how to use the 
combined data to help clinicians provide therapy services. 
There are several wearable sensor device manufacturers, 
and each one produces slightly different measurements of 
physical activity and sleep. While research has studied the 
validity of various manufacturers and their devices, the 
discrepancies across devices makes it difficult for sleep 
researchers and clinicians to combine datasets and interpret 
the results [7].  

To help alleviate this challenge and advance clinical 
activity and sleep research, we utilized research-grade 
Actigraph devices and consumer-grade pedometer devices 
in an inpatient rehabilitation facility to collect data from 
patients during their recovery process. Specifically, we 
utilized Ambulatory Monitoring Inc (AMI) MotionLogger 
devices, Philips Actiwatch Spectrum Plus devices, and 
Fitbit Charge devices with heart rate measurement 
capability. Using a data-driven approach, we combined data 
from these devices to implement a machine learning-based 
approach to measure and predict a patient’s future physical 
activity and sleep duration. Our results provide accurate 
predictions of activity levels for the forthcoming day and 
sleep duration for the forthcoming night. Our approach to 
manufacturer-independent physical activity and sleep 
prediction support point-of-care and remote patient 
monitoring that can help meet the needs of precision 
medicine by individualizing healthcare services [8]. 

II. RELATED WORK 
Wearable sensor-based devices, like Actigraphs and 

Fitbits, are wrist-worn devices that are less obtrusive and 
less expensive alternatives to gold-standard methods. For 
sleep analysis, the commonly-used gold-standard technique 
for wearable sensor evaluation is polysomnography [9]. For 
physical activity, the gold-standard techniques include 
direct observation and motion capture systems [10]. At a 
minimum, wrist-worn devices typically contain tri-axial 
accelerometers that measure the acceleration of the 
wearer’s wrist over the duration of a short time interval, 
such as a second. Manufacturers of these devices process 
the acceleration time series data to determine a more 

clinically-relevant measure of physical activity than the 
original raw acceleration values, namely activity counts in 
the case of Actigraphs and step counts in the case of 
pedometers. When raw acceleration signals are combined 
with other sensor signals, such as heart rate or ambient 
light, algorithms can accurately label time intervals as 
“sleep” or “wake.” These labels are used by researchers and 
clinicians to determine if the wearer is sleeping or awake.  

Manufacturers and researchers have investigated the error 
between gold-standard measurements and the output of 
manufacturer processing algorithms; however, this research 
has primarily used healthy subjects for evaluation [11]–
[14]. While these algorithms perform well on healthy 
populations, the algorithms can have higher error for 
unhealthy subjects, such as those recovering from an injury 
or illness like stroke or TBI, who exhibit highly irregular 
sleep and activity patterns [15]. To address this, recent 
research studying both healthy and unhealthy populations 
has focused on evaluating wearable sensor-based devices 
specifically for counting steps [10], detecting sleep periods 
[5], [16], and measuring sleep characteristics [17]–[20], 
such as total sleep time, sleep efficiency, number of 
awakenings, sleep onset latency, and wake after sleep onset. 

Since we deployed three devices from different 
manufacturers for continuous data collection, we will 
summarize the research investigating the accuracy of these 
specific devices for healthy and unhealthy populations. The 
three devices include MotionLogger, Actiwatch, and Fitbit. 
Beginning with physical activity measurements, for healthy 
adults in free-living conditions, a wrist-worn Fitbit has been 
shown to not differ significantly from a waist-worn 
ActiGraph GT3X for counting steps taken per minute over 
a 24-hour period [14]. For patients in a cardiac 
rehabilitation population, a wrist-worn Fitbit has been 
shown to correlate well with step count estimates from an 
Actigraph (r=0.95); however, the Fitbit tended to over-
count steps [21]. When compared to direct observation, a 
wrist-worn Fitbit was reported to underestimate step count 
by 16% during a self-paced walking test performed by older 
adults with impaired ambulation [22]. In another study of 
subjects with multiple sclerosis performing a 2-min walk 
test, the Fitbit step count correlation (r=0.69) was lower 
than the Actigraph correlation (r=0.76) [23]. For the 
MotionLogger device, no clear difference between the 
accelerometer counts measured by the device and indirect 
calorimetry were detected during level walking [24]. 

