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Abstract 

Segmenting behavior-based sensor data and recognizing the activity that the data represents are vital steps 

in all applications of human activity learning such as health monitoring, security, and intervention.  In this 

paper, we enhance activity recognition by identifying activity borders. To accomplish this goal, we introduce a 

change point detection-based activity segmentation model which segments behavior-driven sensor data in real 

time, which in turn increases the performance of activity recognition. We evaluate our proposed method on 

data collected from 29 smart homes. Results of this analysis indicate that the method not only provides useful 

information about their activity boundaries and transitions between activities but also increase the average 

accuracy of recognizing individuals’ activities while they are performing their daily routines more than 1%.  

Keywords: Activity segmentation, Activity recognition, Change point detection, Smart home  

 INTRODUCTION 

Learning human activity models from streaming sensor data is an important problem for the 

successful realization of intelligent environments. Human activity learning aims to learn and 

understand observed activities and situations within an environment and is useful for a wide range 

of applications and services such as detection of health monitoring and emergencies, early disease 

detection, home automation, security, and behavior intervention. Activity learning encompasses 

valuable capabilities such as activity recognition, activity detection, activity segmentation, and 

activity forecasting. In this work, we focus on the activity segmentation problem, or the problem of 

segmenting behavior-based sensor data into subsequences, each corresponding to a single activity. 
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Various strategies have been proposed for activity segmentation. While earlier works use pre-

segmented event streams [1][2], others approximate activity segmentation by processing data 

captured in sliding windows that move linearly through sensor data offline or in real time [3]–[5]. 

Recognizing activities from pre-segmented data offers an advantage that the beginning and ending 

point of each activity occurrence is known. However, such segmentation is typically performed offline 

based on inspection of an entire dataset and is therefore not useful for real-time applications. While 

a sliding window approach can be used for online segmentation, finding the proper length of the 

window is difficult because the duration or the sensor sequence length of each activity occurrence 

may differ significantly. Recently deep RNN based neural network algorithms are introduced to solve 

this problem. A short length for the sliding window compared to the activity length does not nullify 

activity recognition results since a memory vector can be kept from one sliding window instance to 

the next, and allow the relevant information to be carried through time. However, these methods 

are supervised and require a massive amount of training data in advance which is not very useful 

for online activity recognition. 

Identifying the start and end points of each activity is very useful for modeling human behavior, 

detecting activity routines, and providing activity-aware automation. Identifying activity 

boundaries facilitates extraction of features that reflect characteristics of the activity as a whole 

such as activity start times, end times, and duration. This information can improve the accuracy of 

activity recognition [6]. The information is also valuable for the assessment of an individual’s 

functional health and changes in their health status [7].  

Another area of research development that will benefit from activity transition detection is 

context-aware intervention delivery. While mobile devices have become a popular tool for 

notification of information news and delivery of real-time interventions, pushing notifications can 
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also be detrimental if they interrupt ongoing activities [8][9]. Prompting during transition periods, 

a period when the user is not engaged in an activity and may be transitioning between activities has 

been suggested as an effective prompting time [10]. In the case of adults with memory limitations, 

mobile delivery of activity prompts been found to support functional independence because the 

device acts as a type of cognitive prosthesis. While activity segmentation information finds many 

uses, due to the nature of human behavior and its unpredictability dividing daily routines into 

individual activities and providing labels for the activities is challenged by real-world complexities 

including activity ambiguity, interruptions, parallel activities, and sensor noise. 

In this paper, we address the problem of activity segmentation. To illustrate the method and 

validate the approach, we apply our proposed technique in the context of smart homes that collect 

sensor data while individuals perform continuous, unscripted, everyday routine activities. We 

propose a novel transition-aware activity segmentation approach which identifies the transition 

between activities by detecting change points in the corresponding time series-based data. This 

change point detection technique is effective for behavior-driven sensor data analysis, and we show 

that using such change-point detection techniques can identify wherein the sensor data one activity 

ends and another begins. Furthermore, we hypothesize that activity segmentation can improve the 

performance of activity recognition on non-scripted activities by distinguishing activity borders and 

integrating features related to the entire activity segment. We evaluate the performance of our 

proposed approach using smart home data from 29 homes, collected continuously for up to 18 months 

per home. 

The remainder of the paper is organized as follows. Section 2 explains the related work in this area. 

Section 3 describes the basic definitions we used throughout the paper and formulates the problem we are 

addressing. Our proposed approach, including segmentation and alternative methods for incorporating 
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activity transition detection into activity recognition, is explained in Section 4. The implementation of the 

work and evaluation of the approach to smart home data is presented in Section 5. Finally, Section 6 

summarizes the results and discusses future work. 

 RELATED WORK 

Human activity recognition has become a very popular area of research. As a result, numerous 

studies investigate both online and offline methods for activity recognition. Wang et al. [11], Lara et 

al. [12] and Bulling et al. [13] surveyed algorithms for supervised and unsupervised activity 

recognition from wearable sensors. In this section, we focus on algorithms that detect transitions 

between activities in addition to labeling the activities. 

Early studies on human activity segmentation focused primarily on video segmentation or 

segmenting a combination of video and accelerometer data [14]–[17]. Advances in smart homes, 

wearable devices, and pervasive computing make the problem of activity segmentation from sensor 

data one of the main points of interest in the era of IoT (Internet of Things). IoT refers to the 

networked interconnection of everyday objects, which are often equipped with ubiquitous intelligence 

[18]. Here we review work that has been conducted in this emerging area of research. 

To segment data from wearable sensors, Yoshizawa et al. [19] analyzed accelerometer data in the 

frequency domain by setting a threshold that indicates points where activities change from static 

(such as standing and sitting) to movement (such as walking and running). Similarly, Nyan et al. 

