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ABSTRACT 
Technological enhancements aid development and advanced 
research in smart homes and intelligent environments. The 
temporal nature of data collected in a smart environment provides 
us with a better understanding of patterns over time. Prediction 
using temporal relations is a complex and challenging task.  To 
solve this problem, we suggest a solution using probability based 
model on temporal relations. Temporal pattern discovery based on 
modified Allen’s temporal relations [8] has helped discover 
interesting patterns and relations on smart home datasets [17]. 
This paper describes a method of discovering temporal relations 
in smart home datasets and applying them to perform activity 
prediction on the frequently-occurring events. We also include 
experimental results, performed on real and synthetic datasets. 
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1. INTRODUCTION 
The need for an enhanced prediction model is essential for any 
intelligent smart home to function in a dynamic world. For an 
agent to perform activity prediction, it should be capable of 
applying the limited experience of environmental event history to 
a rapidly changing environment, where event occurrences are 
related by temporal relations. Temporal rule mining has been 
attracting some considerable attention over the decade [5] [16]. In 
this paper we consider the problem of activity prediction based on 
discovery and application of temporal relations. Prediction with 
higher accuracy can be of great importance to a smart 
environment.  For instance consider a scenario, where we have a 
temporal analysis based predictor in a smart environment, which 
adapts to the inhabitant, who has an habit of cooking turkey when 
he watches television for greater than five hours, then  we see that 
this temporal based predictor compared to a sequential prediction 
would predict the use of oven later that day and can also be 
helpful for reminder assistance and also maintenance issues which 
include whether there is turkey at home before he just walks into 
the kitchen to notice the shortage of turkey.  
 

 

Allen suggested that it was more common to describe scenarios 
by time intervals rather than by time points, and listed thirteen 
relations comprising a temporal logic:  before, after, meets, meet-
by, overlaps, overlapped-by, starts, started-by, finishes, finished-
by, during, contains, equals (displayed in Table 1.) [8]. These 
temporal relations play a major role in identifying temporal 
activities which occur in a smart home. Consider, for instance, a 
case where the inhabitant turns the Television (TV) after sitting 
on the couch. We notice that these two activities, turning on the 
TV and sitting on the couch, are frequently related in time 
according to the “after” temporal relation. Therefore, when 
inhabitant is sitting on a couch, the smart environment can predict 
that in the near future the television would likely be turned on. 
From Allen’s original thirteen temporal relations [8] we represent 
and identify the nine relations shown in Table 1.  These temporal 
relationships relate a particular event with the next observed 
event, and thus are useful for event prediction. Four of Allen’s 
defined temporal relations (before, contains, overlaps, and meets) 
are not included in this analysis because they do not aid 
prediction. To analyze smart home data, we first identify temporal 
relations that occur among events in the data and then apply 
association rule mining to focus on the event sequences and 
temporal relations that occur frequently in the smart home.  Based 
on the identified relationships, we calculate the probability of the 
event most likely to occur. 

A question may arise as to why Allen’s temporal relations should 
be used for generating temporal intervals. The temporal relations 
defined by Allen form the basic representation of temporal 
intervals, which when used with constraints become a powerful 
method of expressing expected temporal orderings between 
events in a smart environment. In addition, they have an easy 
naming convention, making it easier to recognize, interpret and 
use the temporal relations that are identified. In earlier work, we 
performed this prediction based solely on the sequence of 
observed activities [9]. ActiveLeZi based approach for any given 
sequence of events that can be modeled as a stochastic process; 
the algorithm employs Markov models to optimally predict the 
next symbol in any stochastic sequence. In this work, we 
supplement evidence for a particular action using the temporal 
relation information.  We illustrate the benefit of temporal 
relationships for prediction of smart home events. Based on 
results generated from synthetic and real smart home data, we 
conclude that temporal logic provides substantial benefits for 
smart home tasks.  Identification of temporal relations provides 
key insights to smart home activities and aids with prediction and 
anomaly detection in a smart home or other smart environment. 
We extend these methods to incorporate valuable information 
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about the interval of time each event spans.  While other methods 
treat each event as a separate entity (including, for example, 
turning on a lamp and later turning off the same lamp), our 
interval-based analysis considers these two events as members of 
one interval.  Each interval is expressed in terms of start time and 
end time values.  As a result, temporal relationships between such 
intervals can be identified and used to perform critical prediction 
decisions. 

