
Learning Patterns in the Dynamics of Biological Networks

Chang hun You, Lawrence B. Holder, Diane J. Cook
School of Electrical Engineering & Computer Science

Washington State University
Box 642752, Pullman, WA 99164-2752

{changhun, holder, cook}@eecs.wsu.edu

ABSTRACT
Our dynamic graph-based relational mining approach has
been developed to learn structural patterns in biological n et-
works as they change over time. The analysis of dynamic
networks is important not only to understand life at the
system-level, but also to discover novel patterns in other
structural data. Most current graph-based data mining ap-
proaches overlook dynamic features of biological networks,
because they are focused on only static graphs. Our ap-
proach analyzes a sequence of graphs and discovers rules that
capture the changes that occur between pairs of graphs in
the sequence. These rules represent the graph rewrite rules
that the �rst graph must go through to be isomorphic to the
second graph. Then, our approach feeds the graph rewrite
rules into a machine learning system that learns general
transformation rules describing the types of changes that
occur for a class of dynamic biological networks. The dis-
covered graph-rewriting rules show how biological network s
change over time, and the transformation rules show the
repeated patterns in the structural changes. In this paper,
we apply our approach to biological networks to evaluate our
approach and to understand how the biosystems change over
time. We evaluate our results using coverage and prediction
metrics, and compare to biological literature.

Categories and Subject Descriptors
I.2.6 [Arti�cial Intelligence]: Learning; J.3 [Life and
Medical Science]: Biology and genetics

General Terms
Algorithms

Keywords
Dynamic Network Analysis, Graph Mining, Biological Net-
work, Graph Rewriting Rule

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro�t or commercial advantage and that copies
bear this notice and the full citation on the �rst page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee.
KDD'09, June 28–July 1, 2009, Paris, France.
Copyright 2009 ACM 978-1-60558-495-9/09/06 ...$5.00.

There are many data that can be represented as graphs,
where vertices represent entities and edges represent rela-
tionships between entities. Moreover, many of them have
dynamic properties such that the structure of graphs can be
changed over time. Our bodies are well-organized and vig-
orous systems, which promote reproduction and sustain our
lives. These well-organized systems can be de�ned by the
attributes and structural properties of biological networ ks,
which include various molecules and relationships between
molecules. Vigorous systems refer to dynamic properties
of biological networks, which continuously change, while an
organism performs various biological activities. Therefo re,
analysis of the dynamics of biological networks is necessary
to understand biosystems.

Our approach �rst learns how one graph is structurally
transformed into another using graph rewriting rules, and
abstracts these rules into abstract patterns that represen t
the dynamics of a sequence of graphs. Our goal is to describe
how the graphs change over time, not merely whether they
change or by how much. In this way, our approach can help
us understand the dynamics of biological networks.

This paper introduces our de�nition of graph-rewriting
rules and more general transformation rules. We also present
our two step algorithm to discover graph-rewriting rules in a
dynamic graph, and transformation rules in the discovered
graph-rewriting rules. In our experiments, we generate sev-
eral dynamic graphs using the KEGG pathway database [9]
in combination with the arti�cial generation and real data
sets. We apply our approach to the pathways to understand
how the biosystems change over time. We evaluate our re-
sults using coverage and prediction metrics, and compare to
biological literature. Our results show important pattern s in
the dynamics of biological networks, i.e., discovering known
patterns in the networks. Results also show the learned rules
accurately predict future changes in the networks.

2. RELATED WORK
A graph is a natural way to represent biological networks.

There are several graph mining approaches to biological net-
works [10, 11, 24]. These approaches represent biological
networks as graphs, where vertices represent molecules and
edges represent relations between molecules, and discover
frequent patterns in these graphs. They discover structura l
features of networks, but they overlook temporal propertie s.

There is much research work on the dynamics of biosys-
tems, such as mathematical modeling [16] and microarray
analysis [22]. Mathematical modeling is an abstract model

! " ! "#$

%"

&"#$

%$

&'

%'

&(
&)

%)*$!!!

! $! ' !)

+,)-."/0!1-23

4&5

465

475

!!!
! $! 8 ! 9 ! $$

!"# !"#

!"# !"#

4+5

Figure 1: A framework of dynamic graph analysis. (A) A dynamic graph (B) Learning graph rewriting rules from
two sequential graphs. (C) Learning the entire set of graph r ewriting rules. (D) Learning a transformation rule to
abstract the learned graph rewriting rules (e.g., Sub is removed from G i and then added back in G i +4).

to describe a system using mathematical formulae. They
model the kinetics of pathways and analyze the trends in the
amounts of molecules and the ux of biochemical reactions.
The microarray is a tool for measuring gene expression levels
for thousands of genes at the same time [3, 15]. Microarrays
can also monitor patterns in gene expression levels over a
period of time or for the di�erent conditions. Patterns in
gene expression levels can represent changes in the biolog-
ical status or distinguish two di�erent states, such as the
normal and disease state. However, these two approaches
disregard the structural aspect of networks.

Temporal data mining attempts to learn temporal pat-
terns in sequential data, which is ordered with respect to
some index like time stamps [17]. Temporal data mining
is focused on discovery of relational aspects in data such
as discovery of temporal relations or cause-e�ect association
so that we can understand how or why the object changes
rather than merely static properties of the object. Tempora l
data mining approaches discover temporal patterns in data,
but they disregard relational aspects among entities.

Several methods have addressed dynamic graph analysis.
Sun et al. [19] propose a technique to discover communities
and detect changes in dynamic graphs that is represented as
matrix and encoding schemes. Tensor analysis is also applied
to dynamic graphs [20, 21]. Other work [1, 2, 18] proposes
several detection measures of abnormal changes in the se-
quence of graphs and graph distance measures between two
graphs. They can measure how much two graphs are di�er-
ent, but not show how they are di�erent. Lahiri et. al. [13,
14] introduce an approach to predict the future structure
in a dynamic network and mine periodic patterns using fre-
quent subgraphs. Our approach uses a compression-based
metric instead of the frequency-based approach to discover
patterns in a dynamic graph.