For sleep measurements, strong correlations have been 
reported in healthy adults between estimates of total sleep 
time between a Philips Actiwatch and polysomnography 
(r=0.94), as well from a wrist-worn Fitbit and 
polysomnography (r=0.97) [25]. In the same study, sleep 
efficiency measures from the Actiwatch and Fitbit did not 
differ from sleep efficiency measured by polysomnography. 
Therefore, total sleep time and sleep efficiency appear to be 
monitored by Actiwatch and Fitbit with reasonable 
accuracy. On the other hand, the MotionLogger device was 
found to underestimate total sleep time by almost 24 
minutes and overestimate wake time by 25 minutes in 
healthy children and adolescents [26]. The same study 
found that the Philips Actiwatch did not demonstrate 
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significant differences for total sleep time when controlling 
for age and sleep disordered breathing.  

These studies have found that though wearable devices 
do not demonstrate perfect measurements of activity and 
sleep for unhealthy populations, they do produce reasonable 
estimates. The next research step is to utilize these activity 
and sleep estimates to determine if they can help customize 
therapy for individual patients. One way to provide 
additional insights for customization is for an automated 
machine learning system to make predictions about an 
individual’s future physical activity and sleep performance. 
Machine learning models generally benefit from being 
trained with large datasets. To acquire as much data as 
possible for human activity learning, several studies have 
investigated device-orientation independent methods for 
data collection [27], [28], fusing data from multiple sensors 
[29], and transfer learning approaches [30], [31].  

Research using machine learning models for activity and 
sleep applications have primarily focused on classifying 
types of physical activity [32], [33] and various sleep 
characteristics for healthy populations [11], [34], [35]. The 
work that is most similar to this paper is that of 
Sathyanarayana and colleagues [11]. Sathyanarayana and 
colleagues collected Actigraph data from 92 healthy 
adolescents wearing ActiGraph GT3X+ devices for one 
week. Machine learning models trained with the collected 
daytime physical activity data were used to classify good 
and poor sleep efficiency with an area under the receiver 
operating curve of 0.9449. In our recent work, we expanded 
this research to investigate the applicability of sleep 
prediction for individuals with sleep disorders [36]. For this 
study, we deployed AMI MotionLogger devices in an 
inpatient rehabilitation setting. We continuously collected 
activity and sleep data from 17 subjects with identified 
sleep problems due to recovering from a stroke or TBI. 
Using this data, we constructed machine learning regression 
models to predict a patient’s future night sleep duration. 
Our regression approach achieved a 14.40% normalized 
root mean square error predicting next night sleep minutes.  

III. METHODS AND PROCEDURES 
In this paper, we validate our approaches to data fusion 

and activity/sleep prediction for a pool of 44 subjects. Data 
were collected from subjects receiving inpatient therapy 
services for a variety of ailments, including stroke, TBI, 
cardiac disorders, pulmonary disorders, and lower extremity 
fractures. These subjects wore one of three different 
wearable-sensor devices: a MotionLogger, an Actiwatch, or 
a Fitbit. Because of these different devices, we apply a data-
driven approach to support normalizing and combining the 
data from different manufacturers. We employ this 
combination of minute-by-minute activity and sleep data to 
make predictions about future nighttime sleep total inactive 
minutes (TIM) and total sleep time (TST) as measured by 
the device manufacturers. In addition to predicting a 
patient’s next night sleep duration, we also predict a 
patient’s next day total active minutes (TAM) to gain 
insight about daytime behavior. 

A. Data Collection 
For data collection and analysis purposes, we define a 24-

hour day as a period beginning at 06:00:00 and ending at 
05:59:00 the following calendar day. Using known 
controlled lighting times at the inpatient facility, we 
determined the daytime (DT) period to coincide with when 
the lights were typically on in patients’ rooms, which was 
from 06:00:00 to 20:59:00. The nighttime (NT) period 
corresponded to the time period when lights were off in 
patients’ rooms, which was from 21:00:00 to 05:59:00. For 
ease of explanation, we denote successive NT and DT 
periods using the >> symbol. For example, the notation NT 
>> DT >> NT describes a nighttime, then daytime, then the 
following nighttime sequence which represents 9 + 15 + 9 = 
33 continuous hours. We identify a period in a sequence of 
successive DT and NT periods using a subscript, such as 
DT1 >> NT1 >> DT2, where DT1 and NT1 are sampled from 
the same 24-hour period and DT2 is from the next period. 

