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Abstract—Smart homes equipped with anonymous binary sensors offer a low-cost, unobtrusive solution that powers activity-aware
applications such as building automation, health monitoring, behavioral intervention, and home security. However, when multiple
residents are living in a smart home, associating sensor events with the corresponding residents can pose a major challenge. Previous
approaches to multi-resident tracking in smart homes rely on extra information, such as sensor layouts, floor plans, and annotated
data, which may not be available or inconvenient to obtain in practice. To address those challenges in real-life deployment, we
introduce the sMRT algorithm that simultaneously tracks the location of each resident and estimates the number of residents in the
smart home, without relying on ground-truth annotated sensor data or other additional information. We evaluate the performance of our
approach using two smart home datasets recorded in real-life settings and compare sMRT with two other methods that rely on sensor
layout and ground truth-labeled sensor data.
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1 INTRODUCTION

SMART homes offer a promising technology that com-
bines sensor networks and artificial intelligence algo-

rithms to improve the living experience and productivity
of residents. With the ability to comprehend and predict the
daily activities of residents, smart homes can offer context-
aware services such as home automation and health mon-
itoring. Home automation services can reduce energy con-
sumption and improve living comfort for residents by an-
ticipating their behavior inside the smart home. In the case
of health monitoring, smart homes are capable of detecting
behavior patterns that indicate sudden or gradual changes
in cognitive, mobility, and physical health states. Because a
majority of existing smart home research is limited to single-
resident environments, there remains a challenge of how to
extend this work to encompass multi-resident scenarios.

In this paper, we introduce a method to tackle the multi-
resident tracking problem in smart homes. This includes
both estimating the number of active residents in the en-
vironment as well as associating sensor data with residents.
One of the major challenges in multi-resident scenarios is
associating sensor data with the corresponding individuals
who caused the change in state. One solution to this data
association problem, and to resident tracking in general,
is attaching tracking devices, including mobile phones or
smart watches, to smart home residents. In these cases, the
residents are responsible for correctly wearing the devices
at all times and they cannot share their devices with other
residents. Those additional constraints on the residents are
usually inconvenient in practice and not reliable in real-life
deployment. Moreover, such user-specific sensor devices are
tailored toward monitoring one person’s movements rather
than all of the activities that occur within the space, which
represents valuable information for recognition and analysis
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of daily activities. Surveillance cameras, on the other hand,
offer rich information that can be used to recognize the
resident in the video as well as infer the activity that is being
performed. Multiple data fusion and tracking algorithms
have been proposed in the literature to identify and track
each resident in multiple video streams [1], [2], [3], [4].
However, in addition to facing challenges with lighting and
obstruction, cameras are often considered too intrusive to be
used in homes due to privacy concerns.

Ambient sensors, which include motion sensors, door
sensors, temperature/light sensors, and contact-based item
sensors, offer a low-cost and less-intrusive solution for smart
home applications. As the data collected by these sensors
are not associated with any specific resident, the data asso-
ciation problem presents a major challenge when multiple
people are present in the smart home at the same time.
Association can be simplified by assuming that the number
of residents in the space is constant. Another simplification
is to take advantage of additional information that may be
available, such as the floor plan of the smart home and
the position of sensors in the space. However, in reality,
the number of residents in the smart home may change
when neighbors, friends or family members come to visit
and information about floor plans and sensor layouts may
be impractical to obtain in real-life deployments. In contrast
to prior approaches, our proposed multi-resident analysis
strategy focuses on tracking smart home residents and
associating residents with the sensor data they trigger. We
acomplish this without additional information such as the
floorplan or sensor layout, while at the same time estimating
the number of residents that currently inhabit the smart
home.

Here we introduce sMRT, an algorithm that performs
multi-resident tracking in smart environments. Instead of
requiring a floorplan and sensor map, sMRT learns the
spatiotemporal relationship between ambient sensors from
available unlabeled sensor data. Based on the learned re-
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lationships, sMRT then applies a multi-target Gaussian
mixture probability hypothesis density (GM-PHD) filter to
estimate the number of residents that are currently present
in the smart home, track their locations, and associate each
of them with triggered sensor events.

To validate the approach, we evaluate sMRT using
data collected from actual smart homes with ground truth-
labeled resident data associations. We compare the perfor-
mance of sMRT with both a local nearest neighbor tracker
and a global nearest neighbor tracker, both of which utilize
a hand-crafted actual sensor layout of the smart home.
We evaluate performance both for tracking accuracy and
accuracy of estimating the number of residents present in
the smart home at any given time. The result shows that
the sMRT algorithm achieves a comparable accuracy than
alternative approaches. Additionally, sMRT offers the ability
to concurrently estimate the number of residents.

2 RELATED WORK

Passive ambient sensors offer an unobtrusive technology for
monitoring the daily routine of smart home residents. Past
research has shown that these sensors provide the infor-
mation needed for activity recognition [5], [6], [7], [8], [9],
activity forecasting [10], [11], [12], and activity-aware appli-
cations. Example activity-aware applications include health
monitoring [13], [14], [15], [16], [17], [18], [19], behavior
intervention [20], home security [21], [22], [23], and building
automation [24], [25], [26], [27], [28]. However, in a multi-
resident scenario, the sensor events recorded in a smart
home need to be segregated into multiple tracks before
being consumed by the activity-aware applications. Each
track is composed of a series of sensor events corresponding
to one of the residents inhabiting the smart home.

Past related research has built a foundation for multi-
resident tracking in smart homes. The multi-resident track-
ing problem is usually formulated as a data association
problem between sensor events and the residents inhab-
iting the smart home. The tracking approaches proposed
in the literature vary depending on the assumptions of
information availability. Some work assumes that the floor
plan and location of sensors deployed in the smart homes
are readily available. Other work assumes that the activity
and motion model of each resident or all residents in the
smart home can be constructed using annotated data or
through controlled experiments. The multi-resident tracking
problem can be greatly simplified if the number of residents
in the smart home is known a priori. In this section, we
provide a discussion of each of these research directions.

Both Wilson et. al. [29] and Hsu et. al. [30] focus on
the design and training of a behavioral model to solve the
resident tracking and activity recognition problems simulta-
neously in a smart home inhabited with multiple residents.
In both works, the number of residents in the smart home is
specified a priori and remains constant. Provided annotated
data, Wilson et. al. [29] train a hidden Markov model (HMM)
in which the hidden states represent both the activity and
the location of all residents while the observable states
map to all the sensors deployed in the smart home. The
data association problem is thus equivalent to the HMM
inference problem and is solved using a Rao-Backwellised

particle filter (RBPF). Similarly, based on annotated data
Hsu et. al. [30] train three conditional random fields (CRF)
to model the relationship between activities, residents, and
sensor events. The data association problem is solved using
an iterative inference algorithm.