3. PROBLEM DEFINITIONS
In this section, we de�ne the graph rewriting rule and

the transformation rule to describe the dynamic of a graph.
Graph rewriting rules represent topological changes between
two sequential versions of the graph, and transformation
rules abstract the graph rewriting rules into the repeated
patterns that represent the dynamics of the graph. Figure
1 shows a framework of our approach. The dynamic graph
contains a sequence of graphs that are generated from sam-
pling snapshots of the graph from a continuously-changing
graph, i.e., a sequence of graphs represent one biological

!

"

$

%

&'

'(')

()

(*

$

%

+

,

()

(*)*

-.

,/0 ,10

)*

)*

2

2

3

!

Figure 2: An instance of graph rewriting rules between
graph G1 and G2.

network that changes its structure over time. First, our ap-
proach learns graph rewriting rules including removals (R i)
and additions (A i) between two sequential graphs Gi and
Gi +1 (�gure 1 (B)), and generates a list of the entire graph
rewriting rules (�gure 1 (C)). Then, the �nal step is to learn
the transformation rules to abstract the structural change
of the dynamic graph based on the repeated patterns in the
graph rewriting rules.

3.1 Graph Rewriting Rules
First, we briey describe graph rewriting rules for our

approach with an example in �gure 2. In our research, a
graph G denotes the directed labeled graph that is de�ned
as G = (V; E; L v (V); L e(E)), where V is a set of vertices,
E is a set of edges. To discover graph rewriting rules be-
tween two graphs, we �rst discover maximum common sub-
graphs (denoted by S) between two sequential graphs G1

and G2 . Then, we derive removal (remainder in G1 denoted
by R) and addition subgraphs (remainder in G2 denoted by
A). Our graph-rewriting rules also contain connection edges.
The connection edges are edges, which are used to link re-
moval (or addition) subgraphs to the original graphs. The
edges with boxed labels in �gure 2 represent the connection
edges betweenG1 (G2) and removal subgraph R (addition
subgraph A). The connection edges are important because
they show how the subgraphs are connected to the original
graphs. There can be more than one connection edge linking
one subgraph to the original graph. The connection edges
represent relations between the learned patterns and other
elements in the input networks.

Formally, we de�ne DG = f G1 ; G2 ; � � � ; Gn g as a dynamic
graph, where each graphGi is a graph at time i for 1 � i �
n. For two consecutive graphs Gi and Gi +1 , we de�ne Si;i +1

as the maximum common subgraph between Gi and Gi +1 .
Si;i +1 can be a disconnected graph, i.e., describing the set

of connected subgraphs common toGi and Gi +1 . Then, we
de�ne a graph rewriting rule GR i;i +1 as follows.

GR i;i +1 = f (R i ; CR i); (A i +1 ; CA i +1)g

Then, a removal subgraph R i and an addition subgraph A i +1

are de�ned as follows.

R i = Gi nSi;i +1 ; A i +1 = Gi +1 nSi;i +1

CR i and CA i +1 are the sets of connection edges forR i and
A i +1 respectively. The graph rewriting rule GR1;2 in �gure
2 can be represented as follows.

GR1;2 = f (R1 ; f (s2; g3; bc); (s2; g4; bd)g);

(A2 ; f (g3; s1; de)g)g;

The graph R1 denotes R (in G1) that is linked by two con-
nection edges labeled by `bc' and `bd'. A2 denotes A (in
G2) that is linked by one connection edge labeled by `de'.
In each edge, sX and gY denote the starting and ending
vertices, where s denotes the vertex in the subgraph and g
denotes the vertex in the original graph.

After iterating this process for n graph, i.e., the entire se-
quence in the dynamic graph, we haven � 1 Rs and n � 1 As
as shown in �gure 1 (C). Here, we consider a set of graphs
L that is a list of graph rewriting rules learned in DG . L con-
tains n� 1 Rs andn� 1 As like L = f R1 ; A 2 ; R2 ; A 3 ; � � � ; Rn � 1

; A n g. We arrange R and A in order of time when the event
occurs.

3.2 Transformation Rules
Next, we discover transformation rules in the learned graph

rewriting rules to abstract the structural changes in the dy -
namic graph as shown in �gure 1 (D). A transformation rule
is de�ned as a pattern in the learned graph rewriting rules,
where the pattern best abstracts (compresses) the learned
graph rewriting rules to best describe structural changes.
More description will be in section 4. If some structural
changes are repeated in the dynamic graph, there exist com-
mon subgraphs in the Rs and As. Then, we can discover the
common patterns over L as our transformation rules. Bio-
logically speaking, if there exists a repeated change of the
structure of a biological network, the change can be an im-
portant pattern in the network. Here, we propose one simple
transformation rule T R, which represents repeated additions
and removals (or vice versa), as follows.

T Re = Subeh+ ta ; � t r i

In the case when the transformation rule represents only
repeated removals (or additions), � t r (or + ta) would be ; ,
like Subh� t r i (or Subh+ ta i). Sub represents a subgraph,
which adds to and/or removes from the graph repeatedly.
+ ta represents the time interval from the last removal to the
current addition, and � t r represents the time interval from
the last addition to the current removal. If + ta is shown
before � t r , the addition precedes the removal. For instance,
Subh+4 ; � 2i denotes a repeated structure added after 4 time
intervals from the last removal and removed after 2 time
intervals from the last addition as shown in �gure 1 (D).
e denotes the number of the transformation rules in one
dynamic graph. There can be multiple patterns over L to
describe the structural change of the dynamic graph, where
the best transformation rule that is labeled as T R1 best
describes the change.

!
"

!
"

#
!

"

!
"

!" !#

$ %

&'

&'

&'

&'

%
$

&(&(

%$

)')(

$%&

$'& $(&

Figure 3: Discovery of the best compressed subgraph in
a set of graphs at iteration 1 (A), 2 (B), and 3 (C).