We deployed and collected data from three different 
wearable sensor-based devices. These three devices 
represent three datasets we collectively analyze in this 
paper to evaluate our prediction approach. The three 
datasets and their devices, with sample sizes, are as follows: 

1. The “AMI” dataset: Ambulatory Monitoring Inc 
Basic MotionLogger Actigraph devices (N=17) 

2. The “Philips” dataset: Philips Actiwatch Spectrum 
Plus Actigraph devices (N=19) 

3. The “Fitbit” dataset: Fitbit Charge with Heart Rate 
pedometer devices (N=8) 

For reference, Figure 1 includes images of these devices. 
In total, we collected continuous data from 44 patients 
undergoing inpatient rehabilitation. Patients admitted to the 
hospital following an injury or illness, such as stroke or 
TBI, were recruited to participate in these studies if their 
therapist stated they were experiencing irregular sleeping 
patterns. The data collection protocols for all three datasets 
were approved by our local institutional review board and 
all patients provided written informed consent to 
participate. Each subject continuously wore one of these 
three devices during both the daytime and nighttime periods 
until they were discharged from the rehabilitation facility.  

For the AMI dataset, we analyzed data from 17 subjects 
(age 64.11 ± 17.05 years; 11 females and 6 males), for 
which the data collection periods ranged from 9 days to 30 
days [36]. For the Philips dataset, we analyzed data from 22 
subjects (age 63.96 ± 17.93 years; 5 females and 17 males), 

 
 

 
 

a) Ambulatory 
Monitoring Inc 
MotionLogger  
(AMI dataset) 
 

b) Philips Actiwatch 
Spectrum Plus  
(Philips dataset) 

c) Fitbit Charge with 
heart rate  
(Fitbit dataset) 

Fig 1. The three devices used for data collection. 
 



for which the data collection periods ranged from 4 days to 
30 days. For the AMI and Philips datasets, the device 
manufacturers provided Actigraph-style activity counts and 
binary “sleep” or “wake” labels for each minute of data 
collection. We used these activity counts to represent 
physical activity. 

For the Fitbit dataset, we originally collected data from 15 
subjects who participated in the study during the duration of 
their inpatient rehabilitation stay [6], [37]. For several of 
these 15 subjects, there were entire nights with missing 
sleep data, likely due to patients taking the device off 
and/or the Fitbit sleep algorithms not properly detecting the 
wearer’s abnormal sleeping patterns. Therefore, in this 
study we only used the data collected from eight 
participants for whom high-integrity sleep data were 
available every night of data collection (age 66.25 ± 12.89 
years; 6 females and 2 males), for which the data collection 
periods ranged from 5 days to 17 days. Instead of recording 
activity counts, Fitbit labels each minute with a number of 
“steps” taken. We used steps as a similar measure to the 
aforementioned activity counts to estimate a subject’s 
physical activity. For labeling sleep, Fitbit provides four 
levels of sleep: 0 (no sleep) or 1, 2, 3, (increasing levels of 
deeper sleep). To align this data with that of the AMI and 
Philips datasets, we reclassified these four sleep levels into 
binary sleep/wake labels where a value of 0 was re-labeled 
as “wake” and a value of 1, 2, or 3 was re-labeled as 
“sleep.”. In summary, across all three datasets there was a 
total of 596 days of data collected in this study. 

B. Data Preprocessing 
The three datasets consisted of minute-by-minute 

physical activity and sleep/wake time series data. We 
preprocessed these time series to prepare the data for 
consistent analyses across the different wearable device 
manufacturers. We framed each subject’s time series data to 
start on the first day with at least 400 consecutive minutes 
of recorded activity and to end on the day with at least 800 
consecutive minutes of no recorded activity. We then 
normalized each subject’s activity counts (AMI and Philips 
datasets) or steps (Fitbit dataset) to be between 0 and 1.  