[20] proposed a wavelet decomposition model to segment accelerometer data into walking, ascending 

stairs, and descending stairs. He et al. [21] asked the user to give explicit ground truth segmentation 

points by standing for a few seconds between two activities to identify the corresponding beginning 

and ending points. Cho et al. [22] applied long short-term memory (LSTM), a type of recurrent neural 



                                                                                                                                          5  
                                                                                                                                         

network, to determine whether or not an activity is terminated on the dataset collected in a scripted 

environment with ambient sensors. Zhu et al. [18] developed a two-step supervised classifier to 

recognize ambulation activities along with transitions from accelerometer data. In the first step, an 

artificial neural network categorizes stationary and non-stationary activities. In the second step, a 

hidden Markov model labels the corresponding activity. One important issue related to this work is 

that all the data were collected from one single individual. All of these methods either detect 

transitions using a supervised approach and/or operate only in scripted environments. In such 

settings, participants perform the activities following instructions. The beginning and ending of each 

activity are thus specified in advance. The resulting activity transition detection and recognition 

process are thus much different from analyzing activities from sensor data in real-world settings 

with streaming sensor data. 

To address these challenges, more recent studies focus on unsupervised methods for detecting 

activity boundaries in real-world datasets. Wang et al. [23] combined SVM and association rule 

mining to design a three-level activity segmentation algorithm and applied it to CASAS datasets. 

The first SVM model is used for activity recognition based on raw sensor events. The second SVM 

model tries to find the boundary information, and finally, in the third layer, the association rule 

miner verifies the boundary recognition results to reduce recognition errors. 

In other recent efforts, Ortiz et al. [24] designed a Transition Aware Human Activity Recognition 

(TAHAR) for the recognition of physical activities using smartphones. This algorithm captured body 

motion with inertial sensors and utilized a Probabilistic-SVM algorithm for activity recognition and 

transition detection. In this approach, transitions are considered as an additional class. Another 

approach was introduced by Noor et al. [25], who used three different decision tree classifiers to play 

the roles of a transitional activity detector, a non-transitional activity classifier and a transitional 
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activity classifier to segment physical activity based on a single tri-axial accelerometer. A 

transitional activity detector differentiates transitional activities from static/dynamic activities in 

sensor data. Depending on the result, either the transitional activity classifier or the non-

transitional activity classifier is used to label the activities. 

More similar to our proposed method, Ni et al. [26], Alam et al. [27] and our preliminary work 

[28] used an unsupervised method to detect transitions and then applied a supervised classifier to 

label the activities. Ni et al. [26] introduced the Multivariate Online Change detection Algorithm 

(MOCA) to detect transitions by comparing statistical values such as mean value as well as the 

variance-covariance matrices of two consecutive windows. In the next step, a supervised classifier is 

used to recognize static, dynamic, and transitional activities collected from accelerometers and 

performed by ten older adults. The experimental results show a significant improvement in labeling 

ambulatory activities over the existing window based method. However, the proposed method may 

not be as accurate in detecting activities of daily living in smart homes. The main reason is it only 

uses mean and variance value to detect changes or transitions.  Alam et al. [27] applied the Relative 

unconstrained Least-Squares Importance Fitting (RuLSIF) algorithm to accelerometer data 

collected from a wearable smart earring to detect gesture changes and utilized a Hidden Markov 

Model (HMM) to label each gesture. On the other hand, our preliminary work [28] applied the same 

unsupervised algorithm to smart home data to detect transitions between daily activities.  

To summarize the existing work, previous approaches can be largely categorized based on the 

method they used for transition detection. These prior approaches utilized either a supervised 

classifier [23][24][25] or a RuLSIF-based unsupervised learner to perform activity transition 

detection [27][28]. Supervised methods require a sufficient amount of training data which increases 

significantly when the number of activity classes grows. This constraint is not consistent with the 
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real-time nature of the applications needing activity segmentation and makes using unsupervised 

learning approach more suitable. In this current work, we introduce a SEP change detection 

algorithm for transition detection. We confirmed that SEP outperforms RuLSIF in detecting 

transitions and can detect transitions closer to their actual occurrence. The result of improving 

transition detection is an increase in the accuracy of our activity segmentation as well as subsequent 

activity recognition from smart home data.   

 BACKGROUND 

  Definitions 

To begin, we provide definitions that we will use throughout the rest of the paper. An activity 

learner receives data from sensors that are used to perceive the state of an individual or environment. 

We specify input data to an activity learner as a sequence of sensor events. Each sensor event, e, 

takes the form e=< t, s, m > where t denotes the timestamp when the sensor message was collected, 

s denotes the identifier of the sensor generating the message, and m denotes the content of the sensor 

message. We refer to an activity as a complex behavior consisting of a sequence of actions that can 

be performed by a single individual or several individuals interacting with each other. We posit that 

many such activities can be detected and recognized from sensor events that are collected while the 

activity is performed. In order to perform activity recognition from continuously collected data, 

subsequences of sensor events need to be considered, processed and mapped to an activity label. In 

this context, we define an activity window as a sequence of n sensor events, < e1 e2 … en >, which is 

processed for activity analysis. Continuous-time activity recognition learns a mapping of the features 

to an activity label where the label represents that activity corresponding to the last event in the window 

[29]. In this approach, a feature vector is extracted from the activity window and input to an activity 
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classifier. The feature vector can be mapped to a label that indicates the activity that is occurring 

during the entire window or at the beginning, middle, or end of the window [29].  

Our approach to activity segmentation is based on detecting change points in time series data. A 

time series data stream is an infinite sequence of elements TS={x1,…,xi,…}, where each xi is a d-

dimensional data vector arriving at time stamp i [30]. Given a time series TS, we assume time stamp 

t is a change point if the probability density function f created from sliding-window data observed 

before t is sufficiently different from the data observed immediately after t, either based on the type 

of the function or the parameters characterizing the function change. In the context of activity-based 

change point detection, a detected change point is also referred to as an activity transition (time 

point at which an individual transition from one activity to another). A change point view is defined 

as a set of features describing a fixed-length sequence of sensor events before and after the candidate 

change point t. A change point detection algorithm compares two change point views to determine if 

a change point occurs between them.  Finally, an activity segment is defined as the sequence of sensor 

events that occurs between two detected activity transitions in activity-based sensor data.  