There are other forms of transformation rules besides re-
peated add/remove rules, such as patterns conditional on
context, i.e., removal/addition of structure X if structure
Y is present (or absent), or patterns that describe numeric
changes in combination with structure, i.e., describing tr ends
of concentration, not just appearance. We will consider
other types of transformation rules in future work.

4. APPROACH
This section describes our approach to analyze dynamic

graphs. We present a two step algorithm: Learning Graph
Rewriting Rules and Learning Transformation Rules. Al-
gorithm 1 learns graph rewriting rules in a dynamic graph
to represent how two sequential graphs are di�erent. Al-
gorithm 2 learns the repeated transformation rules in the
learned graph rewriting rules to describe how the graph
changes over time, where the changes are actually repre-
sented as a sequence of revised graphs. For both algorithms
we rely on a previously-developed method for �nding the
best-compressing subgraph in a set of graphs. For the �rst
algorithm, repeated application of this method allows us to
�nd the set of all subgraphs common to a pair of consecutive
graphs. For the second algorithm this method allows us to
�nd the subgraphs repeatedly added and removed in the dy-
namic graph. While we could use a frequent subgraph miner
[12, 23] for this purpose, experiments have shown that the
best-compressing patterns comparably capture the complete
repeated structural changes [25].

We de�ne the best-compressing subgraphs as those which
minimize the description length of the input graph after be-
ing compressed by the subgraphs based on the Minimum
Description Length (MDL) principle [4, 5]. Formally, the
description length of the substructure S is represented by
DL (S), the description length of the input graph is DL (G),
and the description length of the input graph after compres-
sion is DL (GjS). The approach �nds a substructure S that
minimizes the Compression of the graph de�ned as follows.

Compression =
DL (S) + DL (GjS)

DL (G)

Figure 3 shows an example of the subgraph discovery by this
compression-based approach. First, we can discover four

instances of one common subgraph denoted by a red circle
(A). After discovery, we compress each instance replacing by
one vertex (S1), and we iterate the discovery process. In the
second iteration (B), we discover two instances of the next
common subgraph, and compress them by one vertex (S2).
We stop the iteration because there is no more common
subgraph, i.e., no more compression (C).

4.1 Learning Graph Rewriting Rules

Algorithm 1 : Learning Graph Rewriting Rules
Input: Dynamic graph DG = f G1 ; G2 ; � � � ; Gn g
Output: Rewrite rules L , connection edgesC
1: L = fg ; C = fg
2: for i = 1 to n � 1 do
3: Graphs = f Gi ; Gi +1 g, S = fg
4: while More compression possibledo
5: BestSub = DiscoverCommonSub in Graphs
6: S = S [BestSub
7: CompressGraphs by BestSub
8: end while
9: Find R i = Gi nS and CR i in Gi

10: Add R i into L , and Add CR i into C
11: Find A i +1 = Gi +1 nS and CA i +1 in Gi +1

12: Add A i +1 into L , and add CA i +1 into C
13: end for

Using the compression-based approach (asDiscoverCom-
monSub in the algorithm), we describe our two step algo-
rithm. Algorithm 1 shows the learning graph rewriting rules
algorithm, where the entire algorithm denotes �gure 1 (C)
and the each iteration in the outer loop denotes �gure 1 (B).
First, the algorithm initialize L and C to store removal and
addition subgraphs, and connection edges. At line 3, the al-
gorithm prepares two sequential graphs asGraphs , and then
discovers one common subgraph by the compression-based
approach. After compression, the algorithm discovers an-
other subgraph at the next iteration until there is no more
compression. In this way, the algorithm can discover the
maximum common subgraph between two sequential graphs.
After compressing the two graphs by the maximum common
subgraph, the algorithm identi�es removal (or addition) su b-
graphs and connection edges (lines 9 and 11) using a modi-
�ed Breadth First Search (mBFS), which adds each edge as
well as each vertex into the queues as visited or to be visited.
After compression, each maximum common subgraph is re-
placed by one vertex Si . mBFS starts to search from one
edge linked to Si to �nd one disconnected subgraph, and the
starting edge is added into C. During the search, if there
is one more edge between the disconnected subgraph and
maximum common subgraph, the edge becomes the other
connection edge. In this way, mBFS can �nd all discon-
nected subgraphs (without considering the link by the con-
nection edges), and they become removal (or addition) sub-
graphs. mBFS stops the search when all connected edges
are added in C. For example, in �gure 3 (C), mBFS starts
from one edge linked to S2 (in case of G1 , choosee1), and
these starting edges are added into in C. Since there is one
more linked edge (e2) to S2 in case of G1 , e2 is added into
C. Then, there is no place to visit from the vertex E , E
becomes a disconnected subgraph as an addition subgraph.
Since there is no place to visit from the vertex F in G2 , F
becomes a disconnected subgraph as a removal subgraph.

In this way, mBFS identi�es removal subgraphs R i and ad-
dition subgraphs A i +1 with connection edges. The output
of Algorithm 1 includes L and C. L and C are bijective.
L = f R1 ; A 2 ; � � � ; Rn � 1 ; A n g is used in Algorithm 2 as an
input. C = f CR 1 ; CA 2 ; � � � CR n � 1 ; CA n g is used to visual-
ize the relations between the learned subgraphs and original
graphs.