We focus only on our objective to develop a model for analyzing 
event prediction model in the interval-based events using 
temporal relations for the most frequently-occurring events, 
because discovering all possible patterns can be computationally 
inhibitive in a real world where we have a continuous stream of 
data which makes the environment dynamic.  Furthermore, the 
number of results obtained can be overwhelming, taxing the 
ability to effectively use the discovered results for practical 
purposes. In this paper, we introduce a temporal representation to 
express relationships between interval-based events.  We build on 
this representation to identify frequently-occurring relationships 
between temporal events, and use the results as the basis for 
performing prediction. We explain the temporal relations with 
illustrations and also include a brief description of the temporal 
intervals formation process. We describe the steps involved in the 
experimentation for prediction and present the results obtained on 
real and synthetic datasets. 

2. RELATED WORK 
All With the converging of supporting technology in artificial 
intelligence and pervasive computing, smart environment research 
is quickly maturing.  As an example, the MavHome Project treats 
an environment as an intelligent agent, which perceives the 
environment using sensors and acts on the environment using 
sensor network. At the core of its approach, MavHome observes 
resident activities as noted by the sensors. These activities are 
mined to identify patterns and compression-based predictors are 
employed to identify likely future activities [14]. 
 
The Gator Tech Smart home is built from the ground up as an 
assistive environment to support independent living for older 
people and individuals with disabilities [1]. Currently, the project 
uses a self-sensing service to enable remote monitoring and 
intervention caregivers of elderly persons living in the house. The 
University of Essex’s intelligent dormitory (iDorm) is a real 
ambient intelligent test-bed comprised of a large number of 
embedded sensors, actuators, processors and networks in the form 
of a two bed roomed apartment. Fuzzy rules are learned from the 
observed resident activities [3] and are used to control select 
devices in the dorm room. 

Although smart environments are being designed and created, 
little related research has focused on reasoning about the timing 
of events in these environments. We have selected Allen’s 
temporal intervals to represent temporal relationships between 
events in smart environments. Mörchen argues that Allen’s 
temporal patterns are not robust and small differences in 
boundaries lead to different patterns for similar situations [11]. 
Mörchen presented a Time Series Knowledge Representation, 
which expresses the temporal concepts of coincidence and partial 
order. Although this method appears feasible and computationally 
sound, it does not suit our smart home application due to the 
granularity of the time intervals in smart homes datasets. His 

approach does not involve ways to eliminate noise and the 
datasets are so huge that computational efficiency would not be 
the only factor to be considered. Björn, et al. [2] also reasons that 
space and time play essential roles in everyday lives. They 
discuss several AI techniques for dealing with temporal and 
spatial knowledge in smart homes, mainly focusing on qualitative 
approaches to spatiotemporal reasoning. 

Ryabov and Puuronen in their work on probabilistic reasoning 
about uncertain relations between temporal points [19] represent 
the uncertain relation between two points by the uncertainty 
vector with three probabilities of basic relations 
(“<”,”+”,”>”),they also incorporate inversion, composition, 
addition, and negation operations into their reasoning mechanism. 
But this model would not be suitable for a smart home scenario as 
it would not go into more granularity to analyze instantaneous 
events. Worboys et.al. work [20] involves spatio-temporal based 
probability models which are currently identified as future work. 
Dekhtyar et. al. work [18] on probabilistic temporal databases 
provides a framework which is an extension of the relational 
algebra that integrates both probabilities and time. This work 
includes some description of Allen’s temporal relations and some 
of these are incorporated already in this current work.     

3. ENVIRONMENT SENSING  
We define an intelligent environment as one that is able to acquire 
and apply knowledge about its residents and their surroundings in 
order to adapt to the residents and meet the goals of comfort and 
efficiency.  These capabilities rely upon effective prediction, 
decision making, mobile computing, and databases.  With these 
capabilities, the home can control many aspects of the 
environment such as climate, water, lighting, maintenance, and 
entertainment.  Intelligent automation of these activities can 
reduce the amount of interaction required by residents, reduce 
energy consumption and other potential wastages, and provide a 
mechanism for ensuring the health and safety of the environment 
occupants [15]. The major goal of MavHome project is to design 
an environment that acts as an intelligent agent and can acquire 
information about the resident and the environment in order to 
adapt the environment to the residents and meet the goals of 
comfort and efficiency. In order to achieve these goals the house 
should be able to predict, reason, and make decisions for 
controlling the environment [9]. 