Because the three datasets were each sampled from 
different devices, we computed our own normalized labels 
for each individual subject. For each subject, we provided 
an “active” or “inactive” label for each minute in the time 
series data. These labels represent platform-independent 
labels that offer an alternative to individual device 
manufacturer’s activity and sleep labels. To assign our 
individualized minute labels, we held out the first three 
days of data collection for each subject to serve as a 
baseline period. Using a subject’s own data as a multiple-
day baseline allowed us to account for extreme variability 

across subjects’ data. We divided the baseline data into DT 
and NT periods, for a total of three baseline DT periods and 
three baseline NT periods. Figure 2 provides an example of 
how the baseline period was extracted from an example 
subject with five days of data collection. From these 
baseline periods, we extracted baseline activity means 
(BAM), namely, the DT baseline activity mean DTBAM and 
the NT activity mean NTBAM. We decided to use the mean 
of baseline activity because it was highly correlated with 
manufacturer sleep and wake labels (see Section IV for 
results). Using the DTBAM for each subject, we labeled the 
remaining post-baseline DT minutes for the subject as 
active if its activity value was greater than DTBAM, or 
inactive if it was less or equal to DTBAM. We repeated this 
process for the NT periods, using NTBAM. Our BAM 
labeling algorithm provided subject-specific and device-
independent labels for daytime activity and nighttime 
activity. For nighttime activity, we hypothesized that the 
inactive labels were indicative of sleep and we evaluated 
this hypothesis by comparing the inactive labels to the 
manufacturer-provided sleep/wake labels. 

C. Feature Extraction 
From the time series data for each subject, we extracted 

relevant physical activity and sleep quality features from 
the DT and NT periods separately. To determine physical 
activity during DT periods, we used both the manufacturer 
activity counts and our aforementioned BAM labels. For 
each 24-hour day, we counted the number of BAM-labeled 
DT active minutes, as well as the number of transitions 
from active to inactive. We also computed a daytime 
activity ratio, which is the daytime sum of the 
manufacturer-measured activity divided by the 
corresponding 24-hour sum.  

We computed NT features using both the minute-by-
minute manufacturer’s sleep/wake time series and our 
BAM-labeled inactive minutes. We extracted nighttime 
TST, number of sleep transitions, sleep onset latency 
(number of minutes from the start of nighttime before 
sleep), longest sleep bout length, and wake after sleep onset 
[17]. In addition to daytime and nighttime features, we 
included the number of days since each subject’s injury or 
illness as a feature. To summarize, Table 1 lists the labels 
and features that were used for predicting DT TAM, NT 
TIM, and NT TST, respectively. 

We extracted the aforementioned features from a 
sequence of P number of DT and NT periods to predict 
TAM for the following DT period, TIM for the following 

 
Fig. 2. Example extracting daytime (DT) and nighttime (NT) periods into 
baseline and post-baseline for a subject with five 24-hour (24H) days of 
data. 
 

 
a) Periods used for DT ACTIVE minutes prediction with P=2. 
 

 
b) Periods used for NT sleep duration prediction with P=3. 
 
Fig. 3. Example of daytime (DT) and nighttime (NT) periods used for DT 
ACTIVE minutes prediction (a) and used for sleep duration prediction (b) 
with example P values. 
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NT period, or TST for the following NT period. For 
example, if P=1 and we are predicting TST, then we use the 
manufacturer’s sleep/wake features from P-sequence DT1 
to predict NT1, DT2 to predict NT2, and so forth. If P=3, 
then we use the P-sequence DT1 >> NT1 >> DT2 to predict 
NT2, DT2 >> NT2 >> DT3 to predict NT3, and so forth (see 
Figure 3 for a diagram showing both DT and NT 
predictions with different P values). Because we did not 
include the three-day baseline for prediction and there was 
a subject in the Fitbit dataset with only five days of data 
collection, the maximum P value was P=2 for DT TAM 
predictions and P=3 for NT TST predictions. Additionally, 
excluding the three-day baseline reduced the total combined 
dataset size to 464 days. 

D. Prediction Models 
To predict TAM, TIM, and TST based on the extracted 

features, we utilized a 100-tree random forest with bagging 
regression algorithm with leave-one-out-cross-validation. 
For leave-one-out-cross-validation, each of the participant 
periods was held out as a test sample while the remaining 
P-sequences were used for training. Our initial nighttime 
predictions started on the first night following the three-day 
baseline. We excluded P-sequences if they were futuristic 
data from the same participant as the test participant. For 
example, when P=1 there were 464 total NT periods, from 
which we held out one nighttime period, NTx for leave-one-
out-cross-validation. We then excluded all periods > x from 
training that were collected from the same participant as 
NTx. To improve our random forest prediction accuracy, we 
utilized a K-nearest neighbors (KNN) algorithm to select 
“similar” P-sequences from the training set to form a 
smaller, more specialized training set. Two P-sequences 
were considered similar if they were in the same subgroup 
and had a small Euclidean distance computed between their 
feature vectors. We investigated alternatives to comparing 
based on feature vectors, including using dynamic time 
warping to compare two P-sequences. Experiments 
revealed the best results were achievable using feature 