  Problem Setup 

Next, we formalize the problem of activity segmentation from sensor data. Activity segmentation 

identifies activity boundaries and segments observed data into individual activities. Given a 

sequence of n sensor events, E=< e1 … en>, where ej corresponds to the jth sensor event, an activity 

segmentation algorithm partitions the sequence into a set of k nonoverlapping subsequences 

P=<E1, …, Ek>, such that each 𝐸 ⊆ 𝐸 and the order of the elements in Ei is preserved. Furthermore, 

the set of subsequences is nonempty, nonoverlapping, and ⋃ 𝑆_𝐸
ୀ
ୀଵ ൌ 𝐸. In the case of activity-based 

sensor data, the beginning and ending of each subsequence denotes the beginning and ending of the 
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corresponding activity. Additionally, the time between the end of one subsequence and the beginning 

of the next can be considered an activity transition. 

With the availability of an activity segmentation algorithm we can then distinguish window-

based real-time activity recognition from segmentation-based real-time activity recognition. Both 

approaches perform activity recognition in near real-time, as the activities occur. Let A = {a1, a2, …, 

aT} be a set of T activities, where ai corresponds to the ith activity class. Given the segmented sequence of 

n observed sensor events, <e1 e2 .. en>, a feature vector X is extracted that provides relevant information 

about the corresponding activity segment. In the case of window-based recognition, the segment is defined 

by a fixed rule specifying the window size. In the case of activity segmentation, the segment is defined by 

detected transitions in the data. An activity recognition algorithm then learns a function, h, that maps the 

feature vector onto an activity label, h:XA. 

 PROPOSED APPROACH 

Although the goals of both window-based activity recognition and segmentation-based activity 

recognition are to recognize human activities from sensor data, the activity segmentation will 

provide additional information beyond activity recognition, because it will also identify the start and 

end points of the activity rather than just assign a label to a manually-segmented or arbitrarily-

positioned window.  

Figure 1 provides an overview of our proposed activity segmentation and recognition process. Our 

proposed approach contains three steps, as the figure shows. The first step is to collect ambient 

sensor data in smart home environments. The second step identifies activity boundaries, or performs 

transition detection (ATD), yielding activity segments. Finally, the third step is to recognize and 

label the corresponding activity (AR). As shown in the chart, we consider four alternative approaches 
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to activity recognition based on the collected and partitioned data. The first approach, AR-W, 

represents a traditional sliding window-based activity recognition that does not incorporate any 

information from transition detection. The second approach, AR-WT, also recognizes activity labels 

based on a sliding window but the additional feature from the most recent detected transition is 

added to the feature vector. AR-SM is the third approach which is similar to AR-W except for the 

label of activities between two transitions is now determined to be the majority activity label for the 

window. Finally, AR-SS represents our proposed method, which labels all events between two 

transitions as a single activity. The main contribution of this work is introducing a method to 

improve both activity segmentation and activity recognition using an innovative change point 

detection algorithm. 

 

 

 

Figure 1. Overview of basic activity segmentation. 
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  Segmentation  

Real-time activity segmentation or detection of transitions between activities as they occur based 

on sensor data is a valuable but somewhat untapped challenge. We consider the problem of detecting 

activity transitions as a change point detection problem in time series data. This assumption is 

based on the hypothesis that activity transitions can be detected without knowing the activity 

categories a priori, by only assessing changes in the data distributions of the feature space.  

Change point detection is the problem of identifying time points when the probability distribution 

of a time series changes. We use an approach introduced in our previous work for activity transition 

detection called SEP [31]. SEP is a non-parametric sequential change detection which calculates a 

change score between two consecutive change point views to indicate the amount of change that 

occurs from the first view (a sequence of sensor events) to the next. As demonstrated in Figure 1, we 

used a fixed length sliding window to extract features for change point detection. To distinguish this 

sliding window from one used for activity recognition; we will refer to this window as a change point 

view. Extracted features can be categorized into three groups: 1) time features which represent the 

time of the last event in the view such as day of week and time of day, 2) view features which 

represent information about the view as a whole such as view duration, most frequent sensor, 

complexity, and activity change, and 3) sensor features which represent the number of occurrences 

of each sensor event in the view and the last time each sensor fired within the view. Table 1 provides 

a complete explanation of these features as well as features used in other algorithms. As a result, 

the dimension of the time series data feature space depends on the home layout and number of 

sensors. After completing feature extraction, we apply SEP change detection to determine whether 

there is an activity transition between the two consecutive change point views.  
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SEP utilizes separation distance as a dissimilarity measure and estimates the ratio of probability 

distributions. Considering two estimated probability densities, ft(x) and ft-1(x), corresponding to two 

consecutive change point views, each with length n, the separation distance S between them can be 

calculated as shown in Equation 1.  

𝑆 ൌ 𝑀𝑎𝑥ሺ1 െ
షభሺ௫ሻ

ሺ௫ሻ
ሻ      (1) 

The Max operator returns the maximum over all estimation of probability ratios. In order to 

calculate Separation distance as change point score, similar to our previous work [31], we estimate 

the ratio of the two probability densities by a kernel function g(xi) and calculate the change point 

score as Equation 2. Here, the result is compared with 0 to avoid negative values. 

𝑆𝐸𝑃 ൌ Max ሺ0, ቀ1 െ
ଵ


∑ 𝑔ሺ𝑥ሻ

ୀଵ ቁሻ     (2) 

The score calculated in Equation 2 can be used to detect change points. Considering the fact that a 

larger SEP score means that the probability of a change point is higher, we reject all candidate points 

whose SEP values are lower than a threshold value. To reduce the chance of false alarms and avoid double 

change points (two change points in quick succession that are part of the same transition), we only consider 

local peak score values as change points. The threshold value (Th) is chosen based on optimal performance 

for a particular time series. In our experiments, we identify a threshold value that optimizes a tradeoff 

between TPR and FPR based on a sample of the data. Another important parameter in the SEP algorithm 

is n, the length of the view. As with the threshold value, we vary the view size for each dataset in order to 

find the best window length regarding both acceptable accuracy and real-time detection. Through 

empirical evaluation [31], we identified a view length of two and a threshold value of 0.3 to be 

effective and efficient for ambient sensor data analysis. 

