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ABSTRACT  
Anomaly detection is an area that has received much attention in 
recent years.  It has a wide variety of applications, including fraud 
detection and network intrusion detection.  A good deal of 
research has been performed in this area, often using strings or 
attribute-value data as the medium from which anomalies are to 
be extracted.  Little work, however, has focused on anomaly 
detection in graph-based data.  In this paper, we introduce two 
techniques for graph-based anomaly detection.  In addition, we 
introduce methods for calculating the regularity of a graph, with 
applications to anomaly detection.  We hypothesize that these 
methods will prove useful both for finding anomalies, and for 
determining the likelihood of successful anomaly detection within 
graph-based data.  We provide experimental results using both 
real-world network intrusion data and artificially-created data. 
 
1. INTRODUCTION 
In the field of data mining, there is a growing need for robust, 
reliable anomaly detection systems.  Although research has been 
done in this area, little of it has focused on graph-based data.  In 
this paper, we introduce two methods for graph-based anomaly 
detection that have been implemented using the Subdue system.  
The first, anomalous substructure detection, looks for specific, 
unusual substructures within a graph.  In the second method, 
anomalous subgraph detection, the graph is partitioned into 
distinct sets of vertices (subgraphs), each of which is tested 
against the others for unusual patterns.  In addition, we describe 
two measures of graph regularity, using concepts from 
information theory.  The first measure, substructure entropy, 
describes the number of bits needed to describe an arbitrary 
substructure of fixed size.  The second measure is conditional 
substructure entropy; for an arbitrary substructure of fixed size, it 
describes the number of bits needed to describe the substructure’s 
immediate surroundings.  We report experimental results obtained 
using the 1999 KDD Cup network intrusion dataset, as well as 
artificially-produced data. 
 
2. BACKGROUND ON SUBDUE 
Many types of data contain temporal or spatial relationships 

between elements that would best be represented in graphical 
form.  For example, using a graph representation of credit card 
transactions, we could create relationships (edges) between 
transactions occurring within a mile or within a second of each 
other.  These kinds of relationships could prove useful in certain 
applications, and would be difficult to represent without a graph-
based format.  For the purposes of this paper, a graph consists of 
a set of vertices and a set of edges, which may be directed or 
undirected.  Furthermore, each vertex and edge contains a label to 
identify its type, which need not be unique. 
 
The methods for graph-based anomaly detection presented in this 
paper are part of ongoing research involving the Subdue system 
[1].  This is a graph-based data mining project that has been 
developed at the University of Texas at Arlington.  At its core, 
Subdue is an algorithm for detecting repetitive patterns 
(substructures) within graphs.  A substructure is a connected 
subgraph of the overall graph.  Subdue keeps an ordered list of 
discovered substructures called the parent list; at the beginning, 
this list simply holds 1-vertex substructures for each unique 
vertex label.  Subdue repeatedly removes all the substructures 
from the parent list, generates and evaluates their extensions, and 
inserts the extensions onto the list.  An extension of a substructure 
is generated by adding either a new vertex (and its corresponding 
edge), or just a single edge within the substructure.  As new 
substructures are being generated, a second list is maintained 
holding the best substructures discovered so far. When this 
process is finished, the substructure with the top value is reported, 
and possibly used to compress the graph before the next iteration 
begins.  Compressing the graph refers to replacing each instance 
of the substructure with a new vertex representing that 
substructure.  Each substructure is evaluated using the Minimum 
Description Length heuristic [8].  The minimum description 
length (or simply “description length”) is the lowest number of 
bits needed to encode a piece of data; Subdue contains an 
algorithm that will approximate this value for any given graph.  
Using this heuristic, we consider the best substructure to be the 
one that minimizes the following value: 
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where G is the entire graph, S is the substructure, DL(G|S) is the 
description length of G after compressing it using S, and DL(S) is 
the description length of the substructure. 
 
Here is a simple example of how Subdue works.  Suppose that we 
begin with the graph shown in Figure 1. 
 

 



 

 
Figure 1. Example graph. 

 
Notice that the substructure 
 

 
 
appears twice.  Subdue will generate and evaluate all 
substructures, and this substructure will be ranked as the best.  If 
another iteration is going to be run, then Subdue will replace the 
instances of this substructure with a new vertex.  If we designate 
the new vertex with the label “S”, then the newly compressed 
graph will be as shown in Figure 2. 
 

 
Figure 2. Example graph after compression. 

 
Subdue can then go on to search for another substructure, 
although in this example, there are no multiple-vertex 
substructures remaining with more than one instance. 
 