MavHome operations can be characterized by the following 
scenario. To minimize energy consumption, MavHome keeps the 
house cool through the night.  At 6:45am, MavHome turns up the 
heat because it has learned that the home needs 15 minutes to 
warm to Bob's desired waking temperature.  The alarm sounds at 
7:00am, after which the bedroom light and kitchen coffee maker 
turn on.  Bob steps into the bathroom and turns on the light.  
MavHome records this manual interaction, displays the morning 
news on the bathroom video screen, and turns on the shower.  
When Bob finishes grooming, the bathroom light turns off while 
the kitchen light and display turn on, and Bob's prescribed 
medication is dispensed to be taken with breakfast.  Bob's current 
weight and other statistics are added to previously collected data 
to determine health trends that may merit attention.  When Bob 
leaves for work, MavHome reminds Bob remotely that he usually 
secures the home and has not done so today.  Bob tells MavHome 
to finish this task and to water the lawn.  Because there is a 60% 
chance of rain, the sprinklers are run a shorter time to lessen water 



usage.  When Bob arrives home, the hot tub is waiting for him.  
Bob has had a long day and falls asleep in the hot tub.  After 40 
minutes MavHome detects this lengthy soak as an anomaly and 
contacts Bob, who wakes up and moves on to bed [13]. 
MavHome's smart home capabilities are organized into a software 
architecture that seamlessly connects needed components while 
allowing improvements to be made to any of the supporting 
technologies.  Figure 1 shows the architecture of a MavHome 
agent.  The contributing technologies are separated into four 
cooperating layers [15]. The Decision layer selects actions for the 
agent to execute.  The Information layer collects information and 
generates inferences useful for decision making. The 
communication layer routes information and requests between 
agents.  The Physical layer contains the environment hardware 
including devices, transducers, and network equipment.  The 
MavHome software components are connected using a CORBA 
interface.  Because controlling an entire house is a very large and 
complex learning and reasoning problem, the problem is 
decomposed into reconfigurable subareas or tasks.  Thus the 
Physical layer for one agent may in actuality represent another 
agent somewhere in the hierarchy, which is capable of executing 
the task selected by the requesting agent [15].  

 The database records the information in the Information layer, 
updates its learned concepts and predictions accordingly, and 
alerts the Decision layer of the presence of new data.  During 
action execution, information flows top down.  The Decision 
layer selects an action (e.g., run the sprinklers) and relates the 
decision to the Information layer.  After updating the database, 
the Communication layer routes the action to the appropriate 
effectors to execute.  If the effectors are actually another agent, 
the agent receives the command through its effectors and must 
decide upon the best method of executing the desired action.  
Specialized interface agents allow interaction with users and 
external resources such as the Internet [13][15]. Agents can 
communicate with each other using the hierarchical flow shown 
in Figure 1.   

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure 1: MavHome architecture [13] 

  
Figure 2: (a) MavHome argus sensor network [4] 

 
Figure 2: (b) MavLab living room 



 
Figure 2: (c) MavLab apartment kitchen 

The Primary data collection system [4] consists of an array of 
motion sensors, which collect information using X10 devices and 
the in-house sensor network. Our dataset is collected for an 
inhabitant working in the MavLab (see Figure 2) and consists of 
two months of data. The lab consists of a presentation area, 
kitchen, student desks, and faculty room. There are over 100 
sensors deployed in the MavLab that include light, temperature, 
humidity, and reed switches. In addition, we created a synthetic 
data generator to validate our approach. We developed a model of 
a user’s pattern which consists of a number of different activities 
involving several rooms and eight devices. For this paper we 
generated a data set containing about 4,000 actions representing 
two months of activities. 