vectors. The subgroup parameter restricted which feature 
vectors were considered similar to the held-out feature 
vector. Subgroups we explored included dataset, gender, 
and no subgroupings (using all P-sequences). With the K 
parameter we aimed to train on a minimal set of P-
sequences that historically were similar to the current P-
sequence for which we were making a prediction. 

IV. RESULTS 
To evaluate our BAM data-driven approach to 

normalizing data collected from different devices, we 
correlated the original manufacturer-provided sleep/wake 
time series with our BAM-labeled time series. We 
experimented with various threshold values for determining 
active/inactive, including the baseline mean and percentiles 
in increments of ten. Table II shows the top three 
correlations for the AMI and Philips datasets. For the Fitbit 
dataset, the correlations for mean and all percentiles tested 
were the same, r=0.53. This is because Fitbit typically 
measures zero steps when the wearer is laying down and 
doesn’t exhibit wrist motion similar to an arm swing during 
a step. This means that during NT periods, there were 
almost exclusively zero values, causing any minute with 
more than zero steps to be labeled as active.  

To standardize features for input to machine learning 
models, we subtracted the mean and scaled to unit variance. 
Next, we trained and tested the prediction models using 
leave-one-out-cross-validation. We evaluated the random 

TABLE III 
BEST DAYTIME TOTAL ACTIVE MINUTES (TAM) PREDICTION RESULTS 

Subgroup P K MAE RMSE NRMSE r 
Gender 4 125 55.73 73.92 9.11% 0.89 

All 4 150 55.45 73.96 9.12% 0.89 
All 4 250 56.04 74.54 9.19% 0.88 

Gender 4 50 57.18 74.65 9.20% 0.88 
Gender 4 75 57.04 74.67 9.21% 0.88 

MAE=mean absolute error, RMSE=root mean squared error, 
NRMSE=normalized RMSE, and r=Pearson correlation coefficient. All 
correlation results were statistically significant at p<0.0001. 
 

TABLE IV 
BEST NIGHTTIME TOTAL INACTIVE MINUTES (TIM) PREDICTION 

RESULTS 
Subgroup P K MAE RMSE NRMSE r 
Dataset 4 20 43.61 60.37 11.18% 0.84 
Dataset 4 15 43.70 60.85 11.27% 0.83 
Dataset 4 10 43.22 61.37 11.37% 0.83 
Dataset 5 10 44.45 62.16 11.51% 0.83 

All 4 300 46.17 63.63 11.78% 0.82 
MAE=mean absolute error, RMSE=root mean squared error, 
NRMSE=normalized RMSE, and r=Pearson correlation coefficient. All 
correlation results were statistically significant at p<0.0001. 
 

TABLE V 
BEST NIGHTTIME TOTAL SLEEP TIME (TST) PREDICTION RESULTS 

Subgroup P K MAE RMSE NRMSE r 
All 5 200 50.56 66.07 12.26% 0.85 
All 4 200 50.37 66.22 12.29% 0.84 
All 5 150 50.52 66.41 12.32% 0.84 
All 4 150 51.12 66.53 12.34% 0.84 
All 4 300 51.06 66.86 12.40% 0.84 
MAE=mean absolute error, RMSE=root mean squared error, 
NRMSE=normalized RMSE, and r=Pearson correlation coefficient. All 
correlation results were statistically significant at p<0.0001. 

 

TABLE I 
PREDICTED VALUES AND THEIR LABELS USED FOR FEATURE 

EXTRACTION 
Predicted 

Value 
DT Feature Labels NT Feature Labels 

DT TAM BAM active mins BAM inactive mins 
NT TIM BAM active mins BAM inactive mins 
NT TST BAM active mins Manufacturer sleep/wake mins 

BAM=baseline activity means, TAM=total active minutes, TIM=total 
inactive minutes, TST=total sleep time labeled by the manufacturer. 