As with many algorithms involving graphs, the time complexity 
of Subdue is exponential in the worst case.  There are a number of 
parameters that can be set, however, to reduce it to polynomial 
time.  These parameters include the beam width of the ordered 
list, a limit on the number of substructures expanded, an option to 
prune substructures with less value than their parent, and others.  
For details on these parameters, as well as a closer examination of 
the algorithm itself, see [1].  The basic algorithm has been 
extended for use in several different ways, including concept 
learning [3] and clustering [4]. 
 
3. TECHNIQUES FOR ANOMALY 
DETECTION 
Although a great deal of research has been done in the area of 
anomaly detection, it remains difficult to give a general, formal 
definition of what an anomaly is.  For the purposes of this paper, 
we will be using the intuitive notion of an anomaly as a 
surprising or unusual occurrence.  With this in mind, we 
introduce two techniques for graph-based anomaly detection 
using Subdue. 
 
3.1 Anomalous Substructure Detection 
This first approach is the simpler of the two, and it is also more 
general.  The objective of anomalous substructure detection is to 
examine an entire graph, and to report unusual substructures 
contained within it.  This sounds simple, but there are some 
subtleties involved.  For example, it is not enough to simply look 
for substructures occurring infrequently, since very large 

substructures are expected to occur infrequently.  (For example, if 
we consider the entire graph as a substructure, it cannot occur 
more than once.)  Below, we introduce a method that circumvents 
this and other problems, using a variant of the MDL principle. 
 
As discussed earlier, the Subdue system is essentially a 
mechanism for discovering patterns within graphs.  The 
"patterns" in this case are substructures that produce low values 
of the quantity F1(S, G).  The key to our approach is that an 
anomaly can be thought of as the "opposite" of a pattern -- just as 
patterns occur frequently in a graph, anomalies occur 
infrequently.  So one possible method for detecting anomalous 
substructures is to simply invert the measure, and flag 
substructures producing high values of the quantity F1(S, G).  
There are a couple of problems with this, however.  One problem 
is that if S = G (i.e., we are considering the entire graph as our 
substructure), then this quantity will be very high -- indeed, 
higher than the description length of the graph, since 
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This is a higher value than would be returned for almost any other 
substructure in the graph, so the substructure consisting of the 
entire graph would always be flagged as very anomalous.  This 
would, of course, be useless.  A similar problem occurs at the 
other end of the spectrum, for substructures consisting of a single 
vertex.  In this case, attempting to compress the graph using S 
would result in no compression at all.  DL(G|S) would then equal 
DL(G), and we would again have 
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Again, this is a very high value, so single vertices would always 
be flagged as anomalous, regardless of how many times they 
appeared in the graph. 
 
Clearly, using this method directly would be problematic.  The 
basic idea is sound, however, and it turns out that a heuristic can 
be used to remove the problems mentioned above.  We define this 
heuristic as follows: 
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where Size(S) is the number of vertices in S, and Instances(S, G) 
is the number of times that S appears in the graph G.  This 
function serves as an approximate inverse of F1; in other words, 
as F1(S, G) increases, F2(S, G) tends to decrease.  (We do not 
provide a formal justification of this heuristic, but it should 
appear reasonable. F1(S, G) essentially measures how well a 
substructure compresses a graph, and the amount of compression 
is closely tied to the substructure’s size and its number of 
instances.)  This means that we can use F2 instead of F1 for 
anomaly detection – we consider substructures to be anomalous if 
they produce low values of F2(S, G).  This removes the problems 
associated with very large and very small substructures.   Large 
substructures (e.g., the entire graph) will not be flagged as 
anomalous since Size(S) will be very high, and single-vertex 
substructures will only be considered anomalous if they do not 
appear very often. 
 
Suppose, as before, that we begin with the graph in Figure 1.  The 
most anomalous substructure in this graph is this: 



 

 
 
Its F2 value is Size(S) * Instances(S, G) = 1*1 = 1, which is the 
smallest possible.  Several 2-vertex substructures have an F2 
value of 2 (2 vertices * 1 instance); among them are: 
 

 
 
and 
 

 
 
The least anomalous substructure is the entire graph; it has 9 
vertices and 1 instance, so its F2 value is 9*1 = 9. 
 
It is important to realize that this measure is biased toward 
discovering very small substructures.  This is because larger 
substructures are expected to occur only a few times; the  
smaller the substructure, the less likely it is to be rare.   
 
