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Abstract

In this paper we take a look at the start of the art in smart environments re-

search. The survey is motivated by the recent dramatic increase of activity in the field,

and summarizes work in a variety of supporting disciplines. We also discuss ongoing

challenges for continued research.

1 Introduction

Designing smart environments is a goal that appeals to researchers in a variety of disciplines,
including artificial intelligence, pervasive and mobile computing, robotics, middleware and
agent-based software, sensor networks, and multimedia computing. Advances in these sup-
porting fields have prompted a tremendous increase in the number of smart environment
projects. Because of the rising popularity of the topic and a growing desire for success-
ful projects in the marketplace, we offer an updated look at the state of the art in smart
environments.

We define a smart environment as one that is able to acquire and apply knowledge about
the environment and its inhabitants in order to improve their experience in that environment
[88]. The components of a smart environment are shown in Figure 1.

Automation in a smart environment can be viewed as a cycle of perceiving the state of
the environment, reasoning about the state together with task goals and outcomes of possible
actions, and acting upon the environment to change the state. Perception of the environment
is a bottom-up process. Sensors monitor the environment using physical components and
make information available through the communication layer. The database stores this
information while other information components process the raw information into more useful
knowledge (e.g., action models, patterns). New information is presented to the decision
making algorithms (top layer) upon request or by prior arrangement. Action execution flows
top-down. The decision action is communicated to the services layers (information and
communication) which record the action and communicates it to the physical components.
The physical layer performs the action with the help of actuators or device controllers, thus
changing the state of the world and triggering a new perception.
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Figure 1: The components of a smart environment.

In the remainder of this paper we take a closer look at the state of the art in smart
environments by providing a summary of current research in these component areas. We
also summarize the fundamental challenges and solutions in modeling inhabitant’s mobility
and activity in smart environments. This is followed by a discussion on the application
of smart environment research to health monitoring and assistance. Finally, we introduce
challenges for continued research.

2 The Role of Physical Components in Smart Environ-

ments

Because smart environment research is being conducted in real-world, physical environments,
design and effective use of physical components such as sensors, controllers, and smart devices
is vital. In our intelligent agent design, the physical components are what allow the agent to
sense and act upon the environment. Without these physical components, we end up with
theoretical algorithms that have no practical use.

Like all intelligent agents, a smart environment relies on sensory data from the real world.
As Figure 2 shows, the environment perceives the environment using these sensors and uses
this information to reason about the environment and the action that can be taken to change
the state of the environment. Table 1 lists some of the properties of the environment that
need to be captured and how they can be measured.
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Figure 2: Smart environment as an intelligent agent.

Properties Measurand

Physical properties pressure, temperature, humidity, flow
Motion properties position, velocity, angular velocity, acceleration
Contact properties strain, force, torque, slip, vibration
Presence tactile/contact, proximity, distance/range, motion
Biochemical biochemical agents
Identification personal features, personal ID

Table 1: Sensors for smart environments (adapted from [44]).

The information required by smart environments is measured by sensors and collected
using sensor networks. The importance of sensor networks as a research area unto itself is
indicated by the number of related workshops [34] and recent efforts that have been initiated
by funding agencies such as DARPA [16] and NSF [57]. These sensor networks are responsible
for acquiring and distributing data needed by smart buildings, utilities, industries, homes,
ships, and transportation systems. Sensor networks need to be fast, easy to install and
maintain, and self-organizing.

To assist manufacturers in creating sensors that can be interfaced to such networks, the
IEEE and NIST (National Institute of Standards and Technologies) created the IEEE 1451
standard for Smart Sensor Networks [33]. The IEEE 1451 studies formalized the notion of a
smart sensor as one that provides additional functions beyond the sensed quantity such as
signal condition or processing, decision-making functions, or alarm functions [24]. The result
is a device that takes on some of the burden of intelligent reasoning, reducing the amount
of reasoning needed at the agent level. A number of companies have commercialized sensors
that are suitable for wireless network applications [44].

After the intelligent agent builds a representation of the current state of the environment
from perceived information, it can reason about the environment and use this information
to select an action. The agent executes the action using a controller, which causes a change
in the state of the environment.