Table 1. Feature sets used for activity segmentation and activity recognition algorithms throughout this paper. 
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Domain Feature name 
ATD/ AR-W /AR-

SM 
AR-WT AR-SS 

T
im

e 
fe

at
ur

es
 day of week    

hour of day    
seconds past 
midnight 

   

time of transition    

W
in

do
w

 fe
at

ur
es

 

number of sensor 
events 

  from last transition 
 for activity segment 
between two transitions 

window duration 
(time) 

 fixed length 
window 

 fixed length window and from 
last transition 

 for activity segment 
between two transitions 

most recent sensor    
last sensor location    

most frequent sensors 
 fixed length 
window 

 fixed length window and from 
last transition 

 for activity segment 
between two transitions 

previous most 
frequent sensor 

 fixed length 
window 

 fixed length window 
 for activity segment 
between previous two 
transitions 

dominant location   from last transition 
 for activity segment 
between two transitions 

previous dominant 
location 

  
 for activity segment 
between previous two 
transitions 

entropy-based data 
complexity 

 fixed length 
window 

 fixed length window and from 
last transition 

 for activity segment 
between two transitions 

activity level change 
 between two 
halves of fixed 
length window 

 between two halves of fixed 
length window 

 for activity segment 
between two transitions 

number of transitions 
 fixed length 
window 

 fixed length window 
 for activity segment 
between two transitions 

Se
ns

or
 fe

at
ur

es
 

count of events 
 for each sensor in 
fixed length 
window 

 weighted sensor count in fixed 
length window based on the 
position of transition; 
counts of events from last 
transition 

 for each sensor in 
activity segment between 
two transitions 

elapsed time for each 
sensor since last 
event 

   

 

Recognizing activity labels in real time is very important in evaluating activity recognition 

algorithms. Here we are using the term ε-real time to compare different approaches. An activity 

recognition algorithm can be said to perform in ε-real time when the algorithm makes a decision 

about a label of sensor events after a delay of ε sensor event. 
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Here, we note that ε, the delay required for change point detection, is based on the number of 

sensor events rather than time. This is due to the fact that our example application utilizes ambient 

sensors, which generate sensor events as a change in state is detected, rather than at a steady 

sample rate. For situations in which data arrives at a steady rate, this delay could be represented 

by t units of time rather than a number of reported sensor events. To give an indication of the time 

delay that is represented by a single sensor event in these testbeds, the average time delay between 

sensor events is listed for each smart home in Table 2. Based on this view, a complete real-time 

activity recognition algorithm can be viewed as 0-real-time because for every sensor event; it can predict 

the label immediately.  

Table 2.  Average time gap between two sensor events for each home. 

Home 
Average 
gap (Sec) 

Home 
Average 
gap (Sec) 

Home 
Average 
gap (Sec) 

Home 
Average 
gap (Sec) 

Home 
Average 
gap (Sec) 

hh101 23.3 hh107 12.3 hh113 18.7 hh119 29.1 hh126 28.6 
hh102 17.1 hh108 17.6 hh114 19.8 hh120 25.5 hh127 42.6 
hh103 44.4 hh109 13.5 hh115 16.1 hh121 7.2 hh128 12.9 
hh104 15.6 hh110 22.6 hh116 13.0 hh122 17.5 hh129 16.0 
hh105 22.5 hh111 21.4 hh117 24.1 hh123 25.4 hh130 21.6 
hh106 22.4 hh112 17.8 hh118 14.9 hh125 23.5 Average 20.9 

 

Our proposed transition detection is not completely real time because it needs two sensor events at 

times ti+1 and ti+2 to decide if there is a transition at time t. We, therefore, refer to this algorithm as 

operating in 2-real time. The output of the algorithm is a tag attached to each sensor event indicating 

whether the event is a transition or not. This tag can be sent to an activity recognition algorithm to use as 

a source of additional information. The accuracy of transition detection has a considerable impact on the 

performance of an activity segmentation model and thus on activity recognition. A larger false positive 

rate will split the time series into more segments and thus shorter activities. 
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  Activity Recognition 

We consider and compare three different approaches to CPD-driven activity recognition. We also 

implement a baseline activity recognition method that does not employ CPD but uses a fixed length 

sliding window to label activities. As demonstrated in Figure 1, three of the activity recognition 

approaches are event based, meaning each sensor event is labeled individually with a corresponding 

activity class. The fourth approach is segment based, meaning a single label is assigned to the 

segment as a whole. For all of these cases, we use a Random Forest (RF) classifier with 100 decision 

trees. In previous work, we have found this method to be robust in labeling human activities from 

sensor data and provides a computationally efficient training algorithm [32].    

4.2.1 AR-W 

Our first activity recognition algorithm, AR-W, adopts a fixed-length sliding window to move over 

the data and extract features. AR-W maps the extracted feature vector to a label that indicates the 

activity occurring at the end of the window. These features as demonstrated in Table 1 include all 

of the time, window, and sensor features that are used by the activity transition detection algorithm. 

As we can see in Figure 1, AR-W provides a label for each event immediately and thus it is a 0-real-

time algorithm. At the same time, it will not use any change point information and cannot recognize 

activity boundaries.  

4.2.2 AR-WT 

A primary challenge for AR-W is choosing an appropriate window length. If the window is too 

small, it may not contain sufficient relevant information to recognize the activity. On the other hand, if 

it is too large, then it may contain multiple activities. To address this issue, the AR-WT algorithm adds 

detected transition information to the feature space, resulting in transition-aware window-based activity 

recognition. In this design, after identifying activity transitions, we extract transition-aware features 
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for each sensor event and again use the traditional sliding window approach for labeling. In this 

case, we modify previous features by adding weights to the number of occurrences of each sensor in 

the window. Sensors that fired (generated a sensor event) after a change point (activity transition) 

are weighted more heavily in the feature vector than sensors that fired before the change point. We 

also add some transition features such as the time of the transition, the number of events that 

occurred since the transition, the most frequent sensor and its location since the transition, 

complexity after transition, and activity level change after transition. These differences are 

explained in Table 1. 

