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Abstract

Society is becoming increasingly aware of the impact that our lifestyle choices
make on energy usage and the environment. As a result, research attention is be-
ing directed toward green technology, environmentally-friendly building designs,
and smart grids. This paper looks at the user side of sustainability. In particular,
it looks at energy consumption in everyday home environments to examine the
relationship between behavioral patterns and energy consumption. It first demon-
strates how data mining techniques may be used to find patterns and anomalies
in smart home-based energy data. Next, it describes a method to correlate home-
based activities with electricity usage. Finally, it describes how this information
could inform users about their personal energy consumption and to support activ-
ities in a more energy-efficient manner. These approaches are validated by using
real energy data collected in a set of smart home testbeds.
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1. Introduction

In 2010, the United States consumed 98,003 Quadrillion Btu of power energy.
This is a 200 percent increase from 1949 [1]. The growth of energy usage is not
entirely due to manufacturing plants and automobiles, as is often assumed. In
fact, worldwide residential sector is responsible for 16-50% of energy consump-
tion consumed by all sectors [2]. As a result, there is an urgent need to develop
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technologies that examine energy usage in homes and to encourage energy effi-
cient behaviors, in addition to energy efficient devices in households.

Although households and buildings are responsible for over 40% of energy
usage in most countries [3], many residents still receive little or no detailed feed-
back about their personal energy usage. A power utility bill traditionally provides
information about a month’s total energy consumption and a total price to be paid,
leaving homeowners to guess what factors, including external influences and in-
ternal behavior, might explain a higher or lower than usual bill. Earlier studies
have shown that home residents reduce energy expenditure by 5-15% just as a
response to acquiring and viewing raw energy usage [4]. Residential behavior,
which varies widely, can influence energy usage significantly in a given home [5].
Clearly, the typical utility bill provides no information about the relationship be-
tween residential behavior and corresponding energy usage. Since behavior-based
energy information is capable of encouraging individuals to modify habits in ways
that would be beneficial for both the household and community, it would be de-
sirable to develop technologies that could extract information from the home and
communicate it to residents. However, occupants’ behavior is difficult to capture
accurately. Self-report of behavior is error prone [6] and whole-home meter mon-
itoring does not capture the behaviors in the home that influence consumption.

We hypothesize that providing users with knowledge about the relationship
between their activities and energy consumption, suggestions for energy reduc-
tion, and automation support will result in more substantial decreases in overall
consumption. This view is supported by an increasing body of work that links
awareness of energy consumption and its impact to behavioral change [7, 8]. In
our work we propose using smart homes and pervasive computing techniques to
provide these important insights. The long-term vision for this project is to en-
hance understanding of human resource consumption and to provide resource ef-
ficiency in smart homes. We envision this as a three-step process: 1) analyze
electricity usage to identify clusters and anomalies, 2) correlate activities with
energy usage, and 3) automate energy-efficient activity support. Additionally,
we hypothesize that patterns and anomalies may be automatically detected from
energy consumption data and that these discoveries can provide insights on be-
havioral patterns. We further postulate that energy consumption is correlated with
the type of activities that are performed and can therefore be predicted based on
the automatically-recognized activities that occur in a smart environment. These
hypotheses are validated by implementing algorithms to perform these steps and
evaluating the algorithms using data collected in the smart apartment testbeds. Fi-
nally, a discussion of how the results of this work can be used to give smart home
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residents feedback on their energy consumption is included. This work represents
one of the first projects that utilizes smart home data to investigate the relationship
between behavioral patterns and resource consumption in a home environment.

2. Related Work

A smart home environment can be defined as one that acquires and applies
knowledge about its residents and their physical surroundings in order to improve
their experience in that setting [9]. Such home environments, equipped with sen-
sors for detecting features such as motion, light level, temperature, and energy and
water consumption, are ideal testbeds for investigating the relationship between
behavior and energy consumption. Using sensor technology combined with data
mining and machine learning, many researchers are now working on smart envi-
ronments, which can discover and recognize residents activities and respond to
their needs in a context-aware way. As household consumption of electricity has
been growing dramatically, the need to develop technologies that improve energy
efficiency and monitor energy usage in a household is emerging as a critical re-
search area.

Technologies to address this need are beginning to emerge. Non-intrusive ap-
pliance load monitoring [10] has been designed to detect the turning on and off of
individual appliances in an electrical circuit. Several academic studies focused on
this topic to estimate residential energy levels based on appliance usage [11, 12].
With respect to energy conservation, some industrial products focus on provid-
ing energy information services and saving tips to residents. Google PowerMeter
[13] is a free energy monitoring tool for saving energy by providing energy in-
formation via smart meters. The companies, such as Microsoft Hohm [14] and
Opower [15], apply statistical methods and data mining algorithms to analyze raw
utility data and give customers usable energy saving tips. However, these projects
are orthogonal to this paper, in which we provide users with feedback that is ac-
tually related to resident behavior in the home. Likewise, several studies exist
that predict building energy consumption at a highly aggregated level for a large
collection of buildings [16], but these studies also differ from our work, as we con-
sider human behaviors in an individual building as primary features for predicting
energy usage.