Although customized controllers can be designed, an effective mechanism for controlling
many devices is using power line communication (PLC). PLC provides networking and con-
troller services using electrical wiring already deployed in most environments. X-10 technol-
ogy is one of the oldest PLC protocols and is typically used to control lamps and appliances.
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X-10 controllers send signals over the power line to receives and facilitate automated control
from a computer as well as logging of inhabitant manual interactions with these devices. X-
10 interfaces have the advantage of inexpensive pricing and ready availability, but they are
often hampered by noisy signals and long delays. The Smart House Applications Language
(SHAL) [79] provides a more comprehensive set of message types for specific sensing and
control functions, but requires dedicated multiconductor wiring.

Reliable data transmission over electrical wiring is difficult to achieve. The HomePlug
protocol specifications address this problem in the American market using error correction
coding and decoding techniques together with automatic request techniques. A peer-to-peer
communication protocol is available in the LonWorks protocol developed by Echelon [21].
LonWorks networks can be implemented over a wide range of medium including power lines,
twisted pair, radio frequency (RF), infrared (IR), coaxial cable and fiber optics.

Much of the research in the area of physical component design is performed independently
of smart environment applications. However, some efforts have focused primarily upon the
design or use of these technologies to support smart environment tasks. For example, Lins,
et al. [45] have created a tool called BeanWatcher that manages wireless sensor network
applications for mobile devices. This tool is designed primarily for monitoring and managing
multimedia data streams in the intelligent environments, and is being investigated as a
management technique for intrusion detection applications in closed environments. Want
[85] describes how radio frequency identification (RFID) tags can be used to collect sensor-
derived data, and Philipose, et al. [65] adopt a similar approach by tagging objects in the
environment and using sensed interactions to build representations of inhabitant activities
as sequences of such interactions. Vastamake, et al. [84] also build profiles of environment
inhabitants, based solely upon temperature control behavior.

In the same way that smart sensors move some of the reasoning work down to the
physical level, so researchers have also developed a number of intelligent devices. These
devices are not intended to solve the entire intelligent environment design problem, but they
do provide intelligent functionality within the confines of a single object and task. The
smart sofa at Trinity College [42], for example, contains programmable sensors on the couch
legs that identifies the individual sitting on the couch based on their weight distribution.
The couch can thus greet the individual and could forseeably customize the immediate
surroundings for that person. A number of intelligent and networked kitchen appliances have
been designed by companies such as GE and Whirlpool that add multimedia interfaces and
status reporting capabilities to the kitchen [81]. The 200ConnectIo device [27] refrigerates
food until commanded to cook it by phone, computer, or personal digital assistant (PDA).

The MIT Things That Think [52] group has developed intelligent devices such as smart
hotpads that determine whether a pan is too hot to touch, a spoon that provides feedback
about the temperature and viscosity of food, and a kettle that says how much longer you
have to wait for tea (see Figure 3). The Philips interactive tablecloth [66] weaves a power
circuit into a washable linen tablecloth, so that devices can be charged when they are placed
anywhere on the tablecloth. While these devices are novel and useful for limited tasks, they
typically do not consider the bigger picture of interacting with the rest of the environment.
As Rode points out [71], they also rarely consider difficulties encountered in cultures and
markets other than the one for which they are designed. Rode observes that these devices
would be much more useful if they could adapt themselves to new environments and uses.
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Figure 3: The MIT intelligent spoon and interactive tea kettle [52].

Other devices have been designed for the purpose of remotely controlling an inhabitant’s
environment. Examples of these physical components include smart phones [59, 69], wearable
computers and head-mounted displays [38, 58], and a unique gesture pendant [78] which
uses wearable jewelry to recognize gestures for executing control tasks. Kikin-Gil has also
created a type of smart jewelry [39]. This intelligent device differs from the others in this
class because it allows teenagers to communicate with each other using predefined codes
emitted from their wearable jewelry, the Buddy Beads.