4. TEMPORAL RELATIONS 
Activities in a smart home include physical activities as well as 
instrumental activities.  These may include walking, sitting on a 
couch, turning on a lamp, using the coffeemaker, and so forth. We 
see that these activities are not instantaneous, but have distinct 
start and end times.  We also see that there are well-defined 
relationships between time intervals for different activities.  These 
temporal relations can be represented using Allen’s temporal 
relations and can be used for knowledge and pattern discovery in 
day-to-day activities. These discoveries can be used for 
developing systems which can act as reminder assistants and also 
help detect anomalies and aid us in taking preventive measures 
[17]. 
Let us consider a scenario which involves a television, fan and a 
lamp being used in a smart home. We see that the inhabitant turns 
on the television and after some period of time turns on the fan. 
As time progresses, feeling cold, the fan is turned off and the 
individual continues watching the television. Later on, the 
television is turned off and the individual turns on the lamp to 
illuminate the room. We see that this scenario involved three 
activities each defined by interaction with a single device, namely 
a television, a fan and a lamp. Now we apply Allen’s logic to 
establish the temporal relations among the activities which 
occurred. The scenario is illustrated in figure 3.  These activities 
can be represented as television “contains” fan and “meets” lamp. 
We can also represent these relationships as television “meets” 
lamp and fan “before” lamp. 

 
Figure 3. Illustration of temporal intervals 

Table 1. Temporal relations representation. 

Temporal 
Relations 

Pictorial 
Representation 

Interval 
constraints 

X Before Y 

 

Start(X)<Start(Y); 
End(X)<Start(Y) 

X After Y 

 

Start(X)>Start(Y); 
End(Y)<Start(X) 

X During Y 

 

Start(X)>Start(Y); 
End(X)<End(Y) 

X Contains Y 

 

Start(X)<Start(Y); 
End(X)>End(Y) 

X Overlaps Y 

 

Start(X)<Start(Y); 
Start(Y)<End(X); 
End(X)<End(Y) 

X Overlapped-
By Y 

 

Start(Y)<Start(X);     
Start(X)<End(Y); 
End(Y)<End(X) 

X  Meets Y 

 

Start(Y) = End(X) 

X Met-by Y 
 

Start(X)= End (Y) 

X Starts Y 

 

Start(X)=Start(Y); 
End(X)≠End(Y) 

X started-by Y 

 

Start(Y)=Start(X);     
End(X)≠End(Y) 

X Finishes Y 

 

Start(X)≠start(Y); 
End(X) = End (Y) 

X Finished-by 
Y 

 

Start(X)≠Start(Y); 
End(X)=End(Y) 

X Equals Y 

 

Start(X)=Start(Y); 
End(X)=End(Y) 



5. EXPERIMENTATION AND RESULTS 
Sensor data from a smart environment can be represented and 
mined as sequences or as time series data. A sequence is an 
ordered set of events, frequently represented by a series of 
nominal symbols [5]. All the sequences are ordered on time scale 
and occur sequentially one after another. However, for some 
applications it is not only important to have a sequence of these 
events, but also a time when these events occur. A time series is a 
sequence of continuous real-value elements [5].  This kind of data 
is obtained from sensors which continuously monitor parameters 
such as motion, device activity, pressure, temperature, brightness, 
and so forth. Each time stamped data is characterized by specific 
properties. In table 2, we illustrate a sample of raw data collected 
from the sensor and also include the data as how it looks after it is 
processed and temporal intervals are identified. 

Table 2. Sample of sensor data across various stages of 
experimentation. 

Raw Sensor Data 

     Timestamp                     Sensor State       Sensor ID 
3/3/2003 11:18:00 AM    OFF                   E16 
3/3/2003 11:23:00 AM    ON                     G12 
3/3/2003 11:23:00 AM    ON                     G11 
3/3/2003 11:24:00 AM    OFF                   G12 
3/3/2003 11:24:00 AM    OFF                   G11 
3/3/2003 11:24:00 AM    ON                     G13 
3/3/2003 11:33:00 AM    ON                     E16 
3/3/2003 11:34:00 AM    ON                     D16 
3/3/2003 11:34:00 AM    OFF                    E16 

Identify Time Intervals 

Date             Sensor ID    Start Time    End time. 
03/02/2003   G11            01:44:00       01:48:00 
03/02/2003   G19            02:57:00       01:48:00 
03/02/2003   G13            04:06:00       01:48:00 
03/02/2003   G19            04:43:00       01:48:00 
03/02/2003   H9              06:04:00       06:05:00 
03/03/2003   P1              10:55:00       17:28:00 
03/03/2003   E16            11:18:00       11:34:00 
03/03/2003   G12            11:23:00       11:24:00 

Associated Temporal Relations 

        Date time         Sensor ID Temporal Relation Sensor ID 
3/3/2003 12:00:00 AM    G12          DURING               E16 
3/3/2003 12:00:00 AM    E16          BEFORE                I14 
3/2/2003 12:00:00 AM    G11          FINISHESBY       G11 
4/2/2003 12:00:00 AM    J10           STARTSBY           J12 