3.2 Anomalous Subgraph Detection 
The first method is well-suited for detecting specific, unusual 
substructures anywhere within a graph.  In some situations, 
though, it could prove useful to partition the graph into distinct, 
separate structures (subgraphs), and determine how anomalous 
each subgraph is compared to the others. 
 
One immediate application of this method is the analysis of data 
represented using a collection of (attribute, value) pairs.  Suppose 
that we have a table of credit card transactions, and we wish to 
look for unusual or suspicious transactions.  In this example, our 
table contains 5 fields: 
 
amount – amount of the transaction 
num_trans – number of transactions on this account within the 
last 24 hours before the purchase 
trans_category – category of business at which the transaction 
was made (online, department store, etc.) 
credit_limit – credit limit on the card 
months_active – number of months the card has been active 
before the transaction 
 
We can represent each transaction record in graphical form using 
a star configuration, as shown in Figures 3 and 4. 
 

amount num_trans trans_category credit_limit months_active 
350.88 3 online 10,000 23 

Figure 3. Example database record. 

 
 
 

 
Figure 4. Graphical representation of record. 

 
Each record has a “hub” vertex, representing the record itself, 
along with a vertex for each attribute, each of which is connected 
to the hub.  (Note that both vertices and edges are labeled.)  We 
can then represent the entire table by combining all the records 
into a single graph.  To find anomalous database records, we 
would be interested in determining how unusual each of the 
separate star configurations was. 
 
Application of anomalous subgraph detection to attribute-value 
databases is straightforward, but many other classes of databases 
can benefit from this technique; it can be applied to any graph in 
which the vertices can be grouped in a meaningful way.  An 
example is web clickstream data.  This type of data has a natural 
graph-based representation: vertices correspond to web pages, 
and directed edges correspond to links selected by the user to 
navigate from page to page.  Furthermore, the vertices can be 
grouped into subgraphs in a meaningful way – organized by user.  
Subgraph A would contain all the clickstream data from user A, 
subgraph B would contain data from user B, and so forth.  By 
performing anomalous subgraph detection on the overall graph, 
we would then be testing each user for unusual web-navigation 
patterns. 
 
Next we describe a method for anomalous subgraph detection 
using Subdue.  First, some background is necessary.  Subdue can 
be set to run multiple iterations on a single graph.  After each 
iteration, the graph is compressed using the discovered 
substructure; in other words, every instance of the substructure is 
replaced by a single vertex.  The next iteration of Subdue will 
then operate on the newly compressed graph.  This multiple-
iteration capability is used in our approach.  It is important to 
realize that the “best” substructures will be discovered in the first 
several iterations, while later substructures will become less and 
less valuable (i.e., less common). 
 
For our purposes, we are assuming that Subdue halts once the 
graph contains no substructure with more than one instance. 
 
The rationale for our method lies in the idea that subgraphs 
containing many common substructures are generally less 
anomalous than subgraphs with few common substructures.  This 
is related to the underlying idea behind anomalous substructure 
detection – that common substructures are, in a loose sense, the 



“opposite” of anomalous substructures.  On each iteration, 
Subdue discovers the “best” substructure (in the MDL sense), and 
then compresses the graph with it.  It stands to reason, then, that 
anomalous subgraphs tend to experience less compression than 
other subgraphs, since they contain few common patterns. 
 
It is not sufficient, however, to simply wait until Subdue is 
finished, and then check how much each subgraph was 
compressed.  In the later iterations, Subdue will begin finding 
substructures that only occur a few times, since all the more 
common patterns have already been discovered.  The following 
example should show why this could cause problems.  Suppose 
that a graph contains two subgraphs that are completely identical, 
but are very unusual in the overall graph.  For most of the 
iterations, these subgraphs will remain uncompressed, since they 
do not contain any of the common patterns that Subdue is 
discovering.  Eventually, however, since there is nothing unique 
about either subgraph, they will both be compressed away 
completely.  Hence, neither subgraph will appear anomalous, 
even though they are both anomalous in the context of the entire 
graph.  From this example, we see that another factor is needed – 
how soon compression takes place in a subgraph.  For example, 
suppose that after all iterations have completed, subgraphs A and 
B have both been compressed to half of their original size. If A 
was compressed on the 1st iteration, and B was compressed on the 
50th, then B would be considered more anomalous than A. 
 
To put these concepts together, a measure is needed that 
considers both how much and how soon a subgraph is 
compressed.  We define this measure as follows.  To each 
subgraph, we assign a value A; the higher A is, the more 
anomalous the subgraph.  A is given by this formula: 
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where n is the number of iterations and ci is the percentage of the 
subgraph that is compressed away on the ith iteration.  ci is more 
rigorously defined as 
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where DLj(G) is the description length of the subgraph after j 
iterations. 
 