3 Pervasive Computing and Middleware Issues

Recent advances in smart technologies (e.g., sensors, devices and appliances, wireless net-
working), software agents, and middleware technologies have led to the emergence of perva-
sive or ubiquitous computing as perhaps the most exciting area of computing in recent times.
Empowered by wireless mobile communications and computing as well as situation-aware
computing, pervasive computing aims at providing where you want, when you want, what you
want and how you want types of services to users, applications and devices. Major challenges
in pervasive computing include invisibility or (user/device) unawareness, service discovery,
interoperability and heterogeneity, proactivity, mobility, privacy, security and trust. In such
environments, hardware and software entities are expected to function autonomously, con-
tinually and correctly. From these perspectives, pervasive communications and computing
offer a suitable platform for realization of smart environments that link computers to ev-
eryday settings and commonplace tasks, and also acquire and apply knowledge effectively
in our surroundings. For an overview of enabling technologies and challenges in pervasive
computing, refer to [40].

Traditionally, agents have been employed to work on behalf of users, devices and ap-
plications [6]. In addition, agents can be effectively used to provide transparent interfaces
between disparate entities in the environment, thus enhancing invisibility. Agent interaction
and collaboration is an integral part of pervasive (intelligent) environments, as agents can
overcome the limitations of hundreds and thousands of resource limited devices.

Service discovery is described as the process of discovering software processes/agents,
hardware devices and services. The role of service discovery in pervasive computing is to
provide environment-awareness to devices and device-awareness to the environment. Service
provisioning, advertisement and service discovery are the important components of this mod-
ule. Although service discovery in mobile environments has been addressed in existing work,
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service discovery in pervasive computing are still at its infancy. Existing service discovery
mechanisms include JINI and Salutation as well as the International Naming System (INS)
[2].

Several new embedded devices and sensors are being developed in the industry and re-
search laboratories. The architecture of the Berkeley sensor motes and the TinyOS operating
system [15] are very good examples of devices and technologies developed for use with em-
bedded networked sensors. The challenge here is to design devices that are tiny (disappear
into the environment), consume little or no power (perhaps powered by ambient pressure,
light, or temperature); communicate seamlessly with other devices, humans, and services
through a simple all-purpose communication protocol.

As mentioned above, a pervasive (or smart) environment comprises numerous invisible
devices, anonymous users, and ubiquitous services. Development of effective middleware
tools to mask the heterogeneous wireless networks and mobility effects is a major challenge.
Provisioning uniform services regardless of location is also vital. The challenge here is to
provide location-aware services in an adaptive fashion, in a form that is most appropriate to
the location as well as to the situation under consideration.

4 Location-Awareness and Mobility Tracking in Smart

Environments

Models of 21st century ubiquitous computing scenarios [86] depend not just on the devel-
opment of capability-rich mobile devices (such as web-phones or wearable computers), but
also on the development of automated machine-to-machine computing technologies, whereby
devices interact with their peers and the networking infrastructure, often without explicit
operator control. To emphasize the fact that devices must be imbued with an inherent
consciousness about their current location and surrounding environment, this computing
paradigm is also called sentient [31] or context-aware computing.

“Context (e.g., location and activity) awareness” is a key to build a smart environment
and associated applications. If devices can exploit emerging technologies to infer the current
activity state of the user (e.g., whether the user is walking or driving, whether he/she is at
office, at home or in a public environment) and the characteristics of their environment (e.g.,
the nearest Spanish-speaking ATM), they can then intelligently manage both the information
content and the means of information distribution. For example, the embedded pressure
sensors in the Aware Home [63] capture inhabitants’ footfalls, and the smart home uses
these data for position tracking and pedestrian recognition.

The Neural Network House [54], the Intelligent Home [43], the House n [32] and the
MavHome [17, 90] projects focus on the development of adaptive control of home environ-
ments by also anticipating the location, routes and activities of the inhabitants. This section
summarizes a novel, information theoretic paradigm for context learning and prediction that
can be used for predicting with high degree of accuracy the inhabitant’s future locations
and activities, automating activities, optimizing control of devices and tasks within the en-
vironment, and identifying anomalies. This to reduce cost of maintaining the environment
and resource consumption, and provide special health benefits for elderly and people with
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disabilities [18, 28, 30].
From an information theoretic viewpoint, an inhabitant’s mobility and activity create

an uncertainty of their locations and hence subsequent activities. In order to be cognizant
of their contexts, the smart environment needs to minimize this uncertainty as captured by
Shannon’s entropy measure [14]. An analysis of the inhabitant’s daily routine and life style
reveals that there exist some well-defined patterns. Although these patterns may change
over time, they are not too frequent or random, and can thus be learned. This simple
observation may lead us to assume that the inhabitant’s mobility or activity follows a piece-
wise stationary, stochastic, ergodic process with an associated uncertainty (entropy), as
originally proposed by Bhattacharya and Das [8] for optimally tracking (estimating and
predicting) location of mobile users in wireless cellular networks.