Anomaly detection finds extensive use in a wide variety of applications such
as intrusion detection fault detection for credit cards, medical health, and sensor
networks. Since society is becoming increasingly aware of the impact of energy
efficiency, anomaly detection has been directed toward energy aspects of building
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management. Grwtham et al. [17] translate time series data to frequency spec-
trum, and then use a K-NN algorithm to identify anomalies in sparse regions.
This method can detect abnormal patterns with low frequency, but ignores more
common patterns with anomalously high fluctuation. Other efforts [18, 19] first
extract the features from daily energy consumption then use statistical methods to
identify abnormally high or low energy use. However, these methods relied on
the assumption that the data is sampled from a particular distribution, which may
not hold true. It can also be difficult to identify contextual anomalies with small
fluctuations.

In comparison to other past works, several different contributions are offered
by this paper. The data sets used in this work are capable of representing realistic
residential patterns over the monitoring period, since this monitoring did not affect
the residents’ daily routine. Machine learning techniques are evaluated to explore
the relationship between residential activities and energy usage and build predic-
tive models. For anomaly detection, this approach transforms raw energy data
into a symbol sequence, and then extends a suffix-tree data structure to analyze
structural patterns. Specific metrics are expected to detect three various types of
anomalies: 1) anomalies diverge notably from other patterns; 2) anomalies whose
inner has large fluctuation; 3) anomalies that occur occasionally. To the best of our
knowledge this is the first work that applies pattern-discovery to detecting energy
outliers in home environments.

3. CASAS-Sustain System Architecture

In this paper, we describe a prototype system framework for energy data col-
lection, energy data transformation, and energy data analysis, as shown in Figure
1. The system, called CASAS-Sustain, operates entirely within the structure of
the CASAS smart home project [20]. As the diagram indicates, data collected in
the smart home is first analyzed to look for patterns and outliers. Next, recog-
nized activities in the home are correlated with energy usage to provide working
information on the energy usage that is usually required to support a class of ac-
tivities. Finally, the smart home can suggest or automate control of devices that
are not required during the current activity in order to reduce energy expenditure
and wasted resources.

3.1. The Smart Home Environment
The smart home environment testbeds used to analyze energy usage are two

apartments located on the Washington State University campus. As shown in Fig-
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Figure 1: Architecture of the CASAS-Sustain system.

ure 2, the Kyoto smart home apartment testbed consists of three bedrooms, one
bathroom, a kitchen, and a living/dining room. We also monitor the two-floor
Tulum apartment, which consists of two bedrroms, a living room, dining room,
kitchen, and bathroom. To track people’s mobility, we use motion sensors placed
on the ceilings. The circles in the figure stand for the positions of motion sensors.
They facilitate tracking the residents who are moving through the space. In addi-
tion, the testbed also includes temperature sensors as well as custom-built analog
sensors to provide temperature readings and hot water, cold water and stove burner
use. A power meter records the amount of instantaneous power usage and the total
amount of power, which is used. An in-house sensor network captures all sensor
events and stores them in a SQL database for long term storage. Our research
team has installed 26 of these types of smart homes around the Pacific Northwest
at a cost of approximately $3,000 per home. Installation takes 2-3 hours and re-
moving the smart home equipment takes about 30 minutes. The components are
not intrusive and the residents often forget they are present after the first week. As
a result, using this technology is a fairly realistic approach to providing context-
aware services and investigating the link between behavior and sustainability.

The sensor data gathered for our SQL database is expressed by several fea-
tures, summarized in Table 1. These four fields (Date, Time, Sensor ID and
Message) are generated by the CASAS data collection system automatically. To
provide real training data, data was collected from both of the smart apartments
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Figure 2: CASAS smart apartment testbeds: Kyoto (left) and Tulum (right).

Table 1: Raw data from sensors. Sensor IDs beginning with “M“ refer to motion sensors, “T“
refers to temperature sensors, and “P“ refers to power readings.

Date Time Senosr ID Message
2009-02-06 17:17:36 M45 ON
2009-02-06 17:17:40 M45 OFF
2009-02-06 11:13:26 T004 21.5
2009-02-06 11:18:37 P001 930W

included in this study while two pairs of adult volunteers in good health were liv-
ing in the smart apartments. Our training data was gathered over several months
and more than 100,000 sensor events were generated in each site during this time.
All of our experimental data are produced by the day to day lives of these resi-
dents, which guarantee that the results of this analysis are reflective of their routine
behavior.