After extracting a transition-aware feature set, we again employ an event activity model to label 

the last event. This approach labels each sensor event based on a fixed-length window. The approach 

is not 0-real-time anymore because detecting a change point incurs a delay. Thus AR-WT operates 

in 2-real-time which means it has a delay of two sensor events, but by using more information about 

activity transitions, we expect it can label the events more accurately. Note that although AR-WT 

utilizes transition-aware features, it still labels each event separately. 

4.2.3 AR-SM 

 As mentioned earlier, both the AR-W and AR-WT methods label each sensor event separately 

and they do not indicate the activity start and end points. A straightforward approach to providing 

activity labels along with distinct activity boundaries is to consider the sensor events between two 

change points (transitions) as a complete activity. The AR-SM method performs this segmentation 

step and labels each event in the segment with the majority class for the segment. In this approach, 

the event-based activity model is similar to AR-W. Whenever we detect a new change point (activity 

transition), we assign the majority label to all of the events that occurred since the previous activity 

transition. Using this method, we will have activity labels with distinct boundaries, but the 
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segmentation process is not 0-real time since it needs to detect a transition (a 2-real-time process) 

to label the segment. Thus, AR-SM is 2-real time. 

4.2.4 AR-SS 

Finally, we introduce a transition-aware activity segmentation (AR-SS) method of activity 

recognition. Instead of labeling each sensor event individually, AR-SS considers and labels an 

activity segment as a whole. After detecting a new transition, we consider the sensor events between 

two consecutive transitions as an activity segment. This allows AR-SS to analyze variable-sized 

segments in which the beginning and end points are determined by the activity transitions. We then 

extract segment features as explained in Table 1. Here the features are similar to previous window 

based methods except instead of extracting them from a fixed-length window, we extract them from 

the activity segment. We expect that extracting features from an activity segment will provide the 

classifier with more information such as activity duration, dominant sensor, and dominant location 

which helps to improve the activity labeling performance. Additionally, this approach generates less 

noisy activity label sequences compared to the window-based approach. 

As with the other methods, the segmentation-based activity model utilizes an RF classifier to 

provide activity labels for each segment once the activity transition representing the end of the 

segment in a stream. Similar to the previous transition-aware approaches, this approach is also not 

0-real time. The delay of this algorithm is ε = Ω+2, which Ω is the length of the activity. Although 

this approach incurs a greater delay than the others, because it utilizes all transition and activity 

segment information, we expect it to be more accurate. 
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 EXPERIMENTAL RESULTS AND EVALUATION  

We evaluate our algorithm to segment and recognize daily activities using data collected in actual 

smart home installations while residents perform their regular daily routines. 

  Data Sets  

The data used during this research was collected by the CASAS (Center for Advanced Studies in 

Adaptive Systems) smart home system [33] developed at Washington State University. The CASAS 

smart homes use embedded sensors to collect information about the state of the home and the 

resident(s) to monitor and analyze daily activities. Sensors generate continuous “events” to report 

their state. An event contains a date, time, sensor identifier, and message sent from the sensor.   

Each of the CASAS smart homes has at least one bedroom, a kitchen, a dining area, a living area, 

and at least one bathroom. All CASAS smart homes have different sizes and layouts, yet they all 

include the standard sensor setup. Each of the smart apartments is equipped with a network of 

wireless motion and door sensors and houses a single older adult resident who performs regular 

daily routines. Figure 2 shows the floorplan and sensor layout for two sample apartments. Sensor 

labels starting with “M” indicate motion sensors and labels starting with “D” indicate door sensors. 

The primary sensor found in CASAS smart homes is an overhead passive infrared (PIR) motion 

sensor. Motion sensors are used to determine when motion is occurring in the area covered by the 

sensor. The motion sensor reports an ON message when motion is detected, followed by an OFF 

message when the movement stops. In cases when the resident is walking under the motion sensor 

to some other location, the motion sensor has a gap between the ON and OFF messages that is 

roughly 1.25 seconds. However, if the activity results in continuous movement under the motion 

sensor, (e.g., dancing near the motion sensor), the sensor will not generate an OFF message until 

1.25 seconds after the activity has stopped. Another sensor used in the CASAS smart home system 
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is the magnetic door sensor. Door sensors use a magnetic switch to determine whether the doors are 

opened or closed. These are usually mounted on the external doors of the smart home to indicate 

when the resident enters or leaves home, though some door sensors are also placed in strategic 

locations such as doors to cabinets that hold medicine dispensers. 

 

Figure 2. Sample smart home floorplans and sensor positions. 

We implement our activity recognition and segmentation algorithms using data collected in smart 

home testbeds that were installed in 29 apartments [33]. Each of the apartments house a single 

older adult (age 75+) resident who performs a regular daily routine while sensors in the apartment 

generate and store events. To provide ground truth activity labels, annotators are given the house 

floor plan, the positions of the sensors, a resident-completed form indicating when and where they 

typically perform daily activities, and the sequence of sensor events. Multiple annotators provide 

consistent labels with the beginning and ending of activity occurrences, and the inter-annotator 

agreement is =0.80. The activity classes that we use for our analyses are Bathe, Enter Home, Wash 

Dishes, Personal Hygiene, Relax, Work, Sleep, Leave Home, Cook, Bed Toilet Transition, Eat, and 

Other Activity. Because all events that do not fit into the 11 predefined activity classes are labeled 

as “Other Activity”, the activities are skewed toward this activity class. Table 3 lists characteristics 

of these data sets. This table lists a data set identifier, the number of sensors and number of sensor 

events in each apartment, the total number of days data was collected in each apartment, the 
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number of times each activity occurred in each apartment, and the average number of sensor events 

per activity occurrence.  