The framework from Bhattacharya and Das was used to design an optimal algorithm
for location (activity) tracking in a smart environment [72], based on compressed dictionary
management and online learning of the inhabitant’s mobility profile, followed by a predic-
tive resource management (energy consumption) scheme for a single inhabitant smart space.
However, the presence of multiple inhabitants with dynamically varying profiles and pref-
erences make such tracking much more challenging. This is due mainly to the fact that
the relevant contexts of multiple inhabitants in the same environment are often inherently
correlated and thus inter-dependent with each other. Therefore, the learning and prediction
(decision making) paradigm needs to consider the joint (simultaneous) entropy for location
tracking of multiple inhabitants [74]. In the following, we consider single inhabitant and
multiple inhabitant mobility tracking cases separately.

4.1 Single Inhabitant Case

The learning and prediction based paradigm, based on information theory and text com-
pression, manage the inhabitant’s uncertainty in mobility and activity profiles in daily lives.
The underlying idea is to build compressed (intelligent) dictionary of such profiles collected
from sensor data, learn from this information, and predict future mobility and actions. This
prediction helps device automation and efficient resource management, thus optimizing the
goals of the smart environment. At a conceptual level, prediction involves some form of sta-
tistical inference, where some sample of the inhabitant’s movement profile (history) is used
to provide intelligent estimates of future location, thereby reducing the location uncertainty
associated with the prediction [18, 73].

Hypothesizing that the inhabitant’s mobility has repetitive patterns that can be learned,
and assuming the mobility as a stochastic random process, the following lower bound re-
sult was proved by Bhattacharya and Das [8]: It is impossible to optimally track mobility
with less information exchange between the smart environment and the device (detecting
inhabitant’s mobility) than the entropy rate of the stochastic mobility process. Specifically,
given the past observations of inhabitant’s position and the best possible predictors of future
position, some uncertainty in the position will always exist unless the device and the system
exchange location information. The actual method by which this exchange takes place is
irrelevant to this bound. All that matters is that the exchange exceeds the entropy rate of
the mobility process. Therefore, a key issue in establishing bounds is to characterize the
mobility process (and hence entropy rate) in an adaptive manner. To this end, based on
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the information-theoretic framework, Bhattacharya and Das [8] proposed an optimal on-
line adaptive location management algorithm, called LeZi-update. Rather than assuming
a finite mobility model, LeZi-update learns an inhabitant’s movement history stored in a
Lempel-Ziv type of compressed dictionary [46], builds a universal model by minimizing en-
tropy, and predicts future locations with high accuracy. In other words, LeZi-update offers
a model-independent solution to manage mobility related uncertainty.

The LeZi-update framework uses a symbolic space to represent each sensing zone of the
smart environment as an alphabetic symbol and thus captures inhabitant’s movement history
as a string of symbols. That is, while the geographic location data are often useful in obtain-
ing precise location coordinates, the symbolic information removes the burden of frequent
coordinate translation and is capable of achieving universality across different smart spaces
[54, 73]. The blessing of symbolic representation also facilitates hierarchical abstraction of
the smart environment infrastructure into different levels of granularity. This approach as-
sumes that the inhabitants’ itineraries are inherently compressible and allow application of
universal data compression algorithms [12, 46], which make very basic and broad assump-
tions, and yet minimize the source entropy for stationary Ergodic stochastic processes [70].
The LeZi-update scheme endows the prediction process, by which the system finds nodes
whose position is uncertain, with sufficient information regarding the node mobility profile.
So overall, the application of information-theoretic methods to location prediction allowed
quantification of minimum information exchanges to maintain accurate location information,
provided an on-line method by which to characterize mobility, and in addition, endowed an
optimal prediction sequence [12, 18]. Through learning, this approach allows us to build a
higher order mobility model rather than assuming a finite model, and thus minimizes entropy
and leads to optimal performance.