Some explanation of the above formula for A is in order.  The 
idea is that all subgraphs begin with an A-value of 1 (i.e., 
completely anomalous), and the values drop off as portions of the 
subgraphs are compressed away during the iterations.  The ci term 
will vary from 0 to 1; a value of 0 means that the subgraph was 
not changed on the ith iteration, while a value of 1 means that the 
entire subgraph was compressed away.  The (n – i + 1) term will 
vary from n to 1 as i increases; this causes A to drop off more 
sharply for compressions that occur early on.  The (1/n) term 
guarantees that the final value will be between 0 and 1, since the 
maximum possible value for the summation is n.  (This would 
occur if the entire subgraph was compressed away on the first 
iteration.) 
 
Again, consider the example graph in Figure 1.  Suppose that the 
three triangles represent three separate subgraphs.  (This is 

acceptable, even though edges connect the subgraphs; the edges 
running between are not considered to be part of any subgraph.)  
Recall that after one iteration, the graph appears as shown in 
figure 2.  If this is the only iteration under consideration, then we 
would consider the third subgraph to be the most anomalous; it 
was not compressed at all, whereas two of the three vertices have 
been compressed away in the first two subgraphs. 
 
4. MEASURES OF GRAPH REGULARITY 
As noted in [6], an important consideration in any anomaly-
detection system is the regularity of the data.  “Regularity” can be 
thought of as a synonym for “predictability”; generally, the more 
predictable the data, the easier it is to detect anomalies.  
Furthermore, anomaly-detection systems that are configured 
using training data may perform poorly on data with a different 
amount of regularity.   A good deal of research has been done in 
the area of regularity measures (e.g., [5]), but little work has been 
focused on graph-based data.  Here, we define two different 
measures for the regularity of graphs, both of which have been 
implemented using Subdue.  (Note: In the following discussion, 
we use the term entropy instead of regularity.  The two terms are 
opposites – the higher the entropy, the lower the regularity.) 
 
4.1 Substructure Entropy 
The concept of entropy is well-known; it is covered in many 
textbooks (e.g., [2]).  Broadly speaking, entropy measures the 
number of bits needed to describe a particular occurrence or 
event.  For a given set of possible events X, the entropy H is 
given by 
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where P(x) is the probability that x occurred and log(P(x)) is the 
base 2 logarithm of P(x).  For H(X) to be well-defined, log(0) is 
understood to be 0. 
 
Clearly, the concept of entropy is useful for determining the 
regularity or predictability of a given data set.  All that is needed 
is a good definition of the set of possible events, X, and the 
corresponding probabilities P(X).  For example, consider the 
domain of strings.  A simple measure of string entropy would be 
the predictability of an arbitrary character within that string.  In 
this approach, X would be the set of all characters contained in 
the string.  Furthermore, for x ε X, we would define P(x) as the 
number of occurrences of x in the string, divided by the length of 
the string.  A more sophisticated approach would be to let X be 
all substrings of a certain length (n).  P(x) would then be the 
number of occurrences of substring x, divided by the total number 
of substrings of length n.  As an example, let us choose a 
substring length of n = 3.  Suppose further that the given string is 
“abcaabcc”.  X would then be {“abc”, “bca”, “caa”, aab”, “bcc”}, 
and P(“abc”) would be 2/6.  The denominator is 6 because there 
are 6 (overlapping) substrings of length 3: “abc”, “bca”, “caa”, 
aab”, “abc”, and “bcc”. 
 
A similar idea holds for graphs.  Our definition of substructure 
entropy follows directly from the above approach for strings, 
except that we replace substring length with substructure size (as 
measured by the number of vertices).  For a given size n and 
graph G, we define X to be the set of all n-vertex substructures 



within G.  For a given substructure x ε X, P(x) is defined as the 
number of instances of x in G, divided by the total number of 
instances of all n-vertex substructures.  With this definition, the 
substructure entropy of a graph measures the number of bits 
needed to describe an arbitrary substructure of size n. 
 