 

We validate our algorithm by applying it to our real and synthetic 
datasets. We train the model based on 59 days of data and test the 
model on one day of activities. We use the training set to form the 
frequent item sets and identify temporal relations shared between 
them. The temporal relations formed in these data sets show some 
interesting patterns and indicate relations that are of interest. The 
parameter settings pertaining to the training set data are given in 
Table 3. The parameter settings pertaining to the test set data are 
given in Table 4. Next we perform frequent itemset mining and 
identify the most frequent activities in the training dataset. Then 
we read these temporal relations into our prediction tool which 
dynamically calculates evidence for each possible event and 

predicts the activity. We later observe the prediction and compare 
it with test data and report the results which include the accuracy 
and error in the observations 

Table 3. Parameters setting for training set. 

Datasets 

Parameter Setting 

No# 
Days 

No # 
Events 

No# 
Intervals 
Identified 

Size of 
Data 

Synthetic 59 8 1703 105KB 

Real 59 17 1523 103KB 

Table 4. Parameters setting for test set. 

Datasets 

Parameter Setting 

No# 
Days 

Number of 
Possible 
Events 

Number of 
Intervals 
Identified 

Size of 
Data 

Synthetic 1 8 17 2KB 

Real 1 17 9 1KB 

The first step of the experiment is to process the raw data to find 
the temporal intervals.  This is done using a simple tool which 
takes the timestamp of the event that occurred and based on the 
state (ON/OFF) forms the intervals. Later this data is passed 
through a temporal analyzer tool which identifies the temporal 
intervals based on the constraints formulated. The pseudo code for 
the temporal analyzer tool is described in Algorithm 1. 

 
  Algorithm 1 Temporal Interval Analyzer  
 
 Input: data timestamp, event name and state 
     Repeat 
       While [Event && Event + 1 found] 
           Find paired “ON” or “OFF” events in data to   

   determine temporal range. 
           Read next event and find temporal range. 
           Identify relation type between event pair from 

possible relation types (see Table 1). 
          Record relation type and related data. 
          Increment Event Pointer 
  Loop Until end of input. 
 

The next step of the process involves identification of the frequent 
activities, or events, which occur during the day and establishing 
temporal relations among them. To accomplish this task, we mine 
the data for frequent itemsets using the Apriori algorithm [17]. 
Next, we identify observed temporal relations between events in 
these frequent itemsets. We limit our approach to frequent 
activities, because the smart home data is so huge that there are 
many potential anomalies which are just factors of noise and thus 
make the datasets prohibitively large [17].  

In the next step, we identify the association rules using weka [7] 
which can be used for prediction. The Weka implementation of an 
Apriori-type algorithm is used, which iteratively reduces the 
minimum support until it finds the required number of rules 
within a given minimum confidence. Table 5. summarizes the 



parameters that were set and the number of rules generated with a 
given specified minimum confidence for the real dataset.  Table 6 
summarizes the same for the synthetic dataset. 

Table 5.  Parameter settings and rules generated using 
Apriori-type algorithm in Weka for real dataset. 

Run# Minimum 
Support 

Minimum 
Confidence 

No of Best 
Rules Found 

1 0.00 0.5 100 
2 0.01 0.5 006 
3 0.02 0.5 002 
4 0.05 0.5 001 

 

 
Figure 4. Association rule mining in real datasets 

Table 6.  Parameter settings and rules generated using 
Apriori-type algorithm in Weka for synthetic dataset. 

Run# Minimum 
Support 

Minimum 
Confidence 

No of Best 
Rules Found 

1 0.00 0.5 100
2 0.01 0.5 010 
3 0.02 0.5 005 
4 0.05 0.5 003 

We see that the figure 4 and figure 5 represent the observations 
from tables 5 and 6. We see that they represent various 
configurations which were used in Weka to find the best rules 
which can aid the prediction process. We observe here that when 
there is no minimum support we have many number of rules 
generated and as the support is increased we see that the number 

of rules generated gets decreased. The sample illustration of the 
rules generated is given in table 6. 

 
Figure 5. Association rule mining in synthetic datasets. 

In Tables 5 and 6, the confidence level above 0.5 and support 
above 0.05 could not be used, as they could not result in any 
viable rules, due to the smaller datasets being used. As we see that 
the datasets are small, we use the top rules generated with a 
minimum confidence of 0.5 and a minimum support of 0.01.  