Not only does the Lezi-update scheme optimally predict the inhabitant’s current location
from past movement patterns, this framework can also be extended to effectively predict
other contexts such as activity, the most likely future routes (or trajectories) [72], resource
provisioning [18, 73], and anomaly detection. The route prediction exploits the asymptotic
equi-partition property in information theory [14], which implies the algorithm predicts a
relatively small set (called the typical set) of routes that the user is likely to take. A smart
environment can then act on this information by efficiently activating resources (e.g., turning
on the lights lying only on these routes).

4.2 Multiple Inhabitant Case

As mentioned earlier, the multiple inhabitant case is more challenging. The mobility tracking
strategy described above is optimal for single inhabitant environments only. It treats each
inhabitant independently and fails to exploit the correlation between the activities and hence
the mobility patterns of multiple inhabitants within the same environment. Intuitively, in-
dependent application of the above scheme for each individual actually increases the overall
joint location uncertainty. Mathematically, this can be observed from the fact that condi-
tioning reduces entropy [14]. In fact, Roy, et al. [74] proved that optimal (that attains lower
bound on joint entropy) location tracking of multiple inhabitants is an NP-hard problem.

Assuming a cooperative environment, they proposed [75] a cooperative game theory based
learning policy for location-aware resource management in multi-inhabitant smart homes.
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Figure 4: Real-time recognition of forty-word American Sign Language vocabulary [64].

This approach adapts to the uncertainty of multiple inhabitants’ locations and most likely
routes, by varying the learning rate parameters and minimizing the Mahalanobis distance.
However, the complexity of multi-inhabitant location tracking problem was not characterized
in that work.

Hypothesizing that each inhabitant in a smart environment behaves selfishly to fulfill his
own preferences or objectives and to maximize his utility, the residence of multiple inhab-
itants with varying preferences might lead to conflicting goals. Under this circumstance, a
smart environment must be intelligent enough to strike a balance between multiple prefer-
ences, eventually attaining an equilibrium state. If each inhabitant is aware of the situation
facing all others, Nash equilibrium is a combination of deterministic or randomized choices,
one for each inhabitant, from which no inhabitant has an incentive to unilaterally move
away. This motivated Roy, et al. [74] to investigate the multi-inhabitant location track-
ing problem from the perspective of stochastic (non-cooperative) game theory, where the
inhabitants are the players and their activities are the strategies of the game. The goal is
to achieve a Nash Equilibrium so that the smart environment is able to probabilistically
predict the inhabitants’ locations and activities with sufficient accuracy in spite of possible
correlations or conflicts. The authors validated their model and entropy learning scheme
through simulation study and real data.

5 Natural Interfaces for Smart Environments

Although designers of smart environments are encouraged by the progress that has been made
in the field over the last few years, much of this progress will go unused if the technologies are
difficult or unnatural for inhabitants. Abowd and Mynatt [1] points out that explicit input
must now be replaced with more human-life communication capabilities and with implicit
actions. The maturing of technologies including motion tracking, gesture recognition (such
as demonstrated by the Pentland’s project in Figure 4), and speech processing facilitate
natural interactions with smart environments.

In their Classroom 2000 project, Abowd provide human-computer interfaces through
devices such as an interactive whiteboard that stores content in a database. The smart
classroom of Shi, et al. [76] also uses an interactive whiteboard, and allows lecturers to
write or notes directly on the board with a digital pen. This classroom experience is further
enhanced by video and microphones that recognize a set of gestures, motions, and speech
that can be used to bring up information or focus attention in the room on appropriate
displays and material. The intelligent classroom at Northwestern University [25] employs
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Figure 5: Facial expression recognition [64].

many of these same devices, and also uses the captured information to infer speaker intent.
From the inferred intent the room can control light settings, play videos, and display slides.
In none of these cases is explicit programming of the smart environment necessary – natural
actions of the inhabitants elicit appropriate responses from the environment.