4. Energy Data Analysis Outlier Detection

Our first step in utilizing smart home technologies for energy efficiency is to
better understand the nature of the energy consumption itself. We begin by ana-
lyzing normal patterns of usage and identifying abnormal or anomalous situations.
We analyze normal patterns by clustering sequences of power usage values. This
analysis is useful because the cluster descriptions can provide users with insights
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on their daily habits and resource usage as well as provide software algorithms
with a model of normal usage in a particular environment. At the same time,
the clusters provide a baseline against which anomalies in energy usage may be
identified. Anomaly detection is valuable because the anomaly may indicate an
unnecessary use of resources (e.g., an appliance was accidentally left on), an un-
safe state, or noise in the dataset. We begin with definitions for the data we are
analyzing.

Definition 1. Let e = (t, v) be an individual energy senosr event in our smart
environment, where t refers to the timestamp when v has been generated, and v
refers to an energy numeric value.

For data mining purposes, we are typically not interested in any individual en-
ergy sensor event. Rather, we are interested in a sequence of these energy values:

Definition 2. An energy sensor sequence E = e1e2 . . . en is a time-ordered set of
n energy sensor events.

As is shown in Table 1, smart home power meters record the amount of instan-
taneous power that is currently being consumed in real time. To search the pattern
more efficiently, we first discretize this data into k value ranges using equal-width
binning [21] and then convert the value ranges to symbols. This representation al-
lows symbolic approaches to be applied to analyzing the data, at the risk of losing
some precision in the values. Another advantage is that it allows the use of data
structures and algorithms that are not well defined for real-valued data, including
the suffix tree structure we used in our research. Through binning, an energy sen-
sor sequence E can be transformed into a discretized energy symbolic sequence
S, which is defined as:

Definition 3. An energy symbol sequence S = s1s2 . . . sn is an ordered set of
n symbol variables over the alphabet Σ, where Σ = {a, b, c, . . . } and ‖Σ‖ is
equal to the number of bins k. All energy values in the range for the ith bin are
represented by symbol i in the sequence.

After converting the raw power data into a symbolic sequence, our algorithm
employs a suffix tree [22] to discover sequential, recurring patterns of energy us-
age. Unlike other data mining methods, which are exponential in their complex-
ity, this approach can generate a suffix tree in O(n) time for a symbol sequence of
length n, and spend O(m) time searching for a subsequence of length m, regard-
less of n. A formal definition of this tree follows.
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Definition 4. Given a string S
′

over the alphabet Σ and a unique termination
character $ /∈ Σ, the string resulting from appending $ to S

′
can be defined as

S = S
′
$. Let |S| = n and suffS,i = SiSi+1 . . . S|S| be the suffix of the string S

starting at ith position. The suffix tree of S is a compacted trie-like data structure
that stores all suffixes of a string S over the alphabet Σ.

Traditional suffix tree construction algorithms start from the root and follow
a unique path matching characters in suffS,i one by one until no more matches
are possible. If the traversal does not end at an internal node, it creates a new
internal node at that location. For a tree with n nodes, the total running time of
the algorithm is

∑n
i=1(n − i + 1) = O(n2). In order to achieve O(n) running

time, we use McCreight’s algorithm [23] to construct a suffix tree by applying
suffix links to speed up the insertion of a new suffix.
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Figure 3: A suffix tree defined on a symbol sequence S with length m can represent every subse-
quence in S with at most 2m nodes

A graphical illustration of the transformation of an energy sequence into its
equivalent suffix tree is shown in Figure 3. By definition, no two edges emanating
from a node in a suffix tree begin with the same symbol, which implies that every
unique subsequence in S starting from the root node can be generated by travers-
ing through the suffix tree. We consider these subsequences as energy patterns,
which are defined as:

Definition 5. Let an energy pattern pi ∈ S represent the subsequence generated
by traversing a path in the suffix tree, where p represents the sequence of symbols
visited along the path and the length of this energy pattern is i. The frequency of
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an energy pattern pi ∈ S is denoted by f(pi), which is equal to the number of the
leaf nodes found in the subtree rooted at the end of the subsequence pi.

Table 2 shows two examples of energy patterns and their corresponding fre-
quencies. In the first case, energy readings of 752 and 742 fall in the same bin
(value range) and are mapped to symbol C. The sequence of energy readings CC
occurs 26,592 times in the data file and thus is a much more common pattern than
the one found in the second line of the table. In the context of this brief example
sequence CC might be considered a pattern of interest, while sequence ZFZ might
be considered an outlier or anomaly.