Crandall and Cook [31], [32], on the other hand, formu-
late the problem of associating sensor events with smart
home residents as a multi-class classification problem. Given
annotated data and a fixed number of residents to track,
a naı̈ve Bayes classifier and a Markov model classifier are
trained to predict the associated resident with a series of
sensor events as the input. Their work concludes that there
are subtle differences between multiple people performing
the same activity in the same environment and such differ-
ences can be detected using machine learning algorithms.

Other work focuses on estimating the transition proba-
bilities between sensors deployed in the smart home. This
represents a valuable pre-processing step for multi-resident
tracking. The graph model that encodes the transition prob-
abilities, also referred to as a Bayes updating graph [33],
sensor graph [34], or accessibility graph [35], is equivalent
to a Markov chain where states are mapped directly to all
the sensors deployed in the smart home. The structure and
parameters of the model are derived based on the smart
home sensor layout as well as annotated sensor data. The
models are used in combination with a rule-based tracker
[33] and a multi-hypothesis tracker [34] to solve the data
association problem. These multi-resident tracking solutions
also have the ability to estimate the number of residents in
the smart home, although they rely on the availability of a
hand-crafted sensor graph that is based on known locations
of sensors in the floorplan as well as annotated data to
derive transition probabilities.

Provided with the sensor layout and the floorplan of
the smart home, Amri et. al. [36] and Song and Wang
[37] solve the data association problem by modeling the
sensor coverage as well as the spatial relationships between
deployed sensors in the smart home. Amri et. al. [36] overlay
a square box on the floorplan to model the coverage of
motion sensors, and formulate the motion sensor-based
multi-resident tracking problem within a set-membership
estimation framework. Song and Wang [37] introduce a unit
disk graph to represent the field of focus of all sensors
and propose a multi-color particle filter to associate sensor
events with the residents.

De et. al. [38] and Wang et. al. [39] propose the idea of
mining possible motion trajectories of smart home residents
directly from the recorded sensor events. Various data as-
sociation hypotheses are created by fitting the mined trajec-
tories to the incoming sensor events. The best hypothesis
is chosen so that the average velocity variance among all
residents is minimized. In order to calculate the average
velocity variance, the adjacency and distance between sen-
sors are considered as available information. The algorithm
performs better if the number of residents is known during
the trajectory mining phase.

At the same time, acquiring the additional information
about a home’s floor plan and sensor layout may come
at a hefty price. This information may be time-consuming
to obtain, may contain errors that impact tracking perfor-
mance, and may be impractical if the smart home is installed
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remotely or via third-party contractors. Algorithms focused
on computing transition probabilities between sensor pairs
rely on accurate adjacency information, obtained via anal-
ysis of a floor plan and sensor layout. This layout must
contain furniture placement drawn to scale that is updated
when furniture arrangements change. Furthermore, privacy
concerns involved in acquiring and storing this information
above may reduce acceptance and adoption of smart home
technology. Another factor to consider is that sensors and
batteries may fail, which will render statically-created in-
formation unusable. As a result, a multi-resident tracking
solution that can directly utilize recorded sensor events
without relying on further information will advance smart
home technologies in multi-resident settings.

3 SMART HOME DATASETS AND MULTI-RESIDENT
TRACKING IN SMART HOMES

The multi-resident tracking algorithm proposed in this work
analyzes sensor events recorded in smart homes equipped
with passive ambient sensors. These ambient sensors gen-
erate information about the location of the residents in the
smart home or the interaction between the residents and the
objects of interest in the home. The states of the sensors are
usually binary, as they are either “active” or “inactive” at
any given moment. The state transition of these sensors is
usually triggered by resident activity. A sensor will send an
“activate” message when the state transitions from “inac-
tive” to “active”, followed by a “deactive” message when
the state transitions to “inactive” again. However, these
sensors are all anonymous, as they lack the ability to directly
identify the resident that triggers messages. As a result,
a tracking algorithm is needed to pair sensor messages
with the associated residents in a smart home occupied by
multiple residents.

We introduce sMRT, an algorithm to automate multi-
resident tracking in smart environments. To illustrate our
methods and evaluate the approach implemented in sMRT,
we utilize two multi-resident smart home datasets created
by the Center of Advanced Studies in Adaptive Systems
(CASAS) at Washington State University. The floor plan and
the layout of deployed sensors for these two smart home
datasets are shown in Figure 1. The dataset named TM0041

(in Figure 1a) contains December 2016 data recorded in
a two-bedroom apartment with two older adult residents
monitored by 25 ambient sensors distributed among 8
rooms. Occasionally, their child will come and stay in their
house for a couple of days. The site is coarsely monitored
with an average of 2-3 PIR motion sensors per room. Res-
idents can enter the house from the garage on the bottom
left, from the back yard through the door on the right, and
through the main entrance located at the bottom middle.

Figure 1b shows a second smart home named Kyoto,
a two-story town house 1. Compared with TM004, Kyoto
contains a denser grid of sensors. Both scripted and un-
scripted data has been collected in Kyoto and is associ-
ated with a number of studies including earlier approaches
to multi-resident tracking [31]. We analyze data collected

1. Both TM004 and Kyoto datasets, with annotated as-
sociations of sensor events to residents, are available at
https://www.stevewang.net/datasets/.

in 2009 while two residents lived in the apartment and
performed their normal, unscripted daily routines. Occa-
sionally, friends would visit for a few days, increasing the
number of residents in the home. Data are collected from 91
sensors installed in 6 rooms: bedrooms, bathroom, kitchen,
dining room, and living room as well as along hallways.
Additionally, magnetic door sensors are positioned on front
and back exterior doors as well as cabinets, closets and
refrigerator doors. A few items of interest are equipped
with contact sensors where the information about resident
interaction with these items can provide insights into the
activity they are performing at the time. Due to limitations
of this earlier smart home technology, an increased number
of false-positive sensor events and out-of-order sensor event
sequences occur in Kyoto as compared with TM004. This
issue has been documented in prior work [33].

In both datasets, local PIR motion sensors (sensors with
a 1 meter diameter) and area motion sensors (sensors that
monitor an entire room or large area) send an “ON” message
when resident motion is detected within the sensor’s field
of view (“active” state), and an “OFF” message when the
motion is no longer detected (“inactive” state). The magnetic
door sensor sends an “OPEN” message when the door is
opened (“active” state) and a “CLOSE” message when the
door is closed (“inactive” state). Contact-based item sensors
produce an “ABSENT” message when the item is removed
from the sensor (“active” state) and a “PRESENT” message
when the item is put back into place (“inactive” state).
Messages are sent to the smart home server which tags them
with the time when the messages are received. Throughout
this paper, we use sensor event to refer to the subset of
sensor messages that contain an “active state” (or “activate”)
message. We do not include the corresponding “inactive
state” (or “deactivate”) messages as sensor events. The goal
of multi-resident tracking is to associate each sensor event
with the resident who activates the sensor.