Table 7. Display of a sample of best rules generated. 

Sample of best rules observed in real datasets: 

Activity=C11 Relation=CONTAINS 36 ==> Activity=A14 36    
Activity=D15 Relation=FINISHES 32 ==> Activity=D9 32     

Activity=D15 Relation=FINISHESBY 32 ==> Activity=D9 32    
Activity=C14 Relation=DURING 18 ==> Activity=B9 18 

The final step involves calculating the evidence of the event 
occurrence, which can be used for calculating the prediction. This 
step is to detect whether the particular event satisfies the temporal 
relations which can be used for prediction. These temporal 
relations which can be used for prediction are listed in Table 2.  
Let us look at an example where we have three frequent activities 
and are in the order of  toaster , table lamp and radio, turning on 
and off in the morning. We see that the relation exhibited by them 
can be toaster “before” table lamp “finishes” radio. Now when the 
toaster and the radio occur without the table lamp, we can note 
that this is an anomaly in activity and we can use the same 
relation as when the toaster occurred and table lamp occurred then 
we can predict that the radio is going to occur in the near future 
before the table lamp is turned off. This method of prediction is 
based entirely on normative behavior as observed in the past and a 
strong rule is identified. As a result, the likelihood of prediction 
increases when there are strong repetitions of inhabitant patterns 
over time which are not anomalies. This method is a probability-



based model which involves calculating the evidence supporting 
the currently- occurring activity with respect to the previously-
occurred activates and determining whether the current activity is 
an anomaly or not. This evidence calculation draws from the 
temporal relations which can be used for anomaly detection and 
which are listed in Table 8. Because of its robustness in the 
presence of noise, we decide to use this approach for our 
prediction.  

Table 8. Temporal relations which are used prediction. 

Temporal 
Relations 

Usable for Prediction 

Before x 

After  
During  
Contains x 

Overlaps x 

Overlapped-By  
Meets x 

Met-By  
Starts  
Started-By  
Finishes  
Finished-By  
Equals  

Let us consider two events X and Y and now focus our attention 
on events X and Y.  We describe the prediction process for event 
X given information about an event Y that exhibits a temporal 
relationship with X in the following steps and has a strong rule 
identified by the association rule analysis. We see that this event 
Y is passed from the sequential predictor. 

Step A: Learn temporal relations from the observed event history 
by analyzing the events and deriving the frequent itemsets.  We 
also identify the most current activity (in our example, this is 
event Y). (Note that this tool can run simultaneously with a 
prediction component and take the output of the sequential 
prediction for processing). 

Step B: Now we calculate the evidence supporting the occurrence 
of activity X.  The formula to calculate the evidence using 
temporal relations is given by Equation (1). Note that equation is 
based on the observed frequency of the temporal relations, 
specifically those that influence the occurrence of event X. 
P(X|Y) = |After(Y,X)| + |During(Y,X)| +  |OverlappedBy(Y,X)| + 
|MetBy(Y,X)| + |Starts(Y,X)| + |StartedBy(Y,X)| + |Finishes(Y,X)| 

+ |FinishedBy(Y,X)|+|Equals(Y,X)|  / |Y|       (1) 
EvidenceX = P(X)                                                                    (2) 
The previous discussion showed how to calculate the likelihood 
of event X given the occurrence of one other event Y.  Now 
consider the case where we want to combine evidence from 
multiple events that have a temporal relationship with X.  In our 

example we have observed the start of event A and the start of 
event B, and want to establish the likelihood of event X occurring.  
From Equation 1 we can calculate evidence  
Now we have the evidence of B as:  
P(B|A) = After(B,A)| + |During(B,A)| +  |OverlappedBy(B,A)| + 
|MetBy(B,A)| + |Starts(B,A)| + |StartedBy(B,A)| + |Finishes(B,A)| 
+|FinishedBy(B,A)|+|Equals(B,A)| /   |A|        (3) 

Similarly when we have the events occurred as follows: A B X 
Now the evidence of B is calculated as follows: 

P(X|AUB) = P(X  ∩  (AUB) ) / P(AUB) 
= P(X ∩ A) U  P(X ∩ B)/ P(A) + P(B) –P(A∩B) 

                                                       [Association Rule] 

= P(X|A).P(A) + P(X|B).P(B) / P(A) + P(B) –P(A∩B) 
                                                      [Multiplication Rule]       (4) 
And we see that, we can use the previous calculated evidence for 
calculating newer evidence, based on the equation (4). We see 
that in this equation (4), uses Association rule and Multiplicative 
rules to arrive at the final formula which includes previous 
computed evidences of occurred events. And we use them to 
calculate the evidence of the most recent occurred event. In this 
way we compute the evidence of the occurred events and applies 
to the entire series of events that occurred. 