Such ease of interaction is particularly important in an office environment, where workers
want to focus on the project at hand without being tripped up by technology. The AIRE
project [3], for example, has designed intelligent workspaces, conference rooms, and kiosks
that use a variety of mechanisms such as gaze-aware interfaces and multi-modal sketching
that the full meaning of a discussion between co-workers through the integration of captured
speech and captured writing on a whiteboard. The Monica project [41] identifies gestures and
activities in order to retrieve and project needed information in a workplace environment.
Similarly, the Interactive Room (iRoom) project at Stanford [23] enables easy retrieval and
display of useful information. Users can display URLs on a selected surface by simply
dragging the URL onto the appropriate PDA icon.

Targeting early childhood education, a Smart Table was designed as part of the Smart
Kindergarten project at UCLA [80]. By automatically monitoring kids’ interaction with
blocks on a table surface, the Smart Table enables teachers to observe learning progress for
children in the class. Children respond particularly well to such natural interfaces, as in the
case of the KidsRoom at MIT [9]. The room immerses children in a fantasy adventure in
which the kids must work together to explore the story. KidsRoom presents children with an
interactive fantasy adventure. Only through teamwork actions such as rowing a virtual boat
and yelling a magic word will the story advance, and these activities are captured through
cameras and microphones placed around the room.

Work on natural interfaces for smart environments extends well beyond simple rooms.
UCLA’s HyperMedia Studio project [50] adapts light and sound on a performance stage au-
tomatically in response to performers’ positions and movements. The driver’s intent project
at MIT [64] recognizes driver’s upcoming actions such as passing, turning, stopping, car
following, and lane changing by monitoring hand and leg motions. Accuracy of classified
actions reaches 97% within 0.5 seconds of the beginning of the driver’s action. Facial ex-
pression recognition systems, such as the one shown in Figure 5, can enhance smart cars by
recognizing when the driver is sleepy, or change the classroom interaction when detecting
that the students are bored or confused.
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6 Inhabitant Modeling

One feature that separates smart environments from environments that are user controllable
is the ability to model inhabitant behavior. If such a model can be built, the model can be
used to customize the environment to achieve goals such as automation, security, or energy
efficiency. If the model results in an accurate enough baseline, the baseline can provide a
basis for detecting anomalies and changes in inhabitant patterns. If the model has the ability
to refine itself, the environment can then potentially adapt itself to these changing patterns.

In this overview we characterize inhabitant modeling approaches based on three charac-
teristics.

1. The data that is used to build the model.

2. The type of model that is built.

3. The nature of the model-building algorithm (supervised, unsupervised).

The most common data source for model building is low-level sensor information. This
data is easy to collect and process. However, one challenge in using such low-level data is
the voluminous nature of the data collection. In the MavHome project [87], for example,
collected motion and lighting information alone results in an average of 10,310 events each
day. In this project, a data mining pre-processor identifies common sequential patterns in
this data, then uses the patterns to build a hierarchical model of inhabitant behavior. Loke
[47] also relies upon this sensor data to determine the inhabitant action and device state, then
pulls information from similar situations to provide a context-aware environment. Like the
MavHome project, the iDorm research conducted by Doctor, et al. [20] focuses on automating
a living environment. However, instead of a Markov model, they model inhabitant behavior
by learning fuzzy rules that map sensor state to actuator readings representing inhabitant
actions.

The amount of data created by sensors can create a computational challenge for modeling
algorithms. However, the challenge is even greater for researchers who incorporate audio
and visual data into the inhabitant model. Luhr [49] uses video data to find intertransaction
(sequential) association rules in inhabitant actions. These rules then form the basis for
identifying emerging and abnormal behaviors in a smart environment. Brdiczka, et al. [10]
rely on speech detection to automatically model interacting groups in a smart environment.
Moncrieff [53] also employs audio data for generating inhabitant models. However, such
data is combined with sensor data and recorded time offsets, then used to sense dangerous
situations in a smart environment by maintaining an environment anxiety level.

The modeling techniques described so far can be characterized as unsupervised learning
approaches. However, if prelabeled inhabitant activity data is available, then supervised
learning approaches can be used to build a model of inhabitant activity. Muehlenbrock, et
al. [55] combine this approach with a naive Bayes learner to identify an individual’s activity
and current availability based on data such as PC/PDA usage. Tapia, et al. [82] also employ
a naive Bayes learner to identify inhabitant activity from among a set of 35 possible classes,
based on collected sensor data.
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Figure 6: MavPad (left) and MavLab (right) automated environments.