Table 1 shows a series of sensor messages recorded at
Kyoto. Each sensor message is a 3-tuple consisting of the
message timestamp, the sensor ID, and the message content.
To provide ground-truth information for evaluating multi-
resident tracking solutions, external annotators label each
sensor event with an identifier for the resident(s) who trig-
gers the sensor message, as shown in the “Residents” col-
umn. Annotators generate labels based on information from
raw sensor data and a visualization of sensor observations
superimposed on the smart home floorplan, provided by
the ActViz tool2. External annotation prevents interrupting
resident activities to self-report such labels. This process
also improves label consistency. As shown in Figure 2,
ActViz maps each sensor event on home’s floorplan. While
it may be straightforward to distinguish associate sensor
events with residents when the residents are located in
different rooms or regions, ambiguity occurs when residents
move and their paths intertwine. The annotator relies on
knowledge about resident routines and possible behavior
patterns to match current trajectories and provide labels that
are as consistent as possible. The TM004 dataset used in our
evaluation contains 9 days of annotated data with 98,506
sensor events, while the Kyoto dataset contains 3 days of

2. http://www.github.com/TinghuiWang/ActViz.git
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Fig. 1. Floor plan and the locations of sensors deployed in CASAS smart homes. (a) Smart home TM004 with 25 motion sensors. (b) Smart home
site Kyoto with 65 motion sensors, 15 door sensors and 11 item sensors.

TABLE 1
An example of sensor messages recorded in the Kyoto dataset. Each

sensor message is a three-tuple consisting of the timestamp, sensor ID
and message content. The resident and activity columns are labels

provided by annotators. These serve as ground truth for performance
evaluation of multi-resident tracking algorithms. The messages

highlighted in bold font also represent sensor events.

Timestamp Sensor ID Message Resident
02/06/2009 17:52:28 M025 ON R2,R3
02/06/2009 17:52:32 M025 OFF R2,R3
02/06/2009 17:52:35 M025 ON R2,R3
02/06/2009 17:52:36 M025 OFF R2,R3
02/06/2009 17:52:37 M045 ON R1
02/06/2009 17:52:38 M025 ON R2,R3
02/06/2009 17:52:44 M045 OFF R1
02/06/2009 17:53:31 M024 ON R3
02/06/2009 17:53:32 M019 ON R2
02/06/2009 17:53:33 M021 ON R2
02/06/2009 17:53:33 M025 OFF R2,R3
02/06/2009 17:53:34 M021 OFF R2
02/06/2009 17:53:34 M018 ON R2
02/06/2009 17:53:36 M051 ON R2
02/06/2009 17:53:36 M024 OFF R3
02/06/2009 17:53:38 M019 OFF R2
02/06/2009 17:53:39 M018 OFF R2
02/06/2009 17:53:57 M051 OFF R2
02/06/2009 17:54:03 M051 ON R2
02/06/2009 17:54:27 M045 ON R1

annotated data with 28,923 sensor events.
In sMRT, we first extract a sensor sequence by ignoring

the deactivate messages, as shown in Table 2. Each sensor
sequence entry is a two-tuple consisting of the sensor ID and
the time when the sensor event is generated. By focusing
on the activate messages, the sensor sequence captures
the spatiotemporal relationships between the sensors that
are installed in the smart home. In a single resident envi-

Fig. 2. A screen shot of the ActViz annotation software used in this
research to generate the ground truth of the association between sensor
events and the residents in the smart home.

ronment, mutual information (MI) represents the likelihood
that two sensors generate consecutive events [8] and thus
quantizes the spatiotemporal relationship between sensors.
In a multi-resident scenario, we assume that sensor pairs
with a stronger MI relationship occur close to each other in
the sensor event stream. As a result, we can estimate the MI
of two sensors by mining the sensor co-occurrence.

Whenever a sensor is activated, we take a snapshot of
the states of all installed sensors. Each active sensor in the
snapshot represents an observation of a resident’s activity.
Thus, we use the term sensor observation to refer to each
active sensor in the snapshot. Table 3 shows a series of
sensor observations extracted from the sensor messages in
Table 1. Figure 3 demonstrates the relationship between
sensor messages, sensor events and sensor observations.
In the graph, each vertical grid line represents the time a
sensor in the smart home is activated. The dots in the figure
represent the sensor observations that are extracted from
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TABLE 2
Sensor sequence extracted from sensor messages shown in Table 1.

Time Tag Sensor ID
02/06/2009 17:52:35 M025
02/06/2009 17:52:37 M045
02/06/2009 17:52:38 M025
02/06/2009 17:53:31 M024
02/06/2009 17:53:32 M019
02/06/2009 17:53:33 M021
02/06/2009 17:53:34 M018
02/06/2009 17:53:36 M051
02/06/2009 17:54:03 M051
02/06/2009 17:54:27 M045

TABLE 3
Sensor observations, recorded each time a sensor is activated.

Time Tag Observation
02/06/2009 17:52:35 M025, I012, I011
02/06/2009 17:52:37 M045, I012, I011
02/06/2009 17:52:38 M045, M025, I012, I011
02/06/2009 17:53:31 M024, M025, I012, I011
02/06/2009 17:53:32 M019, M024, M025, I012, I011
02/06/2009 17:53:33 M021, M019, M024, M025, I012, I011
02/06/2009 17:53:34 M019, M018, M024, I012, I011
02/06/2009 17:53:36 M019, M051, M018, M024, I012, I011
02/06/2009 17:54:03 M051, I012, I011
02/06/2009 17:54:27 M045, M051, I012, I011

the sensor messages and the shaded rectangles represent a
sensor being in the active state. The blue, red and green
arrows in the figure connect the sensor observations into
three sensor tracks associated with three residents (R1, R2,
and R3, respectively). The figure shows that at any time
step when the sensor observations are taken, a resident
may be associated with multiple sensor events and a sensor
event may be associated with multiple residents. Some
sensor observations, such as sensors “I001” and “D012”
in the figure, are not associated with any resident. In the
context of resident tracking, we use the terms false alarms
or clutter process to refer to sensor observations that are not
associated with any resident. The goal of this work is to
determine the number of residents in the home (3 during
this time period) and to associate sensor events with the
(three) corresponding tracks.

4 SMRT: A FORMAL FRAMEWORK OF MULTI-
TARGET TRACKING

The objective of this research is to find a solution for
multi-resident tracking (MRT) in smart homes with anony-
mous binary sensors that performs robustly in real homes
with complex everyday behavior conditions. In addition
to finding the association between sensor events and the
corresponding residents, the proposed sMRT algorithm also
estimates the number of active residents currently in the
smart home and relaxes constraints of previous algorithms
by not requiring additional information such as floor plans,
sensor layouts, or resident-labeled training data.