4.2 Learning Transformation Rules

Algorithm 2 : Learning Transformation Rules
Input: L , Iter
Output: BestCommonSubs,ListOfDist
1: while More compression possible andIter > 0 do
2: BestSub = DiscoverCommonSub in L
3: Add BestSub into BestCommonSubs
4: Calculate distance between instances ofBestSub
5: Add distance into ListOfDist
6: CompressL by BestSub
7: Iter = Iter -1
8: end while

From the result of Algorithm 1, we try to discover re-
peated rewrites as our transformation rules to better un-
derstand how graphs change over time as shown in �gure 1
(D). The input L contains 2(n � 1) graphs: n � 1 Rs and
n � 1 As. Note that each example (each R or A) contains
one or more graphs, which may not be connected to each
other. We then use DiscoverCommonSub again to �nd com-
mon subgraphs in L (line 2). As described in �gure 3, the
best common subgraph in L represents the subgraph in our
transformation rule. We calculate the temporal distance
between two consecutive instances of the best-compressing
subgraphs to describe the time at which the removal (or ad-
dition) occurs after the previous addition (or removal) at
line 4. After the discovery of the common subgraph, L is
compressed by this subgraph (line 6), and the discovery pro-
cess is iterated until no more compression is achieved or we
reach a user-de�ned limit Iter on the number of iterations.
When the best subgraph at a latter iteration includes the
best subgraph from a former iteration, the results can show
the latter best subgraph includes a previously-learned sub-
graph that is replaced by one vertex. More detail will be
described with examples in the results section. In T Re, the
e denotes the number of iterations. If a transformation rule
is discovered in the �rst iteration, the rule is labeled as T R1

that is the best subgraph in L . If I ter is not speci�ed, Al-
gorithm 2 �nds all possible T R in L .

4.3 Complexity Issue
One challenge of our algorithm is to discover maximum

common subgraphs between two sequential graphs, because
this problem is known to be NP-complete [8]. To address
this issue we use a parameter,limit , in DiscoverCommonSub
to restrict the number of substructures to consider in each
iteration. We can express the Algorithm 1's total runtime
as N1 = NDCS (T � 1), where NDCS is the runtime of Dis-
coverCommonSub and it runs for T-1 times. Algorithm 2's
running time is dominated by NDCS . NDCS is restricted by
limit that is calculated based on input data, speci�cally, the
number of unique vertex and edge labels. A previous work
[6] shows NDCS running with a fully-connected graph in
time polynomial with limit . We can avoid the worst case in

our domain, because biological networks are usually sparse
graphs and there are not many instances due to plenty of
unique labels. But we still need to pursue reducing the
running time for other domains. Also, our algorithm does
not try to discover the entire set of maximum common sub-
structures at once. In each step, the algorithm discovers a
common, connected substructure and iterates the discovery
process until discovering the entire set.

Graphs that represent biological networks usually contain
unique vertex labels, because each vertex label usually de-
notes the name of the molecule. Because the maximum com-
mon subgraph problem in graphs with unique vertex labels
is known to have quadratic complexity [7], discovery of the
graph rewriting rules is still feasible. However, there wil l be
a tradeo� between exactness and computation time when
analyzing very large graphs.

4.4 Evaluation Metrics
We use two metrics to evaluate the learned transformation

rules. The �rst metric is Coverage that represents how well
the rule describes the changes in the graphs. TheCoverage
of the BestSub discovered at iteration i in Algorithm 2 is
computed as follows.

Coverage=
size(BestSub)

P
g2 coveredAs;Rs

1
size (g)

2(n � 1)

where the covered As and Rs are the addition and removal
subgraphs in L that contain BestSub. The size of a graphG
is calculated as size(G) = jV j + jE j. These graphs are e�-
ciently identi�ed during the discovery of BestSub, avoiding
the need for costly subgraph isomorphism tests. Coverage
represents the portion of the learned subgraphs (the re-
moval or addition subgraphs) described by the transforma-
tion rule to be based on BestSub. For example, suppose we
have n = 3 graphs from which we �nd two graph-rewriting
rules. Then, we have two removal and two addition sub-
graphs. Assume the size ofR1 is 10, R2 is 12, A2 is 10,
and A3 is 15. Also assume the BestSub is found in R1

and A2 , the BestSub has a size of 5. Coverage is com-
puted as 5(1 =10+1 =10)

4 = 0 :25. Higher Coverage indicates
the subgraph can describe more signi�cant (larger portions
of) changes. Currently, Coveragedoes not consider the size
of connection edges (jCj). Unless the subgraph is isomorphic
with all AGs and RGs, Coverage < 1.

We de�ne P rediction as our second metric to evaluate the
prediction capability of the learned transformation rules as
follows.

P rediction =

P
i 2 P d(RealSubi ; P redictedSubi)

jP j

P is the set of positions where we predict the P redictedSubi

will show up, RealSubi is the actual subgraph found at po-
sition i, and d(Gm ; Gn) is de�ned as follows.

d(Gm ; Gn) =
jmcs(Gm ; Gn)j

jGm [Gn j

d(Gm ; Gn) is a graph distance metric by Bunke et. al. [2,
18], where mcs(Gm ; Gn) denotes the maximum common
subgraph between Gm and Gn . In contrast to their work
that de�nes the size of G as the number of vertices in G, we
consider the number of vertices and edges de�ned in the pre-
vious paragraph. If two graphs Gm and Gn are isomorphic,
d(Gm ; Gn) = 1. For example, d(G1 ; G2) in �gure 3 is 11 =16,

!"#$"%

!"#"$%&'#"()#*

+*,#-$%&+#"#

+*,#-$%&./#0(

!"

!#$"

!#%"

!#&"

!#'"

("

Figure 4: The generation of a dynamic graph in combi-
nation with the data of the dynamic properties. If the
data of the dynamic properties has n time slices, the
dynamic graph has n graphs.

where mcs(G1 ; G2) = 11 and jGm [Gn j = 16. P rediction
represents how much the predicted subgraph covers the sub-
graphs in the testing experiments. For example, suppose we
predict a subgraph s will be shown 3 times in the testing
data. Then, we discover the subgraph rs that is partially
di�erent from s at one time point ((Grs ; Gs) = 0 :5), and iso-
morphic subgraphs with s at another time point. P rediction
is computed as 0:5+1 :0+0

3 = 0 :5. Currently, our P rediction
measure is not for a temporal prediction, i.e., the exact tim e
the subgraph appears, but for a sequential prediction, i.e.,
whether the correct sequence of the subgraphs appears.