TABLE II 
CORRELATIONS BETWEEN NIGHTTIME MANUFACTURER SLEEP/WAKE 

VALUES AND BAM INACTIVE VALUES 
Dataset Activity Metric Threshold Correlation 

AMI 
Activity count Mean 0.78 
Activity count 70th 0.72 
Activity count 80th 0.68 

Philips 
Activity count Mean 0.59 
Activity count 70th 0.56 
Activity count 80th 0.55 

Fitbit Steps All 0.53 
All correlations were significant at p<0.01. Correlations for all Fitbit 
dataset thresholds tested were the same value. 
 



forest regression results using mean absolute error (MAE), 
root mean squared error (RMSE), normalized RMSE 
(NRMSE), and Pearson correlation coefficients (r). We 
computed NRMSE as RMSE divided by the difference 
between the maximum and minimum actual ground truth 
values: 

NRMSE =
!∑ "#$%&'()'*+',-().-/'0

1+
'23

+

"#$%"&4-5'"#$%"&4'+
          (1) 

 
Tables III-V show five random forest results and their 

parameter configurations, in ascending NRMSE order, for 
DT TAM, NT TIM, and NT TST, respectively. To provide 
context for interpreting the prediction results, DT TAM, 
demonstrated a mean and standard deviation of 431.20 ± 
162.45 minutes (coefficient of variation equal to 37.67%) 

across the participant group, while the NT TIM and TST 
had a mean and standard deviation of 414.22 ± 108.61 
minutes (coefficient of variation equal to 26.22%) and 
370.27 ± 124.20 minutes (coefficient of variation equal to 
33.54%), respectively. To more thoroughly investigate the 
prediction results, we provide scatter plots of predicted total 
minutes versus actual total minutes for the best TAM 
(Figure 4a), TIM (Figure 4b), and TST (Figure 4c) results 
from Tables III-V. For each of the figures, the correlation 
for the data is shown as an annotation in the bottom right 
corner of the plot. 

We ran several experiments to explore the effects of 
different value combinations of parameters, P (the number 
of periods preceding the NT period) and K (the number of 
similar P-sequences used by KNN to determine the training 
set). Figure 5 shows NRMSE values for alternative values 
of P as a function of alternative values of K. P=1 exhibited 

 
a) TAM NRMSE. 

 
b) TIM NRMSE. 

 
c) TST NRMSE. 
 
Fig. 5. Normalized root mean square error (NRMSE) as a function of K 
(number of similar P sequences used for training) for different values 
of P. Plots for total active minutes (TAM), total inactive minutes 
(TIM), and total sleep time (TST) are shown. 
 

 
a) TAM correlation plot. Subgroup=gender, P=4, K=125. 

 
b) TIM correlation plot. Subgroup=dataset, P=4, K=20. 

 
c) TST correlation plot. Subgroup=all, P=5, K=200. 
 
Fig. 4. Correlation plots showing top regression results for total active 
minutes (TAM), total inactive minutes (TIM), and total sleep time 
(TST) actual versus predicted values. 
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relatively large error compared to the other P values so we 
exclude it from the plots of Figure 5 to clearly illustrate the 
patterns of the lower P value NRMSE results. 

V. DISCUSSION 
In this paper, we propose the BAM data-driven approach 

for predicting daytime total active minutes and nighttime 
total inactive minutes for patients undergoing inpatient 
rehabilitation. Our approach allows data collected from 
different wearable device manufacturers to be combined, 
compared, and used for prediction. Of the different mean 
and percentiles from the three-day baseline period we 
explored as active minute thresholds, the baseline means 
exhibit the highest correlation to the manufacturer’s sleep 
and wake labels (see Table II; AMI dataset r=0.78; Philips 
dataset r=0.59). Since the correlations were < 1.0, we 
anticipated the TIM prediction results using the BAM labels 
would be less accurate than the TST prediction results that 
used the manufacturer’s sleep/wake labels. The random 
forest results indicate that the top TAM and TST results are 
comparable (see Tables IV and V; TIM NRMSE 11.18%; 
TAM NRMSE 12.26%). This suggests that our BAM 
approach could be used not only for prediction, but also for 
comparisons between subject’s data collected from different 
devices. When training the random forest regressors on 
each dataset individually, the results are not as strong as the 
combined dataset. For the AMI dataset, the best NRMSE 
result for TIM is 14.11% and for TST is 14.98%. For the 
Philips dataset, these numbers are 11.45% for TIM and 
13.12% for TST. For the Fitbit dataset, these numbers are 
18.05% for TIM and 21.23% for TST. A likely reason that 
the Fitbit-based prediction is weaker than the other datasets 
is the small sample size of the Fitbit dataset (N=8) and low 
detection of nighttime active minutes. This observation 
further supports the idea of pooling data together to form 
larger datasets, which would provide more similar P-
sequences detected with KNN and used for training. 