Table 2: Examples of Energy Pattern
Energy Pattern Raw Pattern
Pattern Length Energy (Watt) Frequency

CC 2 752 26952
742

ZFZ 3 5000 13
1021.2
5007

4.1. Sequence Clustering
To detect abnormal situations, we next cluster all the energy patterns into

groups with similar patterns and identify sequences that do not fit well in any
cluster. Intuitively, for an energy symbol sequence S, we consider an energy pat-
tern pi to be an outlier, if this energy pattern is far from the centroid of the cluster.

Cluster analysis is a data mining technique that is often used to identify vari-
ous groupings or taxonomies in datasets. We apply clustering to power sequence
values in order to gain a better understanding of the data, to identify groupings of
normal energy usage, and to use as a baseline for identifying abnormal energy us-
age patterns. A clustering algorithm takes features of the data as input and creates
a classification scheme which is represented as a set of disjoint clusters, each of
which can be described by a middle point, or cluster centroid.

One important step in our clustering process is to decide a distance measure,
which is used to group sequences together in a cluster and should reflect the sim-
ilarity of two sequences. In this paper, we use a two-step process. We first restrict
clusters to contain only patterns of the same length. That is because the suffix
tree algorithm naturally groups patterns into distinct lengths, and our algorithm
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further divides these groups into subgroups using the clustering algorithm. From
these groups we next employ Euclidean distance measure, which is a geometric
distance in the multidimensional space and is widely used by clustering algo-
rithms. Based on specific property of energy patterns, we select three related fea-
tures, which will be used to measure the dissimilarity, or distance between energy
patterns.

Pattern Variance between Energy Patterns. This metric is mainly used to
detect abnormal patterns. As defined in Definition 5, pi = s1s2 . . . si is an energy
pattern, where s is a discretized symbolic energy usage sequence. The distance
between two symbols |sx− sy| can be be estimated as the alpha-numeric distance
between the symbols. To determine pattern variance, we measure the distance
between each corresponding symbol in the pattern. Thus the pattern variance
between p1and p2 with length i is defined as:

d1(p
1, p2) =

i∑
j=1

|s1j − s2j | (1)

Within-Pattern Variance. Because changes in power occur when appliances
are switched on or off, the difference between two consecutive symbols in an
energy pattern may indicate a change in the status of the appliances. Thus, the
variance within this energy pattern can capture the usage status of the appli-
ances. The within-pattern variance of an energy pattern p can be calculated as
vi =

∑i
j=2|sj − sj−1| . We define the difference in within-pattern variance be-

tween two energy patterns p1 and p2 as:

d2(p
1, p2) = |v1 − v2| (2)

Frequency of Energy Pattern. Another important feature we cannot ignore
is the frequency of an energy pattern, as defined in Definition 5. The lower the
frequency is, the more likely this pattern is an outlier. If the frequency of a pattern
is relatively high, it may represent a normal pattern of usage. Therefore, this
measurement is able to find out the patterns that occur rarely. The frequency
difference between energy patterns p1 and p2 is calculated as:

d3(p
1, p2) = |f(p1)− f(p2)| (3)

To balance the impact of these three metrics, all these three distance values are
normalized to the scale [0, 1] and the final distance between two energy patterns
p1 and p2 is estimated as:
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d(p1, p2) =
√
d1(p1, p2)2 + d2(p1, p2)2 + d3(p1, p2)2 (4)

4.2. Outlier Detection
In the second step of our analysis, we use the generated clusters to identify

outliers in the energy usage data. The outliers are defined as energy usage se-
quences that fall as far as possible from the centroid of any cluster. Detecting
these outliers consists of two stages. In the first stage, we cluster the energy se-
quences and calculate the cluster centroids. In the second stage, we calculate the
distance of each energy pattern sequence to the cluster centroids. The greater this
distance is, the more likely it is that the pattern is an outlier. Patterns for which
the distance is greater than a pre-defined threshold are considered to be outliers
and indicate anomalous energy usage.

From this discussion it is apparent that the choice of a threshold value greatly
influences the selection of outliers. A variety of methods could be used to select
the threshold. These could be based on statistical parameters of the data itself
or user-selected parameters such as the rarity of the anomalies that are being re-
ported. To determine the value for this application domain we plot a histogram
of all pattern distance values to the centroid (also referred to as outlying factors,
see Figure 4. It was noted that these outlying factors follow a normal distribution,
which means that 99.7% of the patterns will then fall within three standard devi-
ations of the mean. To detect the outliers, we only consider the patterns that fall
outside of this area.

Figure 4: Histogram of outlying factors of all energy patterns (k = 50 bins).

11



Figure 5: Configuration of a box plot.