We formulate the MRT problem as a sequential Bayes
estimation (or filtering) problem in the framework of finite
set statistics (FISST) [40]. We represent the state of each res-
ident in the smart home as a random vector x that belongs
to a state space X . Thus, the state of all residents that are
currently in the smart home at time step k can be modeled
as a random finite set (RFS) Xk = {x1,x2, . . . ,xn} ∈ F(X ),
where F(X ) is the collection of all finite subsets of the state
space X . Each element xi(1 ≤ i ≤ n) of the RFS X is a
state vector of an active resident. The total number of active
residents in the smart home, n (i.e., the cardinality |Xk| of
the RFS Xk), is a random variable defined on Z+

0 . Given a
sequence of sensor events, sMRT calculates a Bayes optimal
probability density, f(Xk), of the RFS Xk at time step k. The
number of active residents, or the cardinality of the RFS Xk,
is simultaneously derived.

To identify the relationship between the input (a series
of sensor events) and the output (the probability density
of the states of all active smart home residents), there are
two challenges that we address. First, we will construct a
dynamic model that predicts the state of each resident at the
following time step given the current state. This dynamic
model will serve as the corpus of information for the Bayes
estimation process. The construction of such a dynamic
model should be based solely on a series of recorded sensor
events with no additional information that raises privacy
concerns or is impractical to acquire for real homes. Second,
we will derive a mathematically rigorous method to esti-
mate the probability density of resident states and derive the
association between each resident and sensor observations
in real-time. sMRT addresses these challenges through two
phases. First, a learning phase constructs the dynamic model
by mining the co-occurrence of sensor events. Second, a
tracking phase predicts the number of residents in the smart
home as well as their association with the sensor events.

4.1 Learning Phase: Construction of Dynamic Model
In previous work, the dynamic model that encapsulates
resident movement in a smart home was represented as
a Markov chain, or a sensor graph, where the states of
the Markov chain are mapped directly to the smart home
sensors [33], [34]. In a smart home with q sensors, a total
of q2 transition matrix parameters, each representing the
probability of a resident moving from one state (sensor
location) to another, are estimated through counting [33],
[34] or a conditional least squares method [35]. However, in
those approaches, annotated sensor events and additional
sensor layout information are required to make an accurate
prediction. By mapping the states directly to sensors, these
dynamic model would perform state prediction based solely
on the current resident state without taking into account
resident states in any of the previous steps.

In contrast, during the sMRT learning phase, we rep-
resent each sensor as a m × 1 vector in a m-dimensional
space Z . The space Z represents the measurement space.
The dimensionality m of the measurement space is a hyper-
parameter that can be chosen depending on the number and
density of the smart home sensors. The conditional probabil-
ity of a resident transitioning from one sensor to another can
be estimated using the distance between their vector rep-
resentations in the measurement space Z . In a smart home
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I011 and I012 are both in "active" state
with no associated resident. These sensor
events are considered false alarms. In
this example, it is probably due to the
item of interest not placed properly on
the contact sensor.

M051 sends 
"ON" message

M051 in "active" state

Resident R1 is spotted
by sensor M051, M018,
M019 at the same time. M051 sends 

"OFF" message

Sensor event M025 at 17:53:33 is
associated with resident R1 and R3.

Fig. 3. Multi-resident tracking graph showing the association between residents and sensor events and the relationship between sensor messages,
sensor events and sensor observations. The figure is generated using the sensor messages recorded in the Kyoto dataset from the same time
period as Tables 1-3. The arrows in the graph show the movement of all the active residents with respect to sensor observations.

with q sensors, a total of q ·m parameters must be estimated.
Selecting m < q effectively injects dependencies between
the conditional probabilities of a resident transiting between
two sensors, a departure from earlier work in multi-resident
tracking. By injecting these dependencies, a lesser amount
of sensor data is needed to accurately learn the dynamic
model parameters. Additionally, the model parameters are
learned without the need for additional information such as
the number of residents or sensor layout. With inspiration
from word embedding used in natural language processing
applications [41], we adopt a similar skip-gram model to
leverage the co-occurrence of sensor events and train a
generative model to learn the vector mapping between the
sensors deployed in the smart home and the measurement
space Z . (see Section 4.1.1).

On the other hand, rather than mapping resident states
directly to smart home sensors, we hypothesize that each
resident’s movement can be represented as a point target
maneuvering at constant velocity in the measurement space
Z . This hypothesis can be considered as a relaxation of the
Markov assumption in sensor graphs, where the velocities
along all m axes represent the information related to the res-
ident states in all previous time steps and can be estimated
during the tracking.

4.1.1 Sensor Vectorization

Consider a smart home where a total of q binary sensors
(s1, s2, . . . , sq) are deployed. Sensors si and sj are adjacent
if a resident can travel from si to sj without triggering
another sensor sk (i 6= j 6= k). The goal of sensor vector-
ization is to find the corresponding vector representation
z1, z2, . . . , zq ∈ Z such that if two sensors are adjacent
(they can be activated in sequence without activating other
sensors), they are mapped to two vectors close to each
other in the measurement space. In other words, the closer
zi and zj are, the higher is the conditional probability of
triggering sensor si after sensor event sj . As a result, we can
further hypothesize that resident movement in the smart
home is equivalent to a point target maneuvering in the
measurement space.

score(s1|si)

score(s2|si)

score(sq|si)

P (s1|si)

P (s2|si)

P (sq|si)

Sensor
si

Sensor
Vector
zi

Score Function SoftMax

z1

z2

zq

... . .
.

Fig. 4. The generative model of sensor vectorization.

In a smart home with a single resident, adjacent sensors
always show up next to each other in the sensor sequence.
In a multi-resident scenario, the recorded sensor sequence
is a time-ordered collection of the active sensor messages
associated with all residents in the smart home, possibly
moving through different parts of the home. As a result,
adjacent sensors are not necessarily next to each other in
the sensor event sequence. However, they are more likely
to show up within c sensor messages apart, where c is an
integer that can be selected based on the expected number
of smart home residents. Thus, we construct a generative
model that predicts the probability of two sensors being
adjacent parameterized by their vector representations in
measurement space. This probability needs to fit the sen-
sor pair’s co-occurrence observed in the recorded sensor
sequence within a window of c sensor messages.

Formally, given a sensor sequence containing M sensor
messages,

((
t(1), s(1)

)
, . . . ,

(
t(M), s(M)

))
, where t(i) is the

time of the ith sensor message and s(i) is the corresponding
sensor ID, we generate a training set where each sensor pair
is observed within a window of c sensor messages in the
sensor sequence, as in

training set = {(s(i), s(j))|0 < j − i ≤ c}. (1)

We construct a generative model (as shown in Figure
4) that predicts the probability of a sensor pair, s and s′,
being adjacent, denoted as P (s|s′) = P (s′|s). The training
objective of the model is to map sensors s1, . . . , sq into
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vectors z1, . . . , zq ∈ Z so that the average log likelihood
L, as shown in (2), is maximized in the training set.