5. EXPERIMENTS AND RESULTS
We perform four experiments to evaluate our approach

using three ways: arti�cial generation, and combinations
with two real world data sets. We generate a static graph
representing the biological networks from the KEGG PATH-
WAY data [9], where vertices represent compounds, genes,
enzymes, relations and reactions, and edges represent rela-
tionships between vertices. Then, we use our data sets to
transform the static graph to a dynamic graph as shown in
�gure 4. In the arti�cial generation, we use a real biologica l
network, but we remove and add some subgraphs manually
to generate the dynamic graphs. In the real world data, we
use the KEGG data [9] in combination with additional data
to generate dynamic graphs. Because the KEGG data con-
tains only the static structure of pathways, we need to use
additional data including dynamic properties of pathways.
We refer to results of two researches: one for the cell cycle
signaling pathway with mathematical modeling [16] and the
other for metabolic pathways with microarray data [22].

5.1 Arti�cial Generation
The biological network used in the arti�cial generations

is the Notch signaling pathway in humans generated from
the KEGG data. The Notch signaling pathway contains 46
genes in our experiments, and we assume that each gene
can be shown at most once at each time slice. First, we
create one list that contains the names of 46 genes, and
then duplicate the list for 20 time slices. For varying sever al
conditions, we remove one or more genes at speci�c times.
Because of the biological semantics, the removal of even one
gene can cause the removal of one or more larger subgraphs.
We generate four dynamic graphs, each of which has 20 time
slices. The size of each dynamic graph varies: 3,380 (164 to
177) for NA , 3,350 (149 to 174) for NB , 2,733 (102 to 174)

Table 1: Coverage of the best subgraphs in Arti�cial
Data. Data denotes the arti�cial biological networks.
The number in each iteration denotes x (y), where x de-
notes the number of the discovered subgraphs and y de-
notes the Coverage by the best subgraph discovered at
the iteration. Total denotes the total Coverage.

Data T R1 T R2 T R3 Total
NA 19 (1.0) NA NA 1.0
NB 9 (1.0) NA NA 1.0
NC 8 (0.16) 4 (0.032) 10 (0.05) 0.242
ND 6 (0.15) 5 (0.125) 2 (0.045) 0.320

!"#$%&'(

)*+,-)

../)0$112

../)0$112

34/)0$112 34/)0$112 ../)0$115

../)0$115

../)0$111

3678649)067864

9)067864

467869)0 467869)0 9)067864

9)067864

467869)0

Figure 5: The best subgraph discovered in the graph
rewriting rules of the dynamic graph NB .

for NC and 3,332 (152 to 174) for ND . The numbers in ()
denote the minimum size and maximum size of a graph in a
dynamic graph respectively.

The goal of the arti�cial generation experiment is to iden-
tify the strengths and weaknesses of our approach. Table 1
shows the coverage of the best subgraph (our rule) discov-
ered at each iteration of Algorithm 2. The �rst two dynamic
graphs, NA and NB , can be represented by one transforma-
tion rule, because the removals and additions are simple and
regular. Generally, the structural change in the dynamic
graph is represented by multiple transformation rules like
NC and ND . For example, NC is represented by T R1 as
a portion of the coverage 0.16. But NA is fully covered by
T R1 , i.e., T R1 can describe the whole structural change.

Figure 5 shows the best subgraph discovered in theNB

experiments. The instances of the best subgraphs are discov-
ered in the 9 examples (4 removals and 5 additions). \GErel"
denotes the relation between a gene and protein, and \PPrel"
denotes the relation between two proteins. Therefore, the
enzyme generated by a gene, hsa:3516, has 7 relations, such
as 2 relations to other genes and 5 relations to other pro-
teins. The transformation rule including this subgraph can
be visualized as shown in �gure 6. The above rhombuses de-
note the removals at the speci�ed time. The below eclipses
denote the additions at the speci�ed time. The numbers on
the arrow denote the temporal distance between two events:
removals and additions. The �rst addition occurs at time
1, and the �rst removal occurs after 3 time intervals. From
the �rst addition at time 1 to the last addition at time 17,
every removal is repeated after 3 time intervals from the las t
addition, and every addition is repeated after 1 time interv al
from the last removal. The repeated transformation rule can
be represented as shown in �gure 6 and can be expressed as
T R1 = Sub1h+3 ; � 1i .

As described in section 4.2, �gure 7 shows an example of
a previously-learned subgraph that Sub2 includes Sub1 dis-

!

" # !$!%

& ' !(!)

! " ! ! " ! ""

Figure 6: Visualization of transformation rules includ-
ing the subgraph in �gure 5.

!"#$"%
&$'($)*)#

+,-".

)/0'

12345657

&$'($)*)#!"#$"%

!"#$% !"#$&

89$:(1234.;<6

)/0'

Figure 7: Two best subgraphs discovered in ND . Sub1

is discovered at times 3, 5, 8, 10, 15, and 18, and Sub2 is
discovered at times 3, 5, 8, 15 and 18. Sub1 is included
into Sub2 as a previously-learned subgraph.

covered in ND . At the �rst iteration (as T R1), the �rst sub-
graph (Sub1) is discovered at times 5, 10, 15 as removals and
at times 3, 8, 18 as additions. Then, this subgraph is com-
pressed and replaced by one vertex labeled by \Sub1". At
the second iteration (as T R2), the second subgraph (Sub2)
is discovered at times 5, 15 as removals, and at times 3, 8, 18
as additions. BecauseSub2 includes Sub1 , Sub1 is included
into Sub2 as a vertex \Sub 1". In �gure 7, the dashed-line ar-
row represents a pointer to the previously-learned subgraph
Sub1 from Sub2 . Biologically hsa:1387 in Sub1 and hsa:9794
in Sub2 are included into a \group" (Sub1) as \component"s.

Here, we discuss the advantage of the compression-based
subgraph discovery. In NC , the �rst best subgraphs are
discovered 8 times. Actually, the third best subgraphs are
discovered 10 times. Because theCompression of the �rst
subgraph is better than the Compression of the third sub-
graph, our approach prefers the �rst subgraph. A frequency-
based approach would prefer the third subgraph. The size of
the �rst subgraph is 51, and the size of the third subgraph is
5. Also, the Coverage (0.16) of the �rst subgraph is larger
than the Coverage (0.05) of the third subgraph. For this
reason, the compression-based approach can be more use-
ful than frequent graph mining in the analysis of dynamic
graphs. The detailed comparison results are in [25].