For the TAM results, there are no manufacturer “active” 
or “inactive” labels with which to compare our BAM 
approach; however, we do see lower prediction error for 
TAM (see Table III; 9.11% NRMSE and r=0.89). Breaking 
this result down by dataset reveals that, like the NT period 
predictions, the prediction results vary by device and are 
strongest when pooled together. The AMI dataset’s best 
TAM NRMSE is 13.96%, while that number is 10.48% for 
the Philips dataset, and 11.48% for the Fitbit dataset. These 
NT and DT prediction results further suggest the 
importance of combining datasets to increase training set 
size and consequently prediction accuracy. To deploy 
models to a clinical setting, we would want the lowest error 
possible. 

To more thoroughly explore the 9-12% error rates, we 
include correlation plots in Figure 4. The prediction results 
align with our intuition. The random forest regressors are 
more accurate when the actual minutes being predicted are 
closer to the mean, which is the case for the NT periods. In 
Figures 4b and 4c, there is a cluster of high actual total 
inactive minutes and sleep minutes. With a larger, more 
diverse dataset, we anticipate custom models could be built 

for the outlier subjects with lower active and inactive 
minutes to improve accuracy. 

Next we explore the effects of the P and K parameters on 
the TAM, TIM, and TST prediction accuracies. From 
investigating the plots in Figure 5, there are large 
incremental benefits to increasing P from 1 to 2, from 2 to 
3, and from 3 to 4. The NRMSE curves for P=4 and P=5 
are fairly similar, suggesting that accurate predictions can 
be made with as few as four post-baseline training periods. 
This constitutes a 48-hour period for a TAM prediction and 
a 63-hour period for a TIM prediction. We plan to 
investigate techniques to shorten this overall time from 
when a device is first worn by a patient to when an accurate 
next period prediction can be made. A few approaches 
include trimming periods from the baseline and 
constructing more individualized models for specific 
injuries or illnesses, such as stroke or TBI. The tradeoffs for 
the K parameter are not as clear as for the P parameter. K 
appears to be more sensitive to which value is being 
predicted. For TAM, K=150 seems to capture the majority 
of the prediction improvement. For TIM, K=50 and for 
TST, K=150 are reasonable minimum values for achieving 
accurate results. Since larger values of K do not greatly 
improve prediction accuracy, as datasets get larger, 
computational overhead from exploring optimal K values is 
not expected to increase. However, the search space for 
determining the K nearest neighbors will grow. 
Individualized models for different patient subgroups could 
also help limit the number of required KNN comparisons. 

VI. CONCLUSIONS 
We investigated applying device-independent physical 

activity and sleep labels determined from a baseline period 
to allow data collected from multiple wearable devices to 
be combined into larger datasets. Larger datasets can be 
used to train machine learning models to predict a patient’s 
next day physical activity and next night sleep duration 
with greater accuracy. We demonstrated such prediction 
models trained with data collected from 44 inpatient 
rehabilitation subjects can achieve NRMSE values near 9% 
for daytime physical activity prediction and near 11% for 
nighttime sleep duration prediction. These results were an 
expansion over own prior work with data from a single 
sensor device [36]. For future work, we plan to continue 
growing our sample size to provide additional historical 
data sequences for KNN to select from. We anticipate this 
will help prediction accuracy for outlier P-sequences 
sampled from subjects with highly irregular activity and 
sleep behavior. We also plan to apply deep learning models 
[11] in an effort to further reduce the nighttime prediction 
error. Our eventual goal is to deploy models that are 
accurate enough for clinicians to use to help customize 
individual patient therapy programs. If such a system can 
make accurate predictions in near real time, clinicians could 
use this additional information about a patient’s next day 
physical activity and next night sleep requirements to adapt 
forthcoming therapeutic activities and potentially shorten 
the recovery process. 
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