L =
1

M

M∑
i=1

∑
0<j−i≤c

logP (s(j)|s(i)) (2)

The probability of sensor si being adjacent to sensor sj
can be defined using a SoftMax function based on a score
assigned to them, as in

P (sj |si) =
exp(score(sj |si))∑q

k=1 exp(score(sk|si))
. (3)

The score value score(sj |si) needs to be larger when the
distance between the corresponding vectors is smaller. We
use a dot product as the similarity measure that defines the
score function, as in

score(sj |si) = score(si|sj) = zi · zTj . (4)

In a smart home containing a small number of sensors,
the vector representations of sensors in the measurement
space can be learned directly using SoftMax cross-entropy
loss. To reduce the large computational cost of directly learn-
ing vector representations for a large number of sensors,
noise contrast estimation (NCE) [42] is employed.

4.1.2 Linear Gaussian Dynamic Model
With each sensor in the smart home mapped into the
measurement space, we use a constant velocity model of
a point target maneuvering in the measurement space to
approximate the movement of each resident in the smart
home. The state vector of each resident is a (2m + 1) × 1

vector x =
[
xT vT r

]T
, where x is an m × 1 vector

representing the location of the resident in space Z , v is an
m× 1 vector representing the velocity of the resident, and r
is an integer representing the resident ID. Given the state of
the resident, x′, the resident state x at the next time step can
be estimated using the linear equation as shown in (5). Here,
F represents the linear motion multiplier, G represents the
linear error multiplier, and w represents the velocity error.

x = F · x′ +G ·w (5)

If w can be modeled using a Gaussian distribution, the
probability distribution of the resident state at the next time
step can be expressed using a linear Gaussian model as in
(6). Here, Q is the resulting covariance matrix. (The equation
derivation is found in the supplemental material.)

f (x|x′) = N (x;Fx′,Q) (6)

Residents maneuver in the measurement space. Thus,
sensor observations (represented by the corresponding sen-
sor vectors) offer a noisy measurement of true resident
states. If we assume that such measurement errors can be
modeled as a Gaussian distribution with zero mean and
a covariance matrix R, the relationship between a sensor
observation z and the state vector x of the resident can be
represented using a linear Gaussian model as shown in (7)
with linear multiplier H.

f(z|x) = N (z;H · x,R) (7)

GM-PHD
Predictor

GM-PHD
Corrector

Clustering-
based Track
Maintenance

Sensor
Event to
Resident

Association

Dynamic
Model
f(x|x′)

Measurement
Model
f(z|x)

Sensor
Observations
Zk

Dk|k−1(x) Dk(x)

Posterior
PHD with
updated
track ID
Dk(x)

PHD at
step k− 1
Dk−1(x)

Fig. 5. The sMRT tracking phase.

Movement mapped from resident actual trajectories to
the measurement space may not strictly follow the constant
velocity assumption. However, with the help of the GM-
PHD filter and track maintenance algorithm introduced in
Section 4.2, errors between reality and the constant velocity
assumption can be captured by the Gaussian noise in the
dynamic and measurement models shown in (6) and (7).
Thus, the GM-PHD filter can correct these errors based on
new sensor observations obtained at each step.

4.2 Tracking Phase: GM-PHD Filter and Track Mainte-
nance
During the tracking phase, a series of sensor observations is
extracted from the sensor event stream by taking a snapshot
of active sensors in the smart home every time a sensor
is activated. Each active sensor is a measurement of a
resident in the smart home. By replacing each active sensor
with its vector representation in the measurement space,
we define an observation set as Zk = {z1, . . . , znz} at time
step k, where nz is the number of active sensors and each
element zi is the vector representation of the correspond-
ing sensor. Among these nz sensor observations, some are
accurate measurements of active residents and some are
false alarms (or clutter) due to communication errors or
sensor failures. Alternatively, some residents may still be
at home but may not be currently detected by the sensors.
Thus, instead of creating a one-to-one mapping between
each sensor observation and the corresponding resident, we
also need to consider the possibilities of a new resident
entering the home, an existing resident leaving the home,
residents not being detected, sensor observations not being
associated with any resident, and one-to-many or many-to-
one associations between sensor observations and residents.
The steps of the tracking phase are illustrated in Figure 5.

To model all of these possibilities, we use a Gaussian
mixture probability density (GM-PHD) filter [43] that prop-
agates the first-order moment of the multi-target probabil-
ity density, or the probability hypothesis density (PHD),
based on the dynamic and measurement models that was
constructed during the learning phase. Additionally, we
propose clustering-based track maintenance to associate
the PHD predicted by the GM-PHD filter with resident
identifiers to detect new residents while maintaining the
traces of existing residents. Finally, each sensor observation,
represented as a vector in the measurement space, is asso-
ciated with the resident that is most likely to generate the
observation.
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The GM-PHD filter is composed of a predictor and a
corrector, as shown in Figure 5. Given the PHD of multiple
residents at time step k − 1, Dk−1(x), the predictor esti-
mates the multi-resident PHD at time step k, or Dk|k−1(x),
based on the linear Gaussian dynamic model in (6). The
corrector then refines the predicted PHD, Dk|k−1(x), based
on the measurement model and sensor observations, Zk.
The output of the corrector is the Bayes optimal estimation
of the posterior multi-resident PHD at time step k, Dk(x),
which can be used to associate sensor events with residents
in the smart home. If the multi-resident PHD at time step
k − 1, Dk−1(x), is in the form of a Gaussian mixture, and
the dynamic model and the measurement model are both
linear Gaussian, the resulting posterior multi-resident PHD,
Dk(x), is guaranteed to be in the form of a Gaussian mix-
ture, as shown in (8), where Jk is the number of Gaussian
components in the mixture and w

(i)
k , m

(i)
k and P

(i)
k are

the weight, mean vector and covariance matrix of the ith

Gaussian component, respectively. (The derivation of (8) is
included the supplementary material.)

Dk(x) =
Jk∑
i=1

w
(i)
k N (x;m

(i)
k ,P

(i)
k ) (8)

Given the posterior PHD at time step k, we propose a
clustering-based track maintenance algorithm that estimates
the state of each resident, assigns identifiers to the newly-
identified residents, and associates sensor observations with
each resident based on the state probability distribution of
each identified resident. According to the definition of PHD,
the expected number of residents in the smart home can
be calculated by integrating the PHD over the entire state
space, as in

Nk =

∫ Jk∑
i=1

w
(i)
k N (x;m

(i)
k ,P

(i)
k )dx =

Jk∑
i=1

w
(i)
k . (9)

We first assume that, at any time step, there is at most
one newly-detected resident. Thus, during the predictor
step, we can assign a new resident identifier to the resident
ID field of the Gaussian mean state vectors for the target
birth PHD. Given the measurement model and the dynamic
model defined in Section 4.1.2, the resident identifier in
the mean vector of each Gaussian component will remain
unchanged while the Gaussian components are propagated
in time through the GM-PHD filter. By grouping the Gaus-
sian components that share the same resident identifier in
the mean vector, the state probability distribution of each
resident can be derived.