Table 3. Characteristics of the data sets used for this study. 
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hh101 18 222,876 60 57/202 173/10 102/73 568/99 4/36 76/95 174/13 196/106 205/33 588/36 20/32 
hh102 37 281,370 58 36/121 118/13 262/59 404/35 193/34 119/28 118/16 487/65 352/32 995/55 49/23 
hh103 25 112,477 58 23/105 165/5 143/36 191/13 33/16 173/31 166/4 220/135 186/9 591/33 115/27 
hh104 38 344,706 61 24/83 207/5 141/93 170/25 408/79 530/62 207/5 261/219 178/142 780/32 353/24 
hh105 36 147,043 40 17/166 219/6 124/89 242/31 123/30 95/12 221/8 223/135 107/28 401/40 52/23 
hh106 48 202,479 55 48/11 248/6 146/72 240/70 337/67 131/16 244/4 247/111 183/69 798/8 51/8 
hh107 26 203,948 31 104/14 214/4 928/20 1949/14 508/14 405/35 215/4 1724/20 891/19 1123/9 198/4 
hh108 35 285,756 58 48/5 284/6 427/41 712/21 436/20 167/45 274/9 733/46 440/31 1707/5 69/5 
hh109 26 399,155 61 17/12 407/6 771/34 312/31 887/35 193/30 420/7 1887/31 576/22 1030/29 92/15 
hh110 26 98,660 27 9/16 73/6 45/57 164/67 203/28 115/41 72/7 42/65 84/30 255/37 68/13 
hh111 41 218,474 59 42/18 169/6 126/24 295/51 441/89 121/84 169/8 205/33 284/24 1320/10 90/7 
hh112 24 468,488 100 53/6 285/9 267/34 672/37 1170/59 300/165 295/12 499/37 633/22 2294/4 156/2 
hh113 38 2,282,124 494 448/125 1640/10 1659/81 1504/46 2369/95 941/56 1652/10 2199/120 1373/39 6093/86 161/71 
hh114 25 135,102 31 5/13 71/5 267/53 166/17 263/17 78/59 71/6 490/56 351/17 342/25 9/32 
hh115 32 1,598,037 298 104/11 1141/6 929/87 2716/51 1011/119 1022/119 1130/8 1648/115 1222/36 5252/36 865/9 
hh116 26 386,427 59 2/9 147/8 213/134 149/25 110/7 140/23 148/9 162/166 148/24 564/190 25/154 
hh117 23 732,207 203 31/14 850/11 568/65 1817/16 791/20 718/15 851/11 639/71 847/33 2134/25 286/16 
hh118 35 116,389 20 3/14 67/8 137/42 202/64 136/23 41/23 67/10 305/66 169/57 249/34 21/18 
hh119 23 92,740 31 15/6 85/8 46/60 89/11 194/12 115/8 85/11 170/84 140/25 552/36 82/48 
hh120 26 219,381 64 14/19 216/9 80/60 343/74 276/60 205/34 217/12 82/104 94/22 586/49 125/30 
hh121 39 122,648 11 7/3 104/6 1603/8 600/7 758/7 99/9 94/9 1427/12 322/13 1425/12 37/23 
hh122 27 129,818 27 20/101 75/5 111/111 171/47 202/26 122/38 74/7 146/121 120/25 495/25 80/13 
hh123 15 106,836 31 9/113 102/10 137/106 210/80 8/9 81/51 102/10 144/132 170/46 205/34 21/23 
hh125 33 216,217 59 25/50 235/10 482/56 437/15 255/16 97/20 235/11 593/78 338/14 726/48 29/25 
hh126 16 112,780 37 9/35 168/9 151/31 465/9 221/7 89/15 166/15 464/28 377/11 501/22 39/5 
hh127 23 50,053 26 20/16 88/6 115/15 425/28 36/20 49/11 89/9 162/20 101/6 293/20 12/4 
hh128 27 415,140 61 11/1 253/10 511/40 572/38 604/11 138/32 253/10 823/42 742/13 1901/7 49/7 
hh129 18 160,672 30 0/0 110/6 242/58 258/30 22/4 168/18 106/9 463/60 247/25 653/18 110/8 
hh130 17 121,598 30 12/11 141/9 4/38 343/35 101/30 89/113 147/9 11/26 69/14 428/37 52/32 

Average 28 344,262 75 42/45 278/8 370/58 565/38 417/34 228/44 278/9 574/79 378/30 1182/35 114/24 



 
To illustrate the average of activity duration, Table 4 provides a sample of activities from one of our 

testbed smart homes with the corresponding range of activity durations.  

Table 4. Example lengths of activity occurrences in the hh101 smart home. 

Activity Range Activity Range 
Sleep 5.13 ± 1.49 hours Cook 4.95 ± 4.63 min 
Relax 1.25 ± 0.98 hours Eat 8.12 ± 8.70 min 
Personal Hygiene 3.12 ± 2.85 min Wash Dishes 3.83 ± 3.07 min 
Bed-toilet transition 4.53 ± 4.10 min Work 6.02 ± 3.78 min 
Enter Home, Leave Home Quite short 

 

  Evaluation Metrics  

Due to the sequential nature of both transition detection and segmentation, the typical cross-

validation process of evaluating the algorithm is not applied. The window-based or CPD-based 

segments are temporally related and data points in the cross-validation training and testing sets 

may appear close together in time, biasing the results. Alternatively, the entire dataset could be 

partitioned into 2/3 training (the first 2/3 of the sequential data) and 1/3 testing. Once again, 

however, the points are related temporally and separating training too far in time from testing may 

artificially deflate the results. In such cases, seasonal behavior changes and concept drift in the data 

may cause behavioral routines and activity patterns to be quite different between training and 

testing. Thus, to validate the performance of our model, we partition the data into multi-day 

segments that contain both training and testing data. In these experiments, we group the sensor 

data into 6-day partitions. We use the four days of data from each partition for training and the 

following two days for testing. Training and testing are repeated for each following 6-day partition 

in the smart home dataset. This approach maintains the temporal order of the data while also avoid 

drift in the data set. 



                                                                                                                                          23  
                                                                                                                                         

As a point of comparison, Figure 3 plots the overall activity recognition accuracy of the AR-W 

baseline algorithm for all 29 homes using 3-fold cross-validation and multi-day segments. As 

expected using cross-validation, the accuracy is much higher than using multi-day segment 

evaluation. As seen in Table 5, the accuracy is over 90% for all of the homes. However, in order to 

use the activity recognition algorithm in real-world applications such as intervention or health 

monitoring, we need to evaluate our model in a sequential manner that does not introduce bias into 

the evaluation process. Thus, in the rest of the paper, we only report the multi-day segment results. 