A couple of comments about this definition are in order.  First, it 
should be clear that in general, the more regularity or “pattern” a 
graph contains, the lower its substructure entropy measure will 
be.  As certain substructures occur more and more frequently, the 
probabilities of these substructures will increase, while the 
probabilities for other substructures will decrease (assuming a 
fixed graph size).  As is well known, entropy is highest when the 
probabilities are uniform, and it decreases as the probability 
distribution becomes less uniform.  Second, there is no single 
entropy measure for a given graph; the value is dependent on the 
selected substructure size, n.  For any given graph, how to choose 
the “best” value of n is an open question.  (In fact, it is not 
obvious how “best” would be defined in this situation.)  Clearly, 
n = 1 is not the best choice; this would only measure the entropy 
of vertex labels, without considering relationships between 
vertices.  Very large values of n would, of course, be worthless.  
Another possibility would be to consider multiple sizes at once 
(perhaps even all sizes).  More research is needed in this area 
before definite conclusions can be reached. 
 
As an example, consider the directed graph shown in Figure 5. 
 

 
Figure 5. Example graph. 

 
If we choose a substructure size of n = 2, then X will contain the 
following substructures: 
 

 
 

 
 

 
 

 
 
The values of P(x) for these substructures are 1/5, 2/5, 1/5, and 
1/5 respectively. 
 
4.2 Conditional Substructure Entropy 
A second, related measure can be defined using the concept of 
conditional entropy.  Conditional entropy measures the amount of 
information needed to describe an event, given that some other 
event is known to have occurred.  We now must work with two 
sets instead of one: X, which is again the set of possible events, 
and Y, which is the set of prior events (one of which is known to 
have occurred).  We then say that the conditional entropy of X 

given Y is 
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Again, log(0) is understood to be 0. 
 
This value measures how well an event from Y can predict an 
event from X.  Suppose that for any given y ε Y, we can always 
predict with certainty which event from X will occur.  Then 
P(x|y) will be either 0 or 1 for all x ε X, y ε Y, and H(X|Y) will be 
zero.  On the other hand, suppose that knowing the event from Y 
tells us nothing about the event from X – i.e., X and Y are not 
correlated.  Then P(x|y) = P(x) for all x ε X, y ε Y, and H(X|Y) 
will degenerate to H(X). 
 
In the domain of strings, a natural use for these concepts is to 
determine the conditional entropy of a character, given a certain 
number (n) of previous characters.  In other words, the 
conditional entropy answers the question: “Given a certain 
number of characters in a sequence, how many bits are needed to 
describe the next character?”  Let us again consider the example 
string “abcaabcc”, and suppose that n = 3.  Then X = {‘a’, ‘b’, 
‘c’}, and Y = {“abc”, “bca”, “caa”, “aab”, “bcc”}.  P(“abc”) 
equals 2/6, since 2 of the 6 3-character substrings are “abc”).  P( 
‘a’ | “abc”) = 1/2, since ‘a’ appears after “abc” 1 out of 2 times. 
 
As before, our definition of conditional substructure entropy 
follows the above ideas closely.  It is slightly more complicated, 
however.  We are now answering the question: “Given an 
arbitrary n-vertex substructure, how many bits are needed to 
describe its surroundings?”  By “surroundings,” we are referring 
to the edges and vertices adjacent to the substructure.  The 
surroundings can be thought of as a set of extensions to the 
substructure; we define an extension of a substructure to be the 
addition of either a single vertex (along with the edge connecting 
it to the substructure), or a single edge within the substructure. 
 
The set Y and its associated probabilities P(Y) are defined just as 
X and P(X) were defined for substructure entropy; Y contains all 
n-vertex substructures within the graph.  However, some care 
must be taken in defining X and the associated conditional 
probabilities, P(X|Y).  According to the above discussion, X 
should contain all possible extensions of all n-vertex 
substructures.  Since an extension (as defined above) may add a 
new vertex to the substructure or merely a single edge, this means 
that X should contain all substructures containing n or (n + 1) 
vertices.  For particular substructures x ε X, y ε Y, we define 
P(x|y) to represent the percentage of instances of y that extend to 
an instance of  x. 
 
There is one more complication: we cannot use the above formula 
H(X|Y) exactly as given above.  In that definition, it is assumed 
that exactly one event in the set X has occurred.  In our case, 
however, multiple “events” may occur (since a substructure can 
have more than one extension), and we want to measure the bits 
needed to describe which events occurred and which ones did not 
occur.  To account for this, H(X|Y) must be changed to 
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With this revision, the definition of conditional substructure 
entropy is complete. 



 
As an example, let us again use the graph in Figure 6. 
 

 
Figure 6. Example graph. 

 
For the set Y, let us choose a substructure size of n = 2.  Then Y 
will contain these substructures: 
 

 
 

 
 

 
 

 
 
Earlier, we defined X to contain all substructures containing n or 
(n + 1) vertices.  In this simple example, however, no edge-only 
extensions exist; in other words, there is no way to extend a given 
substructure from Y without adding a new vertex.  So the only 
substructures in X that are worth considering are those containing 
n + 1 = 3 vertices: 
 

 
 

 
 

 
 

 
 

 
 
Suppose that y is 
 

 
 
and that x is 
 

 
 
Then P(x|y) = 1/2, since one of the two instances of y will extend 
to x. 
 