We now consider the case that multiple residents,
R

(k)
1 . . . R

(k)

n
(k)
r

, enter the smart home at time k. As we assign

a single resident identifier, r(k), to all Gaussian components
in the target birth PHD, the Gaussian components of the
PHD, representing the states of all residents entering the
smart home, share the same resident identifier r(k). As the
residents move through time, the cardinality of the PHD
will eventually approximate the actual number of residents,
N (k), who enter the home. As a result, when tracking each
resident R(k)

i , the Gaussian components representing the
PHD of those N (k) residents need to be separated into N (k)

clusters with a unique resident identifier assigned to the
Gaussian components for each cluster.

In sMRT, we introduce a clustering-based track mainte-
nance algorithm that monitors the integral of the PHD asso-
ciated with each resident identifier. The track maintenance
algorithm is an iterative six-step process as follows.

1) Given the PHD with resident identifier r in the form
of a Gaussian mixture as shown in (10), calculate the
number of expected residents N ′k,r as shown in (11).

Dk,r(x) =

Jk,r∑
i=1

w
(i)
k,rN

(
x;m

(i)
k,r,P

(i)
k,r

)
(10)

N ′k,r = dNk,r − 0.5e =

Jk,r∑
i=1

w
(i)
k,r − 0.5

 (11)

2) Initialize the center of N ′k,r clusters randomly as
α1, . . . , αN ′

k,r
.

3) For each cluster, find the Gaussian components in
Dk,r(x) with the smallest distance between the
mean of the Gaussian component and the center
of the corresponding cluster. Assign those Gaussian
components to the cluster so that the summation
of the weights of all those Gaussian components
does not exceed Nk,r/N

′
k,r . If there are Gaussian

components left not assigned to any cluster, assign
each of these to the nearest cluster determined by
the distance between the center of the cluster and
the mean of the Gaussian component.

4) Update the cluster center αj to be the weighted
mean of all Gaussian components assigned to the
cluster, as in

αj =
1∑Jk,r,j

i=1 w
(i)
k,r,j

Jk,r,j∑
i=1

w
(i)
k,r,jm

(i)
k,r,j . (12)

In (12), Jk,r,j represents the number of Gaussian
components assigned to cluster j. The w

(i)
k,r,j , m(i)

k,r,j
terms represent the weight and mean of those Gaus-
sian components.

5) Repeat steps 3 and 4 until there are no further
changes to the association between Gaussian com-
ponents and clusters, or a maximum number of
iterations is reached.

6) With the Gaussian components segregated into N ′k,r
clusters, a new resident identifier is assigned to each
cluster and is inserted into the resident ID field
in the mean vector of each Gaussian component
assigned to that cluster.

Finally, each sensor observation zi ∈ Zk is associated
with the resident ID r so that the likelihood of producing
the sensor observation zi is maximized, as in

r = argmax
r

∫
f(zi|x)

Jk,r∑
i=1

w
(i)
k,rN

(
x;m

(i)
k,r,P

(i)
k,r

)
dx

= argmax
r

Jk,r∑
i=1

w
(i)
k,rN

(
z;Hm

(i)
k,r,R+HP

(i)
k,rH

T
)
.

(13)
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5 EVALUATION OF SMRT

To evaluate the performance of sMRT, we implement two
other methods as baseline for comparison. The first method,
denoted NN-sg, tracks the residents in the smart home using
a sensor graph handcrafted according to the sensor layout
of the smart home. The sensor graph, generated using the
GR/ED method proposed by Crandall and Cook [33], de-
termines the spatial adjacency between sensors. Whenever a
new sensor message arrives, it is associated with an existing
resident who was last spotted by an adjacent sensor. If no
such resident can be found, the NN-sg method assumes
that a new resident enters the space and a new resident
identifier is assigned. On the other hand, if a resident has
not been detected by any sensors for a period of 50 sensor
events (this parameter is used by GR/ED [33]), the resident
is assumed to have left the home or become “inactive”, and
thus is removed from the list of existing residents. Unlike
GR/ED, the NN-sg method only processes active sensors.

We also introduce a second method, denoted GNN-sg,
as an alternative baseline method. GNN-sg further modifies
the GR/ED algorithm. Specifically, GNN-sg uses a weighted
directed sensor graph where the adjacency between any
two sensors is determined manually according to the sensor
layout in the smart home. Each weight, representing the
probability of a resident triggering two sensors consecu-
tively, is estimated from annotated sample data. The associa-
tion between sensor observation and resident is determined
using a global nearest neighbor method. At every time step,
GNN-sg generates a list of all possible associations between
sensor observations and all existing active residents. A score
is assigned to each association hypothesis by accumulating
the probabilities of each resident moving from the sensor
location in the previous time step to the new associated
sensor location. The association with the highest score is
selected and any sensor observation that is not associated
with any resident is considered the start of a new resident
track.

The first baseline method, NN-sg, associates each ex-
isting resident with the nearest or most-likely sensor ob-
servation. Given n sensor observations, and N currently-
active residents, NN-sg’s worst case runtime is O (nN).
Comparatively, GNN-sg attempts to find the best one-to-
one assignment between sensor observations and existing
residents. Using an efficient method such as the Hungarian
algorithm, this could be accomplished in time O

(
n3
)
. The

sMRT approach, introduced in this work, is composed of a
GM-PHD filter and a clustering-based track maintenance al-
gorithm. Assuming a maximum of J Gaussian components
in the mixture and a m-dimensional measurement space,
GM-PHD updating is bounded by O

(
nJm3

)
. The worst-

case complexity of sMRT’s track maintenance is O (NJmi),
where i is the number of iterations that lead to clustering
convergence.

The objective of sMRT is to associate smart home sensor
events with the residents who trigger them. To evaluate
the ability of the algorithm to accomplish this task, we first
evaluate the association accuracy between sensor events and
residents.

Evaluation Metric: Event Association Accuracy. We de-
fine association accuracy as the fraction of total sensor events,

D, in which the ground truth Y (i) equals the set of predicted
resident IDs Ŷ (i), as in

accuracy =
1

D

D∑
i=1

1(Y (i) = Ŷ (i)). (14)

Resident IDs include the empty set (no resident) or a set
of identifiers for one or more residents.

Evaluation Metric: Partial Match Loss. A second perfor-
mance measure uses Hamming loss to give credits to partial
matches between Y (i) and Ŷ (i). The definition of Hamming
loss is:

Hamming loss =
1

D
· 1

NR

D∑
i=1

NR∑
j=1

1
(
y
(i)
j = ŷ

(i)
j

)
. (15)

Here, NR represents the total number of residents in the
dataset.

Evaluation Metric: Per-Resident Classification. More-
over, if we focus on each resident who is annotated in the
ground truth, we can also view sensor event to resident as-
sociation as a binary classification problem. The two classes
are events that are associated with a particular resident
(+) and events not associated with that resident (-). In this
approach, we can measure the precision, recall and F1-score
for each resident.