5.2 Mathematical Modeling
We also apply our approach to a dynamic graph based on

the mathematical modeling data. The dynamic graph rep-
resents the cell cycle signaling pathway [16]. The cell cycle
signaling network in our experiment contains 14 molecules
(genes and compounds) and 11 reactions between molecules.
We use a threshold th to activate each compound or gene.
At each time, a compound or gene, which has more than th
amount, is shown in the graph. In other words, the biological
network contains a portion of the 14 molecules with related
reactions at each time. We normalize the concentrations of
14 molecules from 0 to 1, because we are focused on trends
in the changes, and the concentrations of di�erent molecule s
vary signi�cantly. Because the simulation is performed for
700 seconds and we take a snapshot at every 10 seconds, we
have 51 time slices (t = 1 to 51) of data for training and the
following 20 time series for testing.

Table 2: Results of the prediction experiments with the modi�ed mode l. Name denotes the name of the case. Variable
denotes the name of the modi�ed parameter. Mod. denotes the m odi�cation (X/Y), where X denotes the new value
and Y denotes the default value. Size denotes the size of each dynamic graph. Transformation Rule denotes the
learned transformation rule. Sub1 size denotes the size of t he subgraph in the transformation rule. Coverage denotes
the Coverage of the learned rule, and Prediction represents the P rediction of the learned rule.

Name Variable Mod. Size Transformation Rule Sub1 size Coverage Prediction
M 1 k1 200/300 645 Sub1h+8 ; � 0i 27 0.115 1.0
M 2 k2 3/5 1541 Sub1h+5 ; � 1i 30 0.153 0.962
M 3 k4 50/30 835 Sub1h+13 ; � 0i 27 0.051 1.0
M 4 k5 0.2/0.1 1530 Sub1h+5 ; � 1i 25 0.155 1.0
M 5 k7 6/10 1880 Sub1h+6 ; � 4i 28 0.084 1.0
M 6 k8 60/100 1007 Sub1h+9 ; � 0i 27 0.080 0.864
M 7 k10 20/10 1741 Sub1h+5 ; � 2i 27 0.119 0.852
M 8 k11 0.5/1 1003 Sub1h+10 ; � 0i 27 0.066 0.944
M 9 k2u 300/50 886 Sub1h+19 ; � 0i 27 0.033 1.0
M 10 tau 15/25 1402 Sub1h+4 ; � 0i 27 0.185 1.0

Average 0.1041 0.962

!"#$%&'("#)*+',-".)/$,01

("#)*+',-".)/$,0123&456',0,27

!"#$%8',0,

!"#$%&'9'&456',0,27

!"#$%&':++9
!"#$;1&';-/

!"#$,1<%(")*+',-".)/$,01

!"#$%&',-".)/$,01',1<

!"#$,1<'0+=>?@

!"#$("#)*+',-".)/$,01'0+=>?@

&456':++9

,-".)/$,01'&456,1<
!"#'#5'!

!"#'#5'A

!"#'#5'A

!"#'#5'A
!"#'#5'A !"#'#5'A

!"#'#5'!
!"#'#5'A

!"#'#5'&

!"#'#5'!

!"#'#5'&

!"#'#5'&

!"#'#5'&

!"#'#5'!

Figure 8: The best subgraph (Sub1) discovered in T R1 .

Figure 8 shows the best subgraph (Sub1) in T R1 discov-
ered at 16 time slices as visualized in �gure 9 (A). The
vertices containing \Rct" in the labels denote reactions li ke
\Rct:+p CDC". The vertices without \Rct"denote molecules
(genes or proteins). The three edges, \Rct to R", \Rct to P"
and \Rct to M", denote how the molecules are related to
the reactions as reactant, product and modi�er respectivel y.
These results are biologically signi�cant, because they de-
scribe the repeated structural changes in the networks. Qu
et al. [16] describe periodic changes of molecules (i.e., amount
of molecules). Speci�cally, they mention several molecules
such as Active Cyclin:CDK and Free Cyclin that show pe-
riodic increase and decrease, where the cycles correspond
to the change of the cell size. Figure 9 (A) shows the sub-
graph including Active Cyclin:CDK, that is added and re-
moved periodically corresponding to periodic changes in the
amount of the molecule. In addition, �gure 8 show how the
changes are related to other elements (i.e., which elements
are removed or added at the same time) as shown in the dis-
covered subgraphs and how the subgraphs are linked to the
original graphs. Our results show patterns in the structura l
changes, not merely changes of amount.

The Coverage is calculated as 0.181. Based on this rule,
we predict the future change as shown in �gure 9 (B). We
predict 6 graph rewriting rules (future changes), as we choose
the predicted temporal distance based on the distances ob-
served in training. The temporal distance and graph rewrit-
ing rules denoted by the bold fonts represent the same pat-

!"

!#

!

!$

"

%& &"

#

%% %' &$

#" "

%

&

" #

'

"

!"

!

#$ ("

"

#% #&

"! !

!"# &()&

)%)'

! #"

#"

""

!#

"
!$#

Figure 9: Visualization of the graph rewriting rules in-
cluding the subgraph in �gure 8 in the training data (A)
and the testing data (B).

terns with the testing data. 5 patterns out of 6 predictions
are same as training data. The only 6th pattern at time
70 is a non-isomorphic graph with Sub1 . d(Sub1 ; R70) is
computed as 0.833, and theP rediction is 0.972.

5.3 Prediction Experiment
Next, we process a simple prediction experiment. Because

our research is focused on patterns in graph rewriting rules
(i.e., patterns in structural changes), we can predict whic h
graph rewriting rules appear (i.e., which structural chang es
occur). To evaluate prediction ability of the learned trans -
formation rules, we perform ten prediction experiments us-
ing the above modeling data.