5. EXPERIMENTAL RESULTS 
5.1 Anomaly Detection 

We tested our anomaly-detection methods using the 1999 KDD 
Cup network intrusion dataset [9].  The data consists of 
connection records, each of which is labeled as “normal” or as 
one of 37 different attack types.  Each record contains 41 features 
describing the connection (duration, protocol type, number of 
data bytes, etc.); some of these features are continuous, others 
discrete.  In the original competition, the dataset was split into 
two sections: the training data and the test data.  Participants were 
able to train their detectors with the training data, and were then 
judged based on their performance on the test data. 
 
Since our approach involves unsupervised learning instead of 
supervised learning (i.e., no training is involved), we focused 
solely on the test data.  In each test, we sampled a certain number 
of records from the dataset, and attempted to find the attacks 
located within the sample.  Each individual test involved only one 
particular attack type; the sampling was essentially random, but 
controlled so that most selected records (96-98%) were labeled 
“normal,” while the rest were of the one attack type.  Purely 
random sampling would have worked very poorly, since attacks 
are quite common in the test data; one of the assumptions of 
unsupervised anomaly detection is that the anomalous events are 
generally rare.  In the case of network intrusion data, this is a 
reasonable assumption; in most situations, attacks would be quite 
uncommon compared to normal connections.  Each sample was 
performed with replacement, so overlap between samples was 
possible.  We were interested in determining how anomalous the 
actual attacks were reported to be. 
 
We ran three groups of tests, varying the percentage of attacks 
and the overall number of records.  In the first group, each 
sampled dataset contained 50 records, 1 of which was an attack.  
In the second group, samples contained 50 records and 2 attacks; 
in the third, they contained 100 records and 2 attacks.  Each 
sample was converted into a graph using the star-configuration 
method described in section 3.2. 
 
For the first method (anomalous substructure detection), we ran 
one test for each attack type.  In each test, we used Subdue to 
discover the most anomalous substructures within the graph.  For 
the sake of time, we only discovered substructures consisting of 2 
or 3 vertices.  Also, since we were only interested in the most 
anomalous substructures, we ignored substructures with a value 
of F2 ≤ 6.  (The number 6 is somewhat arbitrary, but provided a 
convenient value for these tests.)  We then looked at the fraction 
of substructures that appeared in an attack record, compared to 
the total number.  We used a weighted fraction, to give the most 
anomalous substructures a higher contribution.  This was 
accomplished by giving each substructure a contribution of

2
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instead of just 1.  For example, suppose that there are three 
substructures discovered, with F2 values of 2, 3, and 4 
respectively, and that the second substructure occurs in an attack 
record.  Then we would say that the attack accounts for 
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 of the discovered anomalies.  Clearly, it is 

desirable for attacks to account for a high percentage of the 
anomalies. 
 



The results from the first group of tests (50 connection records, 1 
attack) are displayed in Figure 7.  The numbers displayed are the 
inverses of the weighted fractions; e.g., if the attack accounts for 
1/15 of the anomalies, then a 15 is displayed.  The lower the 
number, the more anomalous the attack was considered to be. 
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Figure 7. Anomalous substructure detection; 50 records, 1 

attack. 

 
Overall, the results were good.  For most types, the attack 
accounted for at least 1/10 of the discovered anomalies.  Since 
there were 50 records, an average record would only account for 
1/50 of the anomalies.  It should be noted, however, that two of 
the attack types (snmpgetattack and snmpguess) performed so 
poorly that they could not be shown on the graph; their values 
were about 2211 and 126, respectively.  Interestingly, these two 
types caused very poor results in the anomalous subgraph 
detection tests as well.  Excluding these two types, the average 
value was about 8.64; in other words, the attack accounted for 
between 1/8 and 1/9 of the discovered anomalies, on average. 
 
The results from the second group of tests (50 records, 2 attacks) 
are given in Figure 8.  The separate fractions of the two attacks 
have been added, and the inverse of this sum is shown for each 
attack type. 
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Figure 8. Anomalous substructure detection; 50 records, 2 

attacks. 