In our study, we use the box plot [24] as an alternative method to identify
outliers in the collected energy data, which represent those periods of time where
the energy consumption lies unusually far from the main body of the data. If Q1

and Q3 are the lower quartile and the upper quartile, a measure of spread that
is resistant to the outliers is the inter-quartile range or IQ, calculated as IQ =
Q3 −Q1. As shown in Figure 5, the fences lie at Q1 − k ∗ IQ and Q3 + k ∗ IQ.
The change of the value of k can affect the number of the observations outside the
fence. For this work, a value of k = 1.5 was used, which has been indicated as
acceptable for most situations. Any sample data farther than 1.5 ∗ IQ from the
closest quartile is an outlier. An outlier is extreme if it is more than 3 ∗ IQ from
the nearest quartile and it is mild otherwise.

4.3. Experimental Results
Two series of experiments were performed using energy data collected from

two of our smart apartments, which we name Kyoto and Tulum. In the first group
of experiments, the standard boxplot method to detect outliers in two months of
energy data from the Kyoto testbed was used. In comparison, the proposed cluster-
based approach was applied to detect the outliers existing in the same dataset. The
second group of experiments looks for abnormal energy data during a single week
from both Kyoto and Tulum, respectively.

For the first experiment, a total of 95,968 power events were collected. Figure
6 shows the result of the boxplot approach on this dataset. The black points located
on the top represent the outliers. The boxplot considered 12,718 sensor events as
potential outliers, since it is merely able to detect energy consumption that lies
unusually far from the main body of the data. However, it is difficult for users to
determine which outliers are true outliers and identify potential reasons for these
outliers, because there are too many false positives. Moreover, statistical methods
also cannot identify abnormal energy patterns our technique can detect.

Next, we use our proposed clustering algorithm to analyze the same power
dataset. Figure 7 depicts the distribution of energy patterns that were detected as
potential outliers for alternative numbers of bins and clusters. It should be noted
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Figure 6: Energy outlier detection using the boxplot.

that the clusters generated by all the patterns with various lengths are marked
as ’Pattern Length’ in the figure. Comparing our method with the boxplot, it
shows that the number of the outliers reported by the clustering approach has
been decreased notably. This increases the chance to accurately determine real
outliers in the dataset.

Table 3: Experimental results of outlier detection (k=30 bins)
Kyoto Tulum

Pattern Number Pattern Number
Length of Outliers Length of Outliers

2 0 2 0
3 3 3 10
4 5 4 21
5 4 5 18
6 13 6 13

The second group of experiments focuses on energy usage data collected for a
single week in the Kyoto and Tulum testbeds. The purpose of this experiment was
to detect energy outliers and determine possible reasons for these outliers. Table
3 displays the results of the clustering method for 30 bins. To explore potential
reasons for the anomalous usage patterns, those outliers were examined in detail.
It was discovered that these abnormal events represent two types of occurrences.
The first set of outliers was mainly due to large changes in energy usage, when the
residents had sustained high-level energy consumption over a long time. Some of

13



 0

 5

 10

 15

 20

 25

 30

20 25 30 35 40 45 50

N
um

be
r o

f o
ut

lie
rs

Number of bins

Pattern Length 2
Pattern Length 3
Pattern Length 4
Pattern Length 5
Pattern Length 6

Figure 7: Distribution of number of pattern outliers using our clustering approach.

the big appliances, including the water heater, consume more energy than others
and can create anomalies when there are long showers. In addition, during the
middle of the day the residents often do their cooking and large appliances are
being used for cooking such as the microwave, the stove and the oven, all of which
would give rise to a dramatic increase in energy consumption. To respond to these
outliers, the residents can analyze their energy needs during these activities to
identify energy-saving behaviors.

Table 4: Example of an Outlier.
2009-06-01 23:31:02 P001 1001.5
2009-06-01 23:31:02 P001 356

The outliers in the second set consisted of two successive energy events, whose
values are different but occur at the same time, as shown in Table 4. This situa-
tion actually represents noise in the data that occurs as part of the data collection
hardware. These kinds of outliers are also valuable to detect because the noise can
be addressed to subsequently improve the accuracy of additional analysis meth-
ods. Therefore, we checked the entire Kyoto and Tulum datasets for these types
of outliers. The result was that 6,398 entries from Kyoto and 9,401 entries from
Tulum that represented noisy data collection conditions were removed. In the sec-
ond group of experiments, all of the outliers detected by the clustering approach
fit into one of these two categories. However, since we only consider the patterns,
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which are extremely far from the centroid of the clustering, the rate of false neg-
atives may be somewhat higher, which means that some real outliers are likely to
be ignored by this approach. One possible solution is to decrease the pre-defined
threshold, which makes our approach to detect more outliers with the risk of in-
creasing the rate of false positive.