Table 5.  Accuracy of AR-W using 3-fold cross validation for each home. 

Home Accuracy Home Accuracy Home Accuracy Home Accuracy Home Accuracy 
hh101 98.26% hh107 95.75% hh113 99.13% hh119 97.74% hh126 96.35% 
hh102 97.69% hh108 96.03% hh114 97.46% hh120 98.50% hh127 97.08% 
hh103 98.78% hh109 96.88% hh115 98.33% hh121 93.00% hh128 97.44% 
hh104 97.86% hh110 98.04% hh116 99.55% hh122 97.62% hh129 97.05% 
hh105 97.61% hh111 97.21% hh117 98.13% hh123 98.77% hh130 97.60% 
hh106 97.95% hh112 96.90% hh118 97.64% hh125 97.20% Average 97.50% 

 

 

Figure 3. The overall accuracy (%) of AR-W using cross validation and multi-day segment evaluation. 
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As shown in Figure 1, a critical step in CPD-based activity recognition is the detection of the 

activity transitions (change points) themselves. To measure the performance of activity transition 

detection using change point detection, we use the True Positive Rate (TPR) and False Positive Rate 

(FPR). The TPR measure indicates how effectively a CPD algorithm will detect true activity changes. 

The FPR measure reflects how many false alarms are generated by a CPD algorithm. To measure 

the performance of our activity recognition algorithm, we use overall accuracy and per-class accuracy. 

Overall accuracy calculates the ratio of the number of correctly-labeled sensor events to the total 

number of sensor events. For each activity, per-class accuracy calculates the ratio of correctly-labeled 

sensor events within the activity class to the total number of sensor events for that activity. 

To evaluate the performance of segmentation we use Normalized Edit Distance (NED) [34]. NED 

uses the Levenshtein distance [35] to measure how different a predicted activity sequence is from 

the actual sequence by counting the minimum number of operations that is required to make them 

equivalent as shown in Equations 3 and 4.  

𝑁𝐸𝐷 ൌ
௩ሺௗ௧ௗ ௦௨,௧௨ ௦௨ሻ

௧  ௧௨ ௧௩௧௬ ௦௨
     (3) 

𝑙𝑒𝑣ሺ𝑖, 𝑗ሻ ൌ

⎩
⎨

⎧
max ሺ𝑖, 𝑗ሻ minሺ𝑖, 𝑗ሻ ൌ 0

𝑚𝑖𝑛 ቐ
𝑙𝑒𝑣ሺ𝑖 െ 1, 𝑗ሻ  1
𝑙𝑒𝑣ሺ𝑖, 𝑗 െ 1ሻ  1

𝑙𝑒𝑣ሺ𝑖 െ 1, 𝑗 െ 1ሻ  1ஷ

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
    (4) 

Equations 3 and 4 compare two activity sequences and compute the corresponding distance based 

on the number of operations that needs to be applied to one sequence that will make it equivalent 

to the other. Here, three different sequence change actions are considered. The first is the deletion 

of an element from the set, the second is the insertion of a new activity, and the third is a change in 
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activity label. This metric allows us to evaluate how similar the sequence of detected activities is to 

the actually performed activities.  

In the end, since we are testing the proposed algorithms on 29 different smart homes, we need to 

compare the results statistically and determine whether there is any significant difference between 

the performance of the alternative algorithms. To make this comparison, we utilize one way ANOVA 

which is a common statistical method for comparing two or more classifiers on multiple data sets 

[36]. 

  Results and Discussion  

We begin by analyzing the performance of our transition detection algorithm. We assume a 

detected change point is correct if there exists a change point in the data that occurs soon before or 

after the detected change point. In other words, a detected change point at time t* is correct if an 

actual change point occurs in the time interval [t* − λ, t* + λ]. In our experiments, we consider λ=10 

seconds for evaluation of change point detection with a small time offset. Figure 4 shows activity 

transition detection TPR and FPR for SEP as well as for RuLSIF, a popular alternative CPD 

algorithm. Like SEP, RuLSIF estimates a ratio of probability densities before and after candidate 

change points, although RuLSIF uses Pearson divergence as a dissimilarity metric.  Within-10 

seconds change point detection is calculated for the 29 smart homes. The median values for each 

case are shown in the figure. Since transition detection is the heart of our segmentation method, its 

accuracy has a high impact on the activity segmentation performance and segmentation-based 

activity recognition performance. As we can see, the median of true transitions for SEP algorithm is 

≥88% while the result is closer to 87% for the RuLSIF algorithm. The false positive rate for SEP is 

almost 12% which again outperforms the RuLSIF result of 19%. A larger false positive rate will split 

the data into more segments which may lower activity recognition performance due to a lack of 
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relevant activity information. A one-way ANOVA test indicates that the differences between algorithms 

TPR and FPR scores are significant at the (p < .05) level.    

 
Figure 4. Box and whisker plots of the activity transition detection performance. The horizontal line within the box 

indicates the median, boundaries of the box indicate the 25th and 75th percentile, and the whiskers indicate the highest 

and lowest values of the results. 

Figure 5 plots the overall activity recognition accuracy and F_Measure of the four alternative 

models for all 29 homes. The median value of overall accuracy for the AR-W baseline method is near 

63.3% while the median of F_Measure is 68.9%. By adding transition features and still labeling each 

event separately, these values increase to 67.1% and 72.9% for AR-WT. For the two segmentation 

approaches, AR-SM and AR-SS, we generate one label per segment. In the case of AR-SM, we 

generate labels for each individual sensor event, but the same label is used throughout the segment. 

For AR-SM model, the accuracy of activity recognition decreases to 50.6% and the F_Measure 

decreases to 60.6%. However, if we use the AR-SS model and train the random forest to label the 

segment as a single data point, we observe the highest accuracy at 68.1% and highest F_Measure at 

73.5%.  The performance improvement for both accuracy and F_Measure of AR-SS is significant (p < 
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0.05) and is most likely due to the addition of transition information. Furthermore, AR-SS provides 

distinct activity boundaries. These boundaries allow activity-aware applications to calculate important 

information including activity start times, end times, and durations. 