Step C: Now we finally calculate the prediction of X by the 
equation (5) given below.  

                                PredictionX = P(X)                           (5) 

Notice that if the event has a probability approaching 1 and has 
occurred, this is considered most likely to occur.  On the other 
hand, if the probability of the event we just observed is close to 0, 
then this is an unusual event and should not be considered for 
prediction. The point at which these predictions are to be 
considered surprising enough to be reported is based somewhat on 
the data itself.  If the probability of an event is based on the 
occurrence of other events which themselves rarely occur, then 
the evidence supporting the occurrence of the event is not as 
strong.  In this case, if the event has a low probability yet does 
occur, it should be considered less anomalous than if the 
supporting evidence itself appears with great frequency.  
Consistent with this theory, we calculate the mean and standard 
deviation of event frequencies over the set of events in the 
inhabitant’s action history.  Events are reported as predicted (or, 
conversely, the absence of an event) if it does occur and its 
prediction value is greater than the mean + 2 standard deviations. 
This indicates an improvement of prediction in a single day of the 
inhabitant in smart environment compared to a simple sequential 
prediction technique employed earlier.. The main reason for a 
significant error rate is the smaller amount of data used. As we 
have larger datasets we see that the performance of the temporal 
relations enhanced prediction would also improve drastically over 
time. 

The final step involves enhancing our ALZ predictor [9] by 
adding these temporal relations to the input data and comparing 
the performance with and without the rules. This sequential 
predictor employs incremental parsing and uses Markov models 
for prediction. We notice that many situations demand that the 
prediction algorithm be capable of analyzing information and 



delivering in real time. We currently plan to run real time analysis 
over large sets of data in the near future. The algorithm 2 specifies 
the temporal enhancement. 

 Algorithm 2 Temporal Rules Enhanced prediction.  
 

 Input: Output of ActiveLeZi Predictor a, Best Rules r, 
Temporal Dataset 

     Repeat 
       If a! = null   
           Repeat 

Set r1 to the first event in the first best rule    
               If (r1 ==a) Then 
    If (Relation! = “After”) Then 
    Calculate evidence (use Equation 1)  

   If evidence > (Mean + 2 Std. Dev.) is noted    
   Then 
   Make event related to r1 in the best rule as next  
   predictor output; 
   Else 
   *Get next predicted event and look for there        
   temporal relation in the temporal relations   
   database based on the frequency, calculate evidence.    
   store temporarily in buffer 
  If again the relation is after Then goto * 
  Until  no more “After” relations are found 
  Calculate evidence 
  If evidence > (Mean + 2 Std. Dev.)  
  Then predict;  
  Else   
  Calculate evidence and if evidence > (Mean + 2   
  Std. Dev.) Then predict this event based on the  
  relation; 
 End if. 
Until end of rules. 

         End if. 
    Loop  until End of Input. 
 
  

Table 9. Comparing ActiveLeZi based prediction with and 
without temporal rules in real datasets. 

Datasets Percentage 
Accuracy 

Percentage 
Error 

Real (Without Rules) 55 45 

Real (With Rules) 56 44 

Table 10. Comparing ActiveLeZi based prediction with and 
without temporal rules in Synthetic datasets. 

Datasets Percentage 
Accuracy 

Percentage 
Error 

Synthetic (Without Rules) 64 36 

Synthetic (With Rules) 69 31 

We see that the Table 9 and Table 10 present us the results 
observed in the prediction experiment and compare the 
percentage accuracy with the percentage error noted in the results. 
We see that the illustration of the observed accuracy and error in 
the real and synthetic datasets is given the figure 6. and figure 7. 
respectively. We can note that in figure 6 we see that the accuracy 

increases with temporal rules and in figure 7 we note that the 
error curve decreases. 

 
Figure 6. Percentage accuracy in real and synthetic datasets. 

 
Figure 7. Percentage error in real and synthetic datasets. 