We modify some initial parameters in the model to gener-
ate di�erent dynamic graphs. The modi�ed parameters and
values are shown in table 2. Like the above modeling exper-
iment, we use 51 time series as training and 20 time series as
testing. Table 2 shows the results. M 1 shows the transfor-
mation rule Sub1h+8 ; � 0i that describes Sub1 is added after
8 times from the last removal and is removed right after the
last addition. For example, Sub1 is added at time 12 (during
the time from 11 to 12), and is removed at time 12 (during
the time from 12 to 13).

As shown in table 2, the averages of the rule coverage and
prediction coverage are larger than 0.9, indicating that ou r
approach is able to learn accurate rules across the di�er-
ent conditions yielding di�erent dynamic graphs. In case of
the M 1 , M 3 , M 5 , M 6 and M 8 , they show relatively small
coverage, because some elements in the best subgraph are

Table 3: Dynamic graphs of metabolic pathways and results. Name deno tes the KEGG IDs of pathways represented by
the dynamic graphs. The second to �fth column show the inform ation of pathways, such as the number of compounds
(cpd), genes (gene), reactions (rct) and relations (rel). M ax. denotes the maximum size of one graph in the dynamic
graph. Min. denotes the minimum size of one graph in the dynam ic graph. Total denotes the size of the dynamic
graph. Rule denotes the subgraph is included in the transfor mation rule. Coverage denotes the Coverage of the
transformation rule. Run denotes the running time (seconds).

Name # cpd # gene # rct # rel Max. Min. Total Rule Coverage Run (sec.)
00020 20 30 17 73 251 46 3,483 Sub3 0.024 10.14
00230 73 172 70 161 618 134 7,861 Sub2 0.048 138.78
00330 19 14 21 25 176 60 3,528 Sub1 0.055 11.78
00564 23 23 21 38 203 56 3,695 Sub4 0.027 12.67

!"#$%!

%&'()"*+,-%'-."/ %&'()"*+,-%'-."/

%&'()"*+,-%'-."/

012-13!(

012-13!(

012-13!(

4.567

48917

,'/+:;;7<<

="+3;7;><

?,!+@AB<C<D '&2E+?,!;;<<;

,'/+:;;7FG
H&(.!

H&(.!

H&(.!

3,212-1:I12-10

012-13,2

3!(12-10

:12-13,24.56J

Figure 10: Two best subgraphs discovered in the exper-
iment of the TCA cycle with the microarray data. Sub1

is included into Sub3 as a previously-learned subgraph.

removed (or added) separately. The detail discussion of this
problem is in [25]. M 9 contains the entire sequence of discov-
ered subgraphs in the transformation rule, but the oscillat ion
in M 9 shows only two cycles. In most cases, the oscillation
shows more than 5 cycles (i.e., �gure 9). Our algorithm can
predict the future structural changes from the learned tran s-
formation rules of the graph rewriting rules that represent
the structural changes of dynamic graphs. We will compare
our result with other approaches in the future work.

5.4 Microarray Data
Now, we show the result of the dynamic graphs based on

microarray data. Table 3 shows brief information of the dy-
namic graphs and results. In previous results we showT R1 .
Here, it is a little bit di�erent, because the pathway is bigg er
than the previous cases and contains many redundant labels.
In the aspect of the dynamic graph mining, T R1 including
Sub1 best describe the structural change. Biologically, T R1

is too general to describe the structural change. In �gure 10 ,
Sub1 that is discovered 46 times at 20 time points contains
only general information: three maplink-relations (relat ion
between a gene (protein) and pathway) and one enzyme.
Without any speci�c name of gene or pathway, Sub1 repre-
sents too general information. For this reason, we showSub3

(as T R3) in �gure 10 that contains any speci�c name of the
gene, because our microarray data represent the trends of
the gene expression values, and the gene is the only infor-
mation that can be changed over time. Sub1 is included into
Sub3 as a previously-learned subgraph. Sub3 includes one
gene (YPL262W) and one pathway (sce00220) and one re-
action (R01082) and two compounds (C00122 and C00149).

&'(%.9:1;<=

(5678(

,-&'(%.C0+*+34

,-(5678(4

!"#$%&'())A2)

!"#$%&'())AA)

,-'!F%=))1++4

,-'!F%=1*+2;4

,-8"!IL5M%'J8!JK5F4

,-8"!IL5M%'J8!JK5F4

,-8"!IL5M%'J8!JK5F4

,->O#JOG4

,-Q"IK(4
,-GO#JO:(I4

,-Q"IK(4

,-GO#JO:(I4

N:(IO#JOGP

,-Q"IK(4

,-GO#JO:(I4
N:(IO#JOGP

!"#$$%&$

!"#$$%%$
'()*+*,

-$$.**

!"#

!$#

Figure 11: (A) A visualization of Sub3 in �gure 10. (B)
Sub3 on a portion of the TCA cycle pathway map.

Sub3 is discovered as removals at time 14, 23, 26 and as
additions at time 2, 23, 25. Because the original microar-
ray research [22] has only 36 time series, we do not perform
the prediction task. But this experiment shows that our ap-
proach can be applied to real data, because the microarray
data is generated from the yeast cells. The original result of
microarray shows more than 50% of genes have three peri-
odic cycles in the gene expression. In our experiment, the
appearance of most learned graph rewriting rules in four
pathways also shows three periodic cycles likeSub3 .

Figure 11 shows the visualization of Sub3 from �gure 10
to describe biological meaning of structural patterns. (A)
shows an addition rule in our output, and (B) shows the
same rule marked on the KEGG pathway map [9]. The la-
bels marked by \+[] (-[])" represent the labeled vertices an d
edges belonging to the subgraphs of addition rules (removal
rules). Connection edges between the discovered substruc-
tures and original graphs are marked by \()". In �gure 10,
we can notice the three edges labeled by \value" linked to
C00122, which are from the three\maplink"vertices in Sub1 .
These three edges are marked by the red boxes in �gure
11 (A). The maplink denotes a relation between one gene
(X) in a pathway (Y) and another pathway (Z). The com-
pound that is linked to \maplink"-relation by \value" edge
denotes a compound shared in two pathways (Y and Z).
Precisely, the compound has two relations with a gene (X)

and another gene (that cannot be known at this point) in
pathway (Z). Figure 11 (A) can help us understand these
relationships. C00122 is added at time 25 with relations to
three maplink-relations. Two relations out of three maplin k-
relations are connected to the other two pathways (sce00330
and sce00350) marked by the blue eclipses. These two path-
ways are not marked by \[]" or \()", because they already
exist before time 25. In other words, Sub3 is added at time
25, and connected to two pathways by two connection edges.