7 Decision Making

Over the last few years, supporting technologies for smart environments, as described in
the earlier sections of this paper, have emerged, matured, and flourished. Building a fully
automated environment on top of these foundations is still a bit of a rarity. Automated
decision making and control techniques are available for this task. Simpson, et al. [77]
discuss how AI planning systems could be employed to not only remind inhabitants of their
next activity but also to complete a task if needed. Augusto and Nugent [19] describe the use
of temporal reasoning with a rule-based system to identify hazardous situations and return
the environment to a safe state while contacting the inhabitant.

Few fully-implemented applications decision making technologies have been implemented.
One of the first is Mozer’s Adaptive Home [54], which uses a neural network and a reinforce-
ment learner to determine ideal settings for lights and fans in the home. This is implemented
in a home setting and has been evaluated based on an individual living in the Adaptive
Home. Youngblood, et al. [89] also use a reinforcement learner to automate actual physical
environments, the MavPad apartment and the MavLab workplace (shown in Figure 6).

The policy is learned based on a hierarchical hidden Markov model constructed through
mining of observed inhabitant actions. Like the Adaptive Home, this approach has been im-
plemented and tested on volunteers in a living environment. The iDorm project of Hagras, et
al. [26] is another of these notable projects that has realized a fully-implemented automated
living environment. In this case, the setting is a campus dorm environment. The environ-
ment is automated using fuzzy rules learned through observation of inhabitant behavior.
These rules can be added, modified, and deleted as necessary, which allows the environment
to adapt to changing behavior. However, unlike the reinforcement learner approaches, au-
tomation is based on imitating inhabitant behavior and therefore is more difficult to employ
for alternative goals such as energy efficiency.

8 Health Monitoring and Assistance

There are many potential uses for a smart environment. Indeed, we anticipate that fea-
tures of smart environments would pervade our entire lives. They will automate our living
environment, increase the productivity of our work environment, customize our shopping
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Figure 7: Annual rate of change by age range.

experiences, and accomplishing all of these tasks will also improve the use of resources such
as water and electricity. In this section we focus on one class of applications for smart
environments: health monitoring and assistance.

One reason for singling out this topic is the amount of research activity found here, as
well as emergence of companies with initiatives to bring smart elder care technologies into
the home [28, 61]. Another reason is the tremendous need for smart environment research to
support the quality of life for individuals with disabilities and to promote aging in place. The
need for technology in this area is obvious from looking at our current and project future
demographics. Fertility decline combined with increases in life expectancy is resulting in
population aging [83]. The resulting impact on age distribution is shown in Figure 7. Not
only is the number of individuals age 60 and over expected to triple by 2050, but the United
Nations reports that in most countries, more of these elderly people are living alone. To
many people, home is a sanctuary. Individuals would rather stay at home, even at increased
risk to their health and safety.

With the maturing of smart environment technologies, at-home automated assistance
can allow people with mental and physical challenges to lead independent lives in their own
homes. Pollack [68] categorizes such assistive technology as meeting the goals of assurance
(making sure the individual is safe and performing routine activities), support (helping
individual compensate for impairment), and assessment (determining physical or cognitive
status). We summarize technologies in each of these area.

In the same fashion as researchers have developed technology for building models of
inhabitant behavior, so similar approaches can be taken to monitor individuals to determine
health status. Ogawa, et al. [62] used sensors to detect movement, use of appliances, and
presence in a room and from this information were able to analyze behavior patterns of two
elderly ladies living alone. Nambu, et al. [56] found that analyzing TV watching patterns
alone was effective at identifying and analyzing behavior patterns, without the need for
additional customized sensors. At University of Virginia’s MARC project [5], these sensors
were able to actually categorize individual’s days into vacation (at home) and work days.

The next step in analyzing behavioral patterns is to detect changes in patterns and
anomalies. Work by Cook, et al. [13] collected activity data from an apartment dweller and
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Figure 8: Goals of environmental assistive technology.

used this to determine increasing, decreasing, and cyclic trends in patterns. Once a baseline
is established, this can be used to identify sudden changes. Luhr’s approach [49] of learning
intertransaction association rules can also be helpful in identifying emerging and abnormal
activities, and Moncrieff’s emotive computing work [53] actually records the anxiety of the
environment based upon deviation from normal behavior. When tied with health-critical
data and events, the environment may decide that information from these algorithms is
important enough to alert the inhabitant and/or caregiver.