 
The results were poorer for the second group, which is to be 
expected; the attacks comprised 4% of the records instead of 2%, 
so they would not be considered as anomalous.  Other things 
being equal, we would expect the numbers to be cut in half, since 
we are now considering the contribution of two records instead of 
one.  (If a record accounts for 1/8 of the anomalies, then two of 
them account for 1/4 – i.e., the denominator is cut in half.)  
Excluding snmpgetattack and snmpguess (which had respective 
values of 456 and 3184), the overall average was about 5.56, 
significantly higher than half of the first group’s average.  This 
demonstrates the principle that anomaly detection systems cannot 
be fully trusted in a situation where unwanted behavior occurs too 
frequently to be considered anomalous. 
 
The results of the third group (100 records, 2 attacks) are shown 
in Figure 9.  Again, the contributions of the two attacks were 
summed, and the inverses of these sums are displayed. 
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Figure 9. Anomalous substructure detection; 100 records, 2 

attacks. 

 
The results for this group were the best of the three, although only 
slightly better than those of the first group.  Other things being 
equal, the numbers would be expected to be similar to the first 
group’s, since considering 2 records out of 100 is just like 
considering 1 out of 50.  Again excluding snmpgetattack and 
snmpguess (which had values of 901 and 710), the average was 
about 8.33, a slight improvement over the first group’s average of 
8.64.  This suggests that if anomalous events occur at a fixed rate, 
increasing the amount of available data improves the chances of 
successful anomaly detection.  
 
For the second approach (anomalous subgraph detection), we ran 
10 separate tests for each attack type.  As described earlier, each 
test sample consisted of 50 (or 100) records, with one or two of 
the records being attacks.  For each sample, we used anomalous 
subgraph detection to rank the connection records from 1 to 50 
(or 100), with 1 being the most anomalous. 
 
Figure 10 shows results from the first group of tests (50 records, 1 
attack).  Each number represents an average of the 10 tests on a 
particular attack type, with the numbers representing the ranking 
of the single attack record.  The lower the number, the more 
anomalous that attack was considered to be. 
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Figure 10. Anomalous subgraph detection; 50 records, 1 

attack. 

 
As can be seen, the results are reasonably good; most attack types 
had an average ranking below 5.  Only two attack types 
(snmpgettattack and snmpguess) had an average ranking of more 
than 10.  The overall average was about 4.75. 
 
The results for the second group (50 records, 2 attacks) are 
displayed in Figure 11.  In this case, each number is an average of 
20 rankings, since each of the 10 samples contained 2 attacks 
instead of 1.  The imap attack type was not included in this group, 
since only a single imap record exists in the test data. 
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Figure 11. Anomalous subgraph detection; 50 records, 2 

attacks. 

 
The results were not as good for this group; 5 of the 36 attack 
types had an average ranking above 10, with several others above 
5.  The overall average was about 6.41, up from the first group’s 
average of 4.75.  This group performed more poorly than the first 
in the anomalous substructure detection tests as well. 
 
Figure 12 shows the results for the third group (100 records, 2 
attacks). 
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Figure 12. Anomalous subgraph detection; 100 records, 2 

attacks. 

 
As with the anomalous substructure detection tests, the third 
group’s results were the best of the three.  With 100 records 
instead of 50, the rankings would be expected to double, all other 
things being equal.  However, many of the attack types still had 
an average ranking of 5 or less, with all but 7 types having an 
average of 10 or less.  The overall average was around 9.28, 
slightly less than twice the first group’s average.   
 
5.2 Substructure Entropy and Conditional 
Substructure Entropy 
To test our definitions of substructure entropy and conditional 
substructure entropy, we artificially generated a number of graphs 
and used Subdue to produce both entropy and conditional entropy 
values for the graphs.  Each graph contained 96 vertices and 96 
edges.  In each graph, a particular pattern was inserted a certain 
number of times.  This pattern consisted of two vertices 
connected with an edge, three vertices in a triangle, or four 
vertices in a square. The rest of the vertices and edges were then 
added with randomly-selected labels (out of several possibilities) 
and randomly-selected edge endpoints.  The following graph 
factors were varied: 1. the number of vertices in the inserted 
pattern; 2. the number of labels in the graph; and 3. the number of 
inserted patterns.  (The second factor specifies how many 
possibilities exist for vertex and edge labels.)  Also, the value of n 



(size of substructures used to calculate the entropy or conditional 
entropy) was varied, producing several different measures for any 
given graph.  For each combination of factor 1, factor 2, and 
value of n, we plotted the calculated entropy and conditional 
entropy values vs. the number of patterns inserted in the graph.  
Ideally, the reported values would fall off smoothly as more and 
more patterns were inserted into a graph.  In each chart, the 
number of inserted patterns increases from left to right; the 
leftmost data point represents a graph with no instances of the 
pattern, and the rightmost point indicates a graph consisting 
entirely of the pattern. 
 