Microarray data [22] can show three periodic cycles in the
change of the gene expression values. Our approach also can
discover three periodic cycles of removals and additions of
the genes (i.e., YPL262W). In addition to the three periodic
cycles of removal and addition of one element, our results
also show what other elements are related to the removed
(or added) genes, i.e., how the removed (or added) genes
relate to others in the pathway. The connection edge can
help us understand how the learned subgraphs relate to the
original graph at each time.

6. CONCLUSION
This research introduces the use of graph rewriting rules

to describe structurally changing networks, and more gen-
eral transformation rules abstracting the graph rewriting
rules. We also present a two step algorithm to discover
graph rewriting rules and transformation rules in a dynamic
graph. The algorithm is evaluated with the dynamic graphs
representing the biological networks in combination with t he
arti�cial generation, mathematical modeling and microar-
ray data. The graph rewriting rules show how one graph is
transformed into another. The learned transformation rule s
over the graph rewriting rules can describe repeated patterns
in the series of the structural changes.

Our results show important patterns in the dynamics of
biological networks, for example, discovering known patte rns
in the various networks. Results also show the learned rules
accurately predict future changes in the networks. The con-
nection edge can help us understand how the learned sub-
graphs relate to the original pathway at each time. Our
approach also helps us visualize the change of subgraphs at
each time to show how the networks structurally change,
helps us better explore how networks change over time, and
guides us to understand the structural behaviors of the dy-
namic network.

For our future work we will explore a better approach to
learn transformation rules that can cover graph rewriting
rules that are divided over several consecutive time slices.
Also, our prediction measure needs to include a temporal
distance factor to better evaluate rules in terms of predict ing
the precise time at which a change occurs.

7. REFERENCES

[1] H. Bunke, M. Kraetzl, P. Shoubridge, and W. Wallis.
Detection of abnormal change in time series of graphs.
J. of Intercon. Net. , 3, Nos 1+2:85{101, 2002.

[2] H. Bunke and K. Shearer. A graph distance metric
based on the maximal common subgraph. Pattern
Recogn. Lett., 19(3-4):255{259, 1998.

[3] H. Causton, J. Quackenbush, and A. Brazma. A
Beginner's Guide Microarray Gene Expression Data
Analysis. Blackwell, 2003.

[4] D. Cook and L. Holder. Substructure discovery using
minimum description length and background
knowledge. Journal of AIR , 1:231{255, 1994.

[5] D. Cook and L. Holder. Graph-based data mining.
IEEE Intelligent Systems , 15(2):32{41, 2000.

[6] D. Cook, L. Holder, and S. Djoko. Scalable discovery
of informative structural concepts using domain
knowledge. IEEE Expert , 11:59{68, 1996.

[7] P. Dickinson, H. Bunke, A. Dadej, and M. Kraetzl. On
graphs with unique node labels. In IAPR-GBR , 2003.

[8] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. Freeman, 1979.

[9] KEGG. http://www.genome.jp.
[10] M. Koyuturk, A. Grama, and W. Szpankowski. An

e�cient algorithm for detecting frequent subgraphs in
biological networks. In ISMB , 2004.

[11] J. Kukluk, C. You, L. Holder, and D. Cook. Learning
node replacement graph grammars in metabolic
pathways. In BIOCOMP , 2007.

[12] M. Kuramochi and G. Karypis. Frequent subgraph
discovery. In ICDM , 2001.

[13] M. Lahiri and T. Berger-Wolf. Structure prediction in
temporal networks using frequent subgraphs. In
CIDM , 2007.

[14] M. Lahiri and T. Berger-Wolf. Mining periodic
behavior in dynamic social networks. In ICDM , 2008.

[15] D. J. Lockhart and E. A. Winzeler. Genomics, gene
expression & DNA arrays. Nature, 405:827{ 836, 2000.

[16] Z. Qu, W. MacLellan, and J. Weiss. Dynamics of the
cell cycle: checkpoints, sizers, and timers.Biophys J,
85(6):3600{11, Dec 2003.

[17] J. F. Roddick and M. Spiliopoulou. A survey of
temporal knowledge discovery paradigms and
methods. IEEE TKDM , 14(4):750{767, 2002.

[18] P. Shoubridge, M. Kraetzl, W. Wallis, and H. Bunke.
Detection of abnormal change in a time series of
graph. J. of Intercon. Net. , 3:85{101, 2002.

[19] J. Sun, C. Faloutsos, S. Papadimitriou, and P. S. Yu.
Graphscope: parameter-free mining of large
time-evolving graphs. In SIGKDD , 2007.

[20] J. Sun, D. Tao, and C. Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In SIGKDD , 2006.

[21] H. Tong, S. Papadimitriou, J. Sun, P. S. Yu, and
C. Faloutsos. Colibri: Fast mining of large static and
dynamic graphs. In SIGKDD , 2008.

[22] B. Tu, A. Kudlicki, M. Rowicka, and S. McKnight.
Logic of the yeast metabolic cycle: Temporal
compartmentalization of cellular processes. Science,
310, 2005.

[23] X. Yan and J. Han. gspan: Graph-based substructure
pattern mining. In ICDM , 2002.

[24] C. You, L. Holder, and D. Cook. Application of
graph-based data mining to metabolic pathways. In
ICDM Workshop on DMB , 2006.

[25] C. You, L. Holder, and D. Cook. Graph-based data
mining in dynamic networks: Empirical comparison of
compression-based and frequency-based subgraph
mining. In ICDM Workshop on ADN , 2008.