Table 9. and Table 10., above summarizes the observed accuracy 
of the prediction performance on real and synthetic datasets. We 
see that there was 1.86% prediction performance improvement in 
the real data and 7.81% improvement in the synthetic data.  This 
indicates an improvement of prediction in a single day of the 
inhabitant in smart environment. The main reason for a significant 
error rate is the smaller amount of data used. As we have larger 
datasets we see that the performance of the temporal relations 
enhanced prediction would also improve drastically over time. 
Another reason for lesser accuracy is because of the used test set 
as it need not be a typical day or could be one where the 
inhabitant had very less presence in the smart environment. 
Overall we see a unique application of temporal relations based 
mining being applied. 

Now the future work here extends the concept of temporal 
relations and apply it directly to the ActiveLeZi prediction 
component [9] by enhancing its probability calculating 
component to incorporates temporal probability which would help 
the prediction to perform better. This can be illustrated by the 
equation 6 below. In the equation 6, C & P represent child and 
parent respectively in the binary tree formed by the ALZ predictor 
for prediction. 

Predictionc:=P(C|P):=P(C|P)SEQ+P(C|P)TEM/Global – (α * P(C|P)TEM) 
  Where  α = | CPHRASE| / | CGLOBAL |.                                           (6) 



6. DATA VISUALIZATION 
Another notable problem which is observed is how can we 
visualize the temporal intervals identified. An interesting question 
would be say, how the inhabitant could compare his average time 
to cook in a smart environment to average time with other activity 
such as turning on the oven. This problem is handled here with 
the help of a smart interval visualization tool being developed. In 
many application domains temporal data queries are fundamental 
to understand and reason over time and space. However it still 
would be a difficult challenge to describe and formalize time 
using physical characteristics and properties. Thus, we see that we 
can only establish a temporal relation from the observations. In 
this paper, we also present an interface which helps us visualize 
activity intervals identified in smart home datasets [17].  We can 
also use this tool as a media for looking for patterns and also acts 
as an user-friendly data visualization and manipulation tool. The 
end goal of this tool is to enable the resident to visualize 
interesting patterns over time and help his improve his lifestyle at 
home by identifying activities which hinder the growth and health 
and also identify activities which help him to have an improved 
lifestyle.  

 
Figure 8. Interval Visualization Tool 

This tool gives the inhabitant complete control of visualization 
with scrolling and also enabled to look for patterns. This tool was 
developed using C#.NET with Visual studio2005 IDE and also 
uses VARCHART Xgantt plotting library (a 3rd party library) for 
visualization in the form of Gantt charts which help represent the 
activity intervals over a time period [10] [12].  A screenshot of 
this tool is displayed above in the figure 8. In this illustration, we 
can visualize the various activities with their event IDs, the name 
of the activity/sensor, its start time and end time and the 
corresponding time interval.  

7. FUTURE WORK 
While making sense of sensor data can be challenging for smart 
environment applications, the problem is made even more 
complex when the environment houses more than one resident.  
To aid the capabilities of our temporal data mining, and to reveal 
the complexities of multi-inhabitant spaces, an entity discovery 

tool is needed. Enriching the raw data set provided by the tagging 
multiple inhabitants would make Knowledge Discovery more 
interesting to work with for determining features of the data 
during the mining stages.  In this case, we are enriching the data 
with information about entities moving within the space.  This 
comes in the form of an entity (in this case, resident) 
identification number that is attached to each event, matching 
events to entities.  As an entity traverses the space they trigger 
events, but historically these events have primarily been attributed 
to individuals using some form of 3rd party tracking.  

8. CONCLUSION 
Time is an important aspect of all real world phenomena. Data 
mining is concerned with analyzing large volumes of data to 
automatically discover interesting regularities or relationships 
which in turn lead to a better understanding of the underlying 
processes [6] [16]. Within this field, temporal data mining focuses 
on such analysis in the case of ordered data streams with temporal 
interdependencies. Temporal rule based knowledge discovery is a 
new area in smart home research. We notice that the use of 
temporal relations provides us a unique new approach for 
prediction. The current approach is currently experimented on 
small datasets, but we will next validate the performance of our 
algorithm on larger datasets. Some future directions of this work 
also includes the expansion of the temporal relations by including 
more temporal relations, such as until, since, next, and so forth, to 
create a richer collection of useful temporal relations.  
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