5. Activity-based Energy Prediction

In the second step of our CASAS-Sustain analysis, machine-learning tech-
niques were used to predict energy consumption given information about an ac-
tivity that residents perform in a smart environment. Because activity recognition
techniques are prevalent in the literature [25] and are becoming more robust, this
offers a practical approach to automatically correlating activities in the home with
energy consumption. The following features were used to describe an activity
performed by an inhabitant in a smart home:

Table 5: Data features for classification models.
Feature Name Description
Activity label This feature indicates the types of the activities the

residents perform.
Activity length This feature shows the time length of the
(in seconds) activity.

This feature shows the current day of week
Day of week (Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, and Sunday).
Weekday/Weekend This feature is a binary variable to determine whether

the current day is a weekday or weekend.
Time of day This feature represents different time slots (morning,

noon, afternoon, evening, night, and late night).
Times of individual sensors This feature represents times of different motion

triggered sensors that were activated during the activity
Number of motion sensors This feature represents the number of motion
activated in various rooms sensors that were triggered in various rooms.

Total number of motion This feature represents the total number of motion
sensor events triggered sensor events that were triggered

The features were used to describe an activity performed by an inhabitant in
a smart home as shown in Table 5. The input to the learning algorithm is a list
of these eight features as computed for a particular activity that was performed.
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The output of the learning algorithm is the amount of electricity that is predicted
to be consumed while performing the activity. In this paper, by applying equal-
width binning, the target average energy data was discretized into several interval
sizes (two classes, three classes, four classes, five classes, six classes, and seven
classes) to assess the performance of our experiments.

Table 6: Electrical appliances associated with each activity.
Activity Appliances Directly Associated Associated Appliances

Work at computer Computer, printer Localized lights
Sleep None None
Cook Microwave, oven, stove Kitchen lights

Watch TV TV, DVD player Localized lights
Shower Water heater Localized lights
Eating TV Localized lights

To train the algorithms, sensor events were annotated with the correspond-
ing activities being performed while the sensor events were generated. All of the
activities that the participants perform have some relationship with measurable
features such as the time of day, the participants’s movement patterns throughout
the space, and the on/off status of various electrical appliances. These activities
are either directly or indirectly associated with a number of electrical appliances
and therefore have a unique pattern of power consumption. Table 6 lists the ap-
pliances that are associated with each activity. It should be noted that, there are
some appliances which are always on, such as the heater (in winter), refrigerator,
phone charger, etc. Thus, we postulate that the activities will have a measurable
relationship with the energy usage of these appliances as well.

5.1. Analysis of Resident Activities and Energy Usage
Figure 8 shows the energy fluctuation that occurred during a single day on June

2nd, 2009. The activities are indicated by the arrows. The length of the arrows
indicates the duration of time (not to scale) for the activities. Note that there are
a number of peaks in the graph even though these peaks do not always directly
correspond to a known activity. These peaks are due to the water heater, which
has the highest energy consumption among all appliances, even though it was not
used directly. The water heater starts heating by itself whenever the temperature
of water falls below a certain threshold.

Figure 9 plots typical energy data for each activity together with the result of
applying curve fitting to the data. Curve fitting [26] is the process of building a
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Figure 8: Energy usage for a single day.

mathematical function model that can best fit to a series of data points. It serves
as an aid for data visualization, and to express the relationships between different
data points. From the figure, we see that each activity generates a different energy
pattern.

Figure 10 illustrates two boxplot graphs of energy consumption for each activ-
ity for both Kyoto and Tulum testbeds. From the graph, it again shows that each
activity utilizes very different amounts of power. In Kyoto, the shower activity
consumes the highest amount of energy because the water heater is a larger power
consumer. However, the cook activity uses the most energy in Tulum. Cooking
in Tulum involves frequent access to the refrigerator and stove, which increases
power consumption. Conversely, when the participants were sleeping in both two
testbeds the energy consumption was the lowest because most appliances were
idle.

5.2. Modeling of Activity-Based Energy Usage
Machine learning algorithms are capable of learning and recognizing complex

patterns contained in sensor data. In this work, machine learning algorithms were
used to map these activity features onto a class label indicating the amount of en-
ergy that is consumed in the smart environment while the activity was performed.
Three popular machine-learning methods were leveraged and compared for this
work: a Bayesian belief network classifier, a support vector machine, and a neural
network.
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Figure 9: Energy data curve fitting for each activity. There is a separate graph for each activity:
a=shower, b=cook, c=work on computer, d=eat, e=sleep, and f=watch TV. The x-axis in the graphs
represents wattage and the y-axis represents time of the activity in seconds.