 

Figure 5. Box and whisker plots of the overall accuracy and F_Measure of alternative activity recognition methods. 

The horizontal line within the box indicates the median, boundaries of the box indicate the 25th and 75th percentile, 

and the whiskers indicate the highest and lowest values of the results. m is the median value and s is the standard 

deviation between multiple folds. 

 
The average per-class accuracy for all homes along with the standard deviation value is graphed 

in Figure 6. We can see for some activities like “Enter Home”, “Leave Home”, and “Bed Toilet 

Transition” the basic activity recognition AR-W offers the higher accuracy. The reason is the nature 

of these activities. These activities are quite short (typically under a minute) and share quite similar 

movements with other activities. Since the length of these activities is small, the corresponding detected 

segments and extracted features would not be accurate, thus assigning a segment to them is not effective 
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for activity recognition. For the remaining activities, AR-SS outperforms the other methods or is 

similar. 

 

 

Figure 6. Per activity accuracy (%) for the four alternative methods. 

Normalized edit distance values for the alternative methods are plotted in Figure 7. We can see 

there are considerable differences between the activity segmentation methods and the traditional 

event-based recognition. As we know, a smaller NED value means the detected activity segment is 

more similar to the actual activity segment. As the figure shows, the segmentation-based methods, 

particularly AR-SS, significantly outperform the others in terms of NED. In traditional methods, a 

real-time activity classifier predicts a label for each sensor event; thus the sequence is very different 

from the original one. Generating a sequence of labels is valuable for applications such as health 
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assessment, which makes the proposed activity segmentation method more suitable than traditional 

activity recognition. 

 

Figure 7. Box and whisker plots of the NED of alternative activity recognition methods. The horizontal line within the 

box indicates the median, boundaries of the box indicate the 25th and 75th percentile, and the whiskers indicate the 

highest and lowest values of the results 

We next examine the learned models to understand the role that transition-based features play 

in recognizing smart home activities. Specifically, we rank the Random Forest choice of features 

based on their Gini Importance value [37] to investigate whether adding transition features change 

the structure of RF or not. The Gini Importance of each feature is the average of the total decrease 

in node impurity weighted by the probability of reaching that node over all trees in the ensemble. 

Table 6 shows the three most important features for the alternative algorithms. Since AR-W and 

AR-SM are using similar models, the most important features for both are the number of times each 

sensor fired during the fixed-length window. When we add transition features in AR-WT, the most 

important features are now the sensor ID at the change point before the current event in addition 
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to the current sensor ID. This result highlights the importance of activity transition detection 

because the location of the sensor event at the transition point plays such a critical role. Another 

feature that was identified as important for this algorithm is the weighted count of events for each 

sensor in the window. This feature weighs features more heavily after transitions, again stressing 

the impact of transition detection on activity recognition. For the AR-SS approach, the top features 

are the dominant sensor ID and the number of times each sensor fired in the segment. While these 

features are included in the other methods, they were not among the top-ranked features because 

they are based on a fixed-length window rather than an entire activity. As the results indicate, when 

we add transition aware features, the features that represent the activity as a whole are more 

influential in identifying the activity. 

Table 6. Most important features for the alternative activity recognition methods. 

Method 1st Important Feature 2nd Important Feature 3rd Important Feature 

AR-W The number of times each sensor fired during the fixed-length window 

AR-WT Sensor ID of the last event 
Sensor ID of the last 
transition 

Weighted sensor counts in the fixed 
window  

AR-SM The number of times each sensor fired during the fixed-length window 

AR-SS Dominant sensor in segment The number of times each sensor fired during the segment 

 

Finally, we discuss the main problems and limitations of the proposed activity segmentation 

approaches. The first problem which affects each step of activity recognition is noise. The noise in 

the dataset may have different sources including sensor noise, data collection problems, incorrect 

ground truth labeling of activities, or even environmental noise. Noise can be very harmful because 

it may lead to false alarm change detection or error in training the classifier. 

Another challenge is concept drift. Both activity segmentation and transition detection are 

sequential processes. In the proposed approaches we tune the change detection algorithm 



                                                                                                                                          31  
                                                                                                                                         

parameters and train the classifier models based on the part of data and test the models on the 

remainder. Human behaviors, lifestyles, and physical environments may change between the 

periods of time used for training and test, rendering the model as inappropriate. One possible 

solution is to add drift detection to the model to update algorithms after drift is detected. 

Alternatively, additional features and methods can be explored to help the models generalize even 

more effectively over multiple conditions including lifestyle changes and physical environment 

changes. 

Yet another limitation of our proposed CPD-driven activity recognition strategies is how to define 

change points and activity transitions. In particular, complex activities may consist of different 

disparate steps. Because the proposed change detection is an unsupervised algorithm and detects 

changes in the feature space, it may consider different steps of an activity as a transition. Similarly, 

transitions between two activities which do not exhibit much difference may be more difficult to 

detect.   

 CONCLUSIONS  

The IoT environment requires robust activity learning technology to provide proper services to 

its residents. Activity segmentation improves the robustness of these technologies by providing 

information about activity transitions and thus insights on activity start/end times and durations. 

Many applications can make use of the additional information and improved activity learning to 

monitor trends in resident behavior and provide activity-aware services. In this paper we proposed 

a human daily activity segmentation based on change point detection techniques in an online or 

streaming fashion, using unscripted data from smart homes. We evaluated the performance of alternative 

segmentation and window-based activity recognition algorithms using pre-defined metrics. The 

experiments conducted on real-world smart home datasets provide evidence that detecting activity 
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transitions and utilizing segment features in activity recognition improve recognition performance while 

also providing activity boundary and transition insights.  

From this research, some ideas arise as future work. They include improving the performance of the 

model to identify very short activities like Enter home and Leave home. Another future direction can be 

changing the investigation of real-time algorithms from event based to time unit based. Furthermore, we 

will generalize the model to consider drift during the time and retrain the activity recognition algorithm 

when it is needed.   
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