The results varied widely depending on the combination of 
factors.  For example, Figures 13 and 14 show the results for 
graphs with 3-vertex patterns, 6 labels, and a value of n = 2. 
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Figure 13. Substructure entropy; 3-vertex patterns, 6 labels,  

n = 2. 
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Figure 14. Conditional substructure entropy; 3-vertex 

patterns, 6 labels, n = 2. 

 
These charts display the desired appearance; the values fall off 
reasonably smoothly as patterns are added. 
 
The results of other combinations of factors were not as good.  As 
an example, Figure 15 shows the conditional entropy values for 
graphs containing 2-vertex patterns and 10 labels, along with n = 

2. 
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Figure 15. Conditional substructure entropy; 2-vertex 

patterns, 10 labels, n = 2. 

 
This hill-like shape appears in several of the conditional entropy 
charts.  This is due to the fact that for graphs on the left side 
(those with few inserted patterns), many of the 2-vertex 
substructures appear only a few times within the graph.  When the 
average number of instances is very low, the conditional entropy 
will always be underestimated.  For a given graph, we consider 
the “true” conditional substructure entropy to be that of an 
imaginary graph that is constructed using the same rules but is 
infinite in size.  As is well known, underestimation is also likely 
when calculating the (unconditional) entropy of a finite data set 
(see, for example, [7]).  In our tests, however, the effect was more 
noticeable for conditional entropy. 
 
One observed pattern in the (unconditional) entropy charts was 
that if the value of n was larger than the size of the inserted 
pattern, the values dropped off very slowly.  For example, Figure 
16 contains the results for graphs containing a 3-vertex pattern 
and 6 labels, using a value of n = 4. 
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Figure 16. Substructure entropy; 3-vertex patterns, 6 labels, n 

= 4. 

 
This can be explained as follows: if n (the size of substructures 



used to calculate the entropy) is greater than the pattern size, then 
the patterns are “beneath notice.”  As the number of (3-vertex) 
patterns increases, 3-vertex substructures are becoming more and 
more predictable, but the effect is much less pronounced if we are 
considering the predictability of 4-vertex substructures.  Many of 
the patterns will be ignored, unless a randomly-placed edge 
happens to join them to some other vertex.  This shows that the 
choice of n is important when measuring the substructure entropy 
of a graph; a poorly chosen value might cause some regular 
features of the graph to be ignored. 
 
5.3 Applications of Graph Regularity to 
Anomaly Detection 
Finally, we tested our hypothesis that the level of regularity in a 
graph affects the ability to perform anomaly detection on the data.  
We again used the 1999 KDD Cup dataset.  For each attack type, 
we tested 11 samples, varying the amount of data regularity.  
Each sample contained 51 “normal” records and one attack 
record, similarly to how the data was sampled for the anomaly 
detection tests.  The difference was that in each of the 11 samples, 
a certain number of the “normal” records were identical, i.e., were 
actually the same record.  In each case, the first normal record 
selected was repeated anywhere from 0 to 50 times, progressing 
by 5 from test to test.  We then used anomalous subgraph 
detection to rank the single attack record from 1 (most 
anomalous) to 52 (least anomalous), as described in section 5.1.  
These rankings were then averaged across all 37 attack types.  
Figure 17 displays the average rankings vs. the number of 
repeated “normal” records; the regularity of the data increases 
from left to right. 
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Figure 17. Ranking of attacks as regularity increases. 

 
As can be seen, the average rankings of the anomalous records 
drop fairly smoothly as the regularity of the normal records is 
increased.  This supports our hypothesis that the regularity of  
 
 
 
 
 
 
 
 
 
 

 
 
graph-based data affects the ability to detect anomalies within it. 
 
6. CONCLUSIONS 
Graph-based anomaly detection is a promising area that has 
received little attention.  In this paper, we have defined two 
methods for detecting unusual patterns within graph-based data.  
We have also defined two measures for calculating the regularity 
of a graph, using the concepts of entropy and conditional entropy.  
These approaches have been implemented and tested using the 
Subdue system, with encouraging results.  Future work will 
include theoretical analysis of the abilities and limitations of these 
methods.  We will also be investigating strategies for 
automatically selecting an optimal substructure size when 
computing the entropy or conditional entropy of a graph, as well 
as the possibility of considering multiple sizes at once.  A detailed 
examination of the relationship between graph regularity and 
anomaly detection is also needed. 
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