Bayesian belief networks (BBNs)[27] represent a set of conditional indepen-
dence assumptions by a directed acyclic graph, whose nodes represent random
variables and edges represent direct dependence among the variables and are
drawn by arrows by the variable name. Unlike the Naı̈ve Bayes classifier, which
assumes that the values of all the attributes are conditionally independent given
the target value, Bayesian belief networks apply conditional independence as-
sumptions only to subsets of the variables. They can be suitable for small and
incomplete data sets and they incorporate knowledge from different sources. Af-
ter the model is built, they can also provide fast responses to queries.

Support Vector Machines (SVMs) [28] are a class of training algorithms for
data classification, which maximize the margin between the training examples and
the class boundary. A SVM learns a hyper-plane which separates instances from
multiple energy usage classes with maximum margin.

Artificial Neural Networks (ANNs) [29] are abstract computational models
based on the organizational structure of the human brain. The most common
learning method for ANNs, called Backpropagation, which performs a gradient
descent within the solutions vector space to attempt to minimize the squared error
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Figure 10: Boxplot of energy data generated by human activates in the Kyoto (a) and Tulum (b)
testbeds.

between the network output values and the target values for these outputs. Al-
though there is no guarantee that an ANN will find the global minimum and the
learning procedure may be quite slow, ANNs can be applied to problems where
the relationships are dynamic or non-linear and capture many kinds of relation-
ships that may be difficult to model by other machine learning methods. In our
experiment, the Multilayer-Perceptron algorithm with Backpropagation to predict
electricity usage was leveraged.
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Figure 11: Distribution of instances in the three energy classes for Kyoto and Tulum.

One challenge that we face when learning a mapping from activity features to
energy usage is that the class distribution is highly skewed, as is shown in Fig-
ure 11. This is because most home-based activities require a moderate amount

19



of energy usage, while a small set of activities require substantially more power.
Machine learning algorithms are often challenge by such an imbalanced class dis-
tribution [30] because models that map all (or most) of the cases to the low-energy
values will achieve high accuracy, but clearly will not learn the true mapping of
activity features to energy usage.

To deal with this imbalanced data we incorporate a data sampling technique,
called SMOTE [31]. We combine under-sampling methods (to reduce data points
in over-represented classes) with over-sampling methods (synthetically generat-
ing points for under-represented classes) to address this problem by using a com-
bination of both under and over sampling, but without data replication. Here,
over-sampling is performed by synthesizing a new sample corresponding to each
minority class by randomly choosing from the points nearest neighbors. Gener-
ation of the synthetic sample is accomplished by first computing the difference
between the feature vector (sample) under consideration and its nearest neighbor.
Next, this difference is multiplied by a random number between 0 and 1. Finally,
the product is added to the feature vector under consideration. The result is a new
sample similar to, but not a replica of, the existing data.

5.3. Experimental Results
Two series of energy prediction experiments were performed. The first experi-

ment uses the sensor data collected during two months in the Kyoto testbed. In the
second experiment, we collected data of two months in the Tulum testbed. Using
the Weka machine learning toolset [32], we assessed the classification accuracy of
our three selected machine learning algorithms and reported the predictive accu-
racy results based on a 3-fold cross validation. It should be noted that the instances
of the class in each group follow the real distribution to examine the performance
of the sampling technique.

Conventional performance measures consider different classification errors as
equally important. However, this assumption is not practical for our energy pre-
diction, where the class distribution is highly skewed. Therefore, we consider two
metrics that measure different aspects of performance. The first metric we use
evaluates conventional accuracy of the classifiers; the second measurement is the
area under a ROC curve (AUC), which evaluates overall classifier performance
without taking into account class distribution or error cost.

Figures 12 and 13 plot the accuracies and AUC values for two set of experi-
ments. The accuracy peaks around 90% for both datasets when predicting the two-
class energy usage and the lowest accuracy is around of 70% for the seven-class
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Figure 12: Comparison of the accuracy and AUC for the Kyoto dataset .

case in both datasets. These results also show that the higher accuracy will be at-
tained with a lower precision. Increasing the precision of classification by adding
labels, the accuracy across all three algorithms decreases predictably. From the
figures, we see that the Bayes Network performs worse than the other two classi-
fiers. This is attributed to the simplified assumption that the features that we use
are not conditionally independent. For example, the motion sensors associated
with an activity are used to find the total number of motion sensor events was
triggered and also the kinds of motion sensors involved in the activity.

The ROC curve is not as strong of a measure as accuracy for this experiment.
That is because the accuracy is difficult to measure when the training dataset is
highly skewed. To deal with these imbalanced datasets, we apply the SMOTE
sampling to rebalance our datasets by increasing the number of minority class
instances, thereby enabling the classifiers to learn more relevant rules for the mi-
nority class. Figure 14 depicts the new class distribution of the Kyoto and Tulum
datasets after applying the SMOTE. From the figure, we see that two other minor-
ity classes have been increased greatly after balancing the datasets.