Evaluation is conducted using the TM004 and the Kyoto
datasets introduced in Section 3. In the experiment, we
require that each valid resident identifier be associated with
at least three sensor events. In earlier activity recognition
research, the shortest detectable activities contained at least
three events (the “enter home” and “leave home” activities)
[8]. Thus, if a resident identifier is associated with fewer
than three sensor events, we consider those sensor events to
be false alarms because those events are isolated incidents
that are not related with any other sensors in the space.
Because both GNN-sg and NN-sg use the physical sensor
locations in the smart home as a basis for building the sensor
graph while sMRT uses an unsupervised sensor vectoriza-
tion procedure to extract the spatiotemporal relationship
between sensors from the unannotated sensor data directly,
we expect GNN-sg and NN-sg to represent performance
upper bounds for sMRT.

The multi-label accuracy and Hamming loss values for
both the TM004 and the Kyoto datasets are shown in Table
4. Performance using per-resident classification metrics for
the TM004 and Kyoto datasets are shown in Tables 5 and 6,
respectively. While macro averages are commonly reported
when the classes are imbalanced, we are also interested in
results on a per-datapoint bases. Thus, we provide micro
and macro averages in Tables 5 and 6.

For TM004, sMRT’s accuracy is 0.80, similar to the per-
formance of NN-sg, and 0.03 lower than GNN-sg method.
Using the Hamming loss metrics, sMRT scores 0.08, which is
0.01 better than the NN-sg method and 0.01 higher than the
GNN-sg method. The Hamming loss of sMRT shows that
only 8% of the associations are not identified by the sMRT
algorithm. Unlike NN-sg and GNN-sg, the sMRT results are
achieved without using annotated data or sensor topologies.
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TABLE 4
Multi-label accuracy and Hamming loss of sMRT, NN-sg and GNN-sg measured using the TM004 and Kyoto datasets. Best performance values

are shown in bold. The best performance values that are statistically significant (p < 0.5) are marked with an asterisk.

Dataset TM004 Kyoto
Methods sMRT NN-sg GNN-sg sMRT NN-sg GNN-sg
Accuracy 0.80 0.80 0.83* 0.76 0.82 0.86*

Hamming loss 0.08 0.09 0.07 0.18 0.11 0.07*

# Tracks 2834 569 1441 2266 330 969
# Sensor Events 51358 14409

TABLE 5
Performance of sMRT, NN-sg and GNN-sg using the TM004 dataset, measured based on binary classification accuracy on a per-resident basis.

Metrics Precision Recall F1-Score
# Events

Methods sMRT NN-sg GNN-sg sMRT NN-sg GNN-sg sMRT NN-sg GNN-sg
R1 0.94 0.89 0.92 0.84 0.85 0.91 0.89 0.87 0.91 32272
R2 0.86 0.80 0.86 0.76 0.73 0.78 0.81 0.77 0.82 17873
R3 0.85 0.77 0.76 0.71 0.79 0.85 0.77 0.78 0.80 1202
R4 0.00 0.00 0.67 0.00 0.00 0.73 0.00 0.00 0.70 11

Average (Micro) 0.91 0.85 0.90 0.81 0.81 0.86 0.86 0.83 0.88
51358

Average (Macro) 0.66 0.61 0.80 0.58 0.59 0.82 0.62 0.60 0.81

TABLE 6
Performance of sMRT, NN-sg and GNN-sg using the Kyoto dataset, measured based on binary classification accuracy on a per-resident basis.

Metrics Precision Recall F1-Score
# Events

Methods sMRT NN-sg GNN-sg sMRT NN-sg GNN-sg sMRT NN-sg GNN-sg
R1 0.74 0.92 0.91 0.72 0.83 0.94 0.73 0.88 0.93 5409
R2 0.65 0.83 0.90 0.79 0.91 0.94 0.71 0.87 0.92 6966
R3 0.68 0.76 0.82 0.59 0.53 0.75 0.63 0.62 0.78 2034

Average (Micro) 0.69 0.85 0.90 0.73 0.83 0.91 0.71 0.84 0.90
14409

Average (Macro) 0.69 0.84 0.88 0.70 0.76 0.88 0.69 0.79 0.88

When we consider each separate resident in the TM004
dataset, as shown in Table 5, sMRT achieves a higher preci-
sion but a lower recall compared to the other two methods.
Among the four residents labeled in the TM004 dataset,
residents R1 and R2 are in the smart home most of the time,
associated with 32,272 and 17,873 sensor events respectively.
Residents R3 and R4 are likely visitors who trigger only
1,202 and 11 sensor events, respectively. However, the 11
sensor events associated with R4 are separated by sensor
events triggered by other residents. As a result, those 11
sensor events are regarded as isolated sensor events by both
NN-sg and sMRT and no resident identifier is produced.

However, in the Kyoto dataset where the sensors are
more densely deployed with greater noise and less reliabil-
ity, sMRT has a difficult time reliably tracking the residents
compared to NN-sg and GNN-sg. By analyzing the sensor
vectors learned by sMRT and the tracking results, we find
that the main cause of the decrease in the performance
of sMRT is that some sensors that are not physically ad-
jacent to each other according to the sensor layout have
a relatively short distance in the measurement space. The
sensors exhibiting such an error either generate events only
a few times in the dataset (recorded within 3 days) or
have a higher probability of noise. For example, on one
of the days, the bathroom door on the second floor was
not closed properly, resulting in sensor D005 continually
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Fig. 6. Accuracy score as a function of number of active residents for
sMRT, NN-sg and GNN-sg using the TM004 dataset.

sending “OPEN” and “CLOSE” messages while another
resident is downstairs in the living room triggering motion
sensor M004. As a result, sMRT identifies sensors D005 and
M004 as being close to each other in the measurement space
while they are actually far from each other in the home.

Performance metrics as functions of number of resi-
dents. Figures 6 and 7 show the accuracy and Hamming



11

TABLE 7
Average error of sMRT, NN-sg and GNN-sg in estimation of the number of active residents in the smart homes. Best performance values are

shown in bold. The best performance values that are statistically significant (p < 0.5) are marked with an asterisk.

Dataset TM004 Kyoto
Methods sMRT NN-sg GNN-sg sMRT NN-sg GNN-sg

Average Error 0.59 0.41* 1.27 0.85 0.63* 4.56
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Fig. 7. Hamming loss as a function of number of active residents for
sMRT, NN-sg and GNN-sg using the TM004 dataset.

loss values of sMRT, NN-sg and GNN-sg when there are
different numbers of residents in the smart home using the
TM004 dataset. As the number of active residents in the
smart home increases, the performances of sMRT and NN-
sg decrease. However, baseline GNN-sg achieves a better
accuracy when there are 4 residents in the smart home. One
explanation for this anomaly is the small sample size for
4 residents. There are only 11 time steps when 4 residents
are in the home, as shown in Table 5. In contrast, there are
> 1, 000 sensor events for the other cases. According to the
Hamming loss shown in Figure 7, we find that sMRT is more
accurate in grouping the sensor events triggered by the same
resident than NN-sg, though the performance is 0.01 lower
than GNN-sg when there are two or three residents.