Support for individuals living at home with special challenges is found in many varied
forms. If a model has been constructed of normal behavior, then the model can be used to
provide reminders of normal tasks [48]. Mihailidis, et al. [51] provide this type of prompting
for the specific task of handwashing, one of the more stressful tasks for caregivers. By
recognizing where the individual is in the process and reminding them of the next step, the
tested subjects completed the task 25% more times than without the device. Customized
devices can prove useful for these individuals, as well. Pineau, et al. [67] demonstrate the
benefits of robotic assistants in nursing homes, while Helal, et al. [29] provide a visitor-
identifying front door, inhabitant-tracking floor and a smart mailbox to volunteer seniors
living in the Gator Tech Smart Home. Kautz, et al. [37] show that assistance is not limited
to a single environment. Using their activity compass, the location of an individual can be
tracked, and a person who may have wandered off can be assisted back to their goal (or a
safe) location.

Finally, smart environments can be used to actually determine the cognitive impairment
of the inhabitants. Carter and Rosen [11] demonstrate such an assessment based on the
ability of individuals to efficiently complete kitchen tasks. Jimison, et al. [36] also provide
such an assessment. In their case, individuals are monitored while playing computer games,
and assessment is based on factors such as game difficulty, player performance, and time to
complete the game.

9 Conclusions and Ongoing Challenges

How smart are our environments? Research in the last few years has certainly matured
smart environment technology to the point of deployment in experimental situations. This
overview article also highlights the fact that there is active research not only in the supporting
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technologies areas such as physical components and middleware, but also in the modeling
and decision making capabilities of entire automated environments. These highlights indicate
that environments are increasing in intelligence.

However, there are many ongoing challenges that researchers in this area continue to
face. The first is the ability to handle multiple inhabitants in a single environment. While
Roy, et al. [74] address this problem from a limited perspective, the modeling not only of
multiple independent inhabitants but also the accounting for inhabitant interactions and
conflicting goals is a very difficult task, and one that must be addressed in order to make
smart environment technologies viable for the general population.

Similarly, we would like to see the notion of “environment” extend from a single setting
to encompass all of an inhabitant’s spheres of influence. Many projects target a single
environment such as a home, an office, a car, or more recently, a hotel [7]. However, by
merging evidence and features from multiple settings, these environments should be able to
work together in order to customize all of an individual’s interactions with the outside world
to that particular individual. As an example, how can we generalize intelligent automation
and decision making capabilities to encompass heterogeneous smart spaces such as smart
homes, vehicles, roads, offices, airports, shopping malls, or hospitals, through which an
inhabitant may pass through in daily life?

An interesting direction that researchers in the future may consider is not only the ability
to adjust an environment to fit an individual’s preferences, but to use the environment as
a mechanism for influencing change in the individual. Eng, et al. [22] have discovered that
visitors may actually visit areas of a museum normally avoided through carefully-selected
cues given by a robot. Similarly, environmental influences can affect an individual’s activity
patterns, an individual’s mood, and ultimately the individual’s state of health and mind.

While all of these issues are interesting from a research perspective, they also raise con-
cerns about the security and privacy of individuals utilizing smart environment technologies.
Researchers such as Argyroudis and O’Mahony [4], Nixon, et al. [60], and the Amigo group
[35], have identified some of these issues and introduced possible mechanisms for ensuring
privacy and security of collected data. However, much more work remains to ensure that
collected data and automated environments do not jeopardize the privacy or well-being of
their inhabitants.

Finally, a useful goal for the smart environment research community is to define evalu-
ation mechanisms. While performance measures can be defined for each technology within
the architecture hierarchy shown in Figure 1, performance measures for entire smart envi-
ronments still need to be established. This can form the basis of comparative assessments
and identify areas that need further investigation. The technology in this field is advanc-
ing rapidly. By addressing these issues we can ensure that the result is an environment
with reliable functionality that improves the quality of life for its inhabitants and for our
communities.
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