To analyze the effectiveness of the sampling technique, we evaluate the accu-
racy of a SVM prediction algorithm on both datasets with and without the sam-
pling. The results are shown in Figures 15 and 16. In Figure 15, the accuracy
for both datasets decreased slightly. On the contrary, Figure 16 depicts the perfor-
mance as measured by the area under the ROC curve, which has been improved.
After sampling, the classifiers improved the performance to classify the minor-
ity class with the loss of decreasing the accuracy. The experimental results show
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Figure 13: Comparison of the accuracy and AUC for the Tulum dataset .
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Figure 14: New distribution of instances in the three energy classes for Kyoto and Tulum.

that the sampling technique is a good approach to rebalance the energy data and
further improve prediction performance on minority class.

Figures 15 and 16 also compare the performance of the support vector machine
for two different environments, Kyoto and Tulum. Looking at the graphs, Tulum
yields a slightly improved performance over Kyoto. This is likely due to the fact
that some energy-intensive devices such as room heaters were used in Kyoto but
not Tulum (heat is handled from a separate building source in Tulum). These
devices are not under the direct control of residents, nor are they directly impacted
by activities.
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Figure 15: Comparison of the accuracy with and without sampling.
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Figure 16: Comparison of AUC with and without sampling.

6. Mobile Sustainability Intervention

The last component of CASAS-Sustain is behavior-based intervention to pro-
mote sustainability in everyday environments. We focus on a pervasive approach
to promote sustainability behavior. Figure 17 shows our CASASviz visualizer,
which is web-based and can therefore run on a computer display or a mobile de-
vice [33]. CASASviz describes an environment graphically using Scalable Vector
Graphics. In one mode (the one shown in Figure 17(a)), users can look at an in-
terface which displays sensor events that occur in the environment in real time or
play back mode. Because CASASviz also displays the corresponding resource uti-
lization (power, temperature, burner, and water, as shown in Figure 17(b)), users
can get a quick view of their energy consumption and the corresponding activities
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Figure 17: Mobile device-based intervention for sustainable behavior.

in the environment that impacts their energy utilization.

7. Conclusions

In this article, we consider the role of in-home behaviors upon energy us-
age. In particular, we analyze patterns of energy usage by monitoring activities as
well as collect energy usage data from several smart environments. We analyzed
the energy patterns by identifying frequent sequences of energy usage ranges and
identifying outliers in the data. We further identify the role of behaviors for energy
usage by using machine learning methods to map activities performed in the en-
vironment with their corresponding energy usage. Finally, we proposed a method
to use this information as the basis of an intervention that allows individuals to
perform their daily activities in a more energy-efficient manner. All of our algo-
rithms were evaluated based on data collected in the CASAS smart environment
testbeds.

The current state-of-the-art approaches for informing residents about their
power consumption are limited. They either provide information at too low res-
olution through monthly totals, or at too high resolution through instantaneous
measurements. These tools put the numbers and costs in context by associating
energy with recognizable behaviors. It is this association that can be used to in-
form people about their impact on the world in a way that they can use to change
their own day to day activities. The purpose of this study is to validate our hy-
pothesis that energy usage can be analyzed and predicted based on the sensor data
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that is generated by the residents in a smart home environment. The results of this
work can be used to provide feedback about a resident’s energy consumption as
it relates to various activities. In addition, predicted electricity use can form the
basis for automating activities in a manner that consumes fewer resources, includ-
ing power usage. By detecting trends and anomalies, we can find some extreme
energy usage values, which may indicate blackout situations, devices that were
mistakenly left on, or that may lead to potential security problems in the smart
environment.

Based on our experimental analysis we found that many of these techniques
are useful in highlighting data collection issues and behavioral patterns that can
affect energy consumption. The link between smart home sensors, machine learn-
ing algorithms, and whole-home power usage provided these insights that would
otherwise likely not be caught. Additionally, our algorithms are able to show res-
idents how much power their daily behaviors are using. This lays the groundwork
for evaluating how effective this information is at influencing activity behavior
over time in an attempt to reduce power consumption.

In our ongoing work, we plan to investigate methods to detect a greater range
of anomalies. We also plan to install more sensitive power meters in order to
capture more accurate changes in energy consumption. To extend our existing
work, we will data in a greater variety of households, which will allow us to
determine whether energy predictions, energy usage trends, and energy anomalies
exist and generalize across multiple settings. To save cost, we will look for a
minimally instrumented sensor environment to do the same evaluations of our
algorithms. Finally, we will evaluate our mobile device application to determine
user acceptance of the interface and quantify the short-term and long-term effects
on sustainable behaviors and energy consumption.
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