In addition to the association accuracy, we also evaluate
these methods based on their ability to estimate the number
of active residents currently present in the smart home.

Evaluation Metric: Average Estimation Error. In earlier
multi-resident tracking research, a resident is considered to
be inactive if the resident has not been detected by any
sensors for over 100 seconds, or 50 consecutive sensor events
on average [33]. Since sMRT and both baseline methods
operate based on discrete time steps, we count an existing
resident as active when a sensor event is triggered within
the next 50 time steps. This rule is applied to both the
ground truth and the result of NN-sg to determine the
number of active residents in the smart home. In the case of
sMRT, the likelihood of a resident being active at any time
step, or present in the home, can be calculated by integrating
the PHD distribution as shown in (9). If the likelihood> 0.5,
we consider the resident to be active.

Table 7 shows the average absolute value of the error
between the number of active residents identified by three

candidate algorithms and the ground truth. As indicated
by these results, both the sMRT and NN-sg methods, on
average, are accurate for resident cardinality estimation as
the average errors of both methods are smaller than 1, while
GNN-sg generates a higher number of resident identifiers
and fails to estimate the number of active residents as
accurately as the other methods.

Ideally, we want the sensor events associated with the
same residents to match the resident identifier predicted
by the tracking algorithm. However, in the experiments,
we find segmentation errors, where the sensor events that
are associated with the same resident are split into mul-
tiple tracks with different resident identifiers, may affect
performance. By counting the number of valid resident
identifiers generated by each method, as shown in Table
4, both sMRT and GNN-sg results in a higher number of
valid resident identifiers compared to the NN-sg method.
The result indicates that both sMRT and GNN-sg tend to
generate more resident identifiers and associate the sensor
events that are triggered by same resident associated with
those identifiers.

During the propagation of PHD in sMRT, a one-to-one
relationship between sensor observations and residents is
still assumed. sMRT handles the many-to-one relationship
between sensor observations and residents by properly
setting the parameters for the clutter process, namely λc
and c(z). These two parameters serve as counterweights to
prevent the rapid increase of cardinality estimation when a
resident triggers two sensor observations at the same time.
However, when a resident is at a location where the sensors
are more densely populated, the chances that a many-to-
one association between sensor observations and residents
may be higher than what the clutter process parameters can
handle. As a result, sMRT will spawn a new resident track.
Not long afterward, the original track may terminate itself.
The behavior of sMRT may thus lead to a higher count of
valid resident identifiers while still maintaining an accurate
estimation of the number of active residents in the smart
home. However, adjacent sensor events that are associated
to the same resident are likely to still be adjacent, even when
a new resident identifier is assigned.

In contrast, the segmentation errors observed for GNN-
sg are caused by keeping multiple resident identifiers valid
at the same time. In similar cases where a resident is spotted
by multiple sensor observations, GNN-sg simultaneously
creates multiple resident identifiers associated with each
of those sensor observations. Based on the GNN policy,
the sensor events are separated into different tracks in an
interleaved fashion. It is more likely, compared to sMRT, that
the adjacent sensor events associated with the same resident
are assigned to different resident identifiers. This behavior
causes an increase in the predicted number of valid resident
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identifiers and an inaccurate estimation of the number of
active residents in the smart home. Moreover, even though
GNN-sg results in a better accuracy and Hamming loss
score (i.e., GNN-sg is more accurate in grouping the sensor
events triggered by same resident together), the result is less
effective in activity-aware applications where the continuity
of sensor events is an important factor.

In a multi-resident smart home, the assumption of one-
to-one associations between sensor events and residents
may not hold, especially when multiple residents are per-
forming joint activities and are moving together as a group
(e.g., cooking together). Even though all of the tracking
algorithms assume a one-to-one association, differences in
enforcing this assumption results in different levels of track-
ing capabilities for joint-activity scenarios. Both baseline
methods, NN-sg and GNN-sg, treat the one-to-one asso-
ciation as a rule. Therefore, if multiple residents trigger
the activation of the same sensor, the algorithms can only
associate the sensor observation to one of the residents. In
cases when multiple residents are performing joint activities
in a local area, GNN-sg will generate additional parallel
tracks, leading to an over-estimation of the number of active
residents in the smart home, as shown in Table 7. In contrast,
even though sMRT does not explicitly model joint activities,
it predicts the sensor they will next jointly trigger through
sensor vectorization in combination with a constant velocity
model. As a result, sMRT can track resident joint activity in
a local space.

In cases where multiple residents move together, e.g.
going downstairs together to the kitchen in the morning, the
performance of sMRT depends on the length of the sequence
when residents move together. Since sMRT’s corrector is
derived based on the assumption that there is a one-to-
one association between sensor observation and resident,
the integral of the PHD corresponding to each resident (i.e.,
the sum of weights of Gaussian components associated with
each resident) will decrease. However, as there is still a
sensor observation during the procedure and both residents
are likely to be associated with the sensor observation, the
sum of weights of both residents will decrease but their
sum will still reach 1. Thus, when the multiple residents
go separate ways, the PHD integral of each resident may
still be higher than the birth PHD and the tracks identified
by the sMRT algorithm can be maintained.

6 CONCLUSION

In this work, we introduce the sMRT algorithm that
solves the multi-resident tracking problem in smart homes
equipped with anonymous binary sensors. sMRT contrasts
with previous work by learning the spatiotemporal rela-
tionship between sensors using un-annotated sensor data
recorded. We evaluate the performance of sMRT using
two smart home datasets recorded in real-life settings with
human-annotated ground truth of associations between
each sensor events and the residents living in the smart
home. The performance of sMRT is compared with two
other methods, NN-sg and GNN-sg, that rely on a provided
sensor layout, smart home floor plan, and annotated sensor
data.

Results of the experiments support our hypothesis that
sMRT is capable of tracking multiple residents in an unsu-
pervised manner. sMRT achieves similar accuracy as NN-sg,
and 3% less than GNN-sg, both of which require additional
information to track multiple residents in smart homes.
Additionally, sMRT can also provide a rough estimation of
the number of active residents in the smart home. How-
ever, sMRT’s performance depends on the reliability of the
smart home sensors and the accuracy of their events, as
the recorded sensor data is the only source of information.
The other limitation of sMRT is the higher possibility of
segmentation errors when tracking residents in a location
where sensors are more densely deployed.

In the future, sMRT can be refined by exploring alterna-
tives to the simple constant velocity model presented in this
paper so that better accuracy can be achieved in predicting
the next sensor event a resident will trigger. Moreover,
further investigation can focus on analyzing the placement,
spatial coverage, and density of ambient sensors in the
smart home and their impact on multi-resident tracking.
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