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Abstract—Wearable sensors are gaining traction in various
healthcare domains, including patient mobility assessment per-
formed in rehabilitation environments. Typically, clinical obser-
vations by therapists are used to characterize patient movement
abilities and progress. More precise quantitative measurements
of patient performance can be collected with wearable iner-
tial sensors. Highly useful quantitative information and visual
presentations of wearable sensor data are critical in gaining
therapist acceptance of the technology and improving the therapy
experience for patients. To bridge the gap between design of
mobility monitoring technology and actual use of the technology,
we report responses from interviews conducted with physical
therapy providers at an inpatient rehabilitation facility. The
information presented during the interviews includes results
from our wearable sensor-based mobility assessment algorithms.
Our smart computing algorithms utilize wearable sensor data
to extract patient movement metrics, train clinical assessment
prediction models, and visualize the data. The interview results
indicate therapy providers are interested in using wearable
sensors and wearable sensor-based metrics, prediction tools,
and visualizations while they provide therapy services for their
patients. Based on therapist feedback, we suggest future research
directions that may increase the clinical utility and adoption
of wearable sensor systems and data visualization for mobility
assessment.

Index Terms—Wearable computing; information visualization;
technology acceptance; physical therapy; rehabilitation.

I. INTRODUCTION

In recent years, wearable technology has been growing
in popularity, with 1 in 10 Americans over the age of 18
owning a wearable fitness device [1]. Wearable sensors
are also gaining traction in various healthcare domains, in-
cluding patient mobility assessment, because of the detailed
movement information wearable sensors provide. Typically,
clinical observations by therapists are used to assess patient
movement abilities and progress. More precise quantitative
measurements of patient performance can be collected via
pervasive technology, such as wearable inertial measurement
units (IMUs). Wearable IMUs contain inertial sensors, such as
accelerometers and gyroscopes, that can be used in addition
to clinical observations to collect fine-grained movement data
from patients as they undergo therapy. Smart computing algo-
rithms operating on inertial measurements can identify subtle
performance changes during rehabilitation that are difficult to

observe, such as changes in duration of single and double leg
support.

By processing wearable sensor data with smart computing
algorithms we can provide insight on patient mobility, gait,
and rehabilitation. These insights are valuable for validating
physical therapy regimens, quantifying patient progress, and
determining appropriate patient discharge status. In this paper
we bridge the gap between design of mobility monitoring
technology and actual use of the technology in rehabilita-
tion environments. To do this, we first present our IMU-
based computing approaches to objectively characterize patient
mobility performance. Computational components of our sys-
tem include metric extraction algorithms, training and testing
clinical assessment prediction models, and generating met-
ric visualizations. To produce clinically-meaningful metrics,
we developed a standardized ambulation performance task,
titled the ambulatory circuit (AC), which involves a range of
gait and transfer tasks. While inpatient rehabilitation patients
perform the AC, they wear three inertial sensors for data
collection. We fix the interval of time over which repeated
measurements of AC performance is assessed (7 days) in order
to quantify changes in movement parameters over one week
of rehabilitation. Algorithms statistically analyze the sensor-
based metrics to identify clinically significant changes in the
repeated measures data.

To evaluate and improve the wearable sensor experience
for therapists and patients, we interviewed physical therapy
providers regarding the utility of wearable technology and our
algorithms for helping provide therapy services for patients.
Data collected from the AC wearable sensor study were
presented to physical therapists (N = 5) and physical therapy
assistants (N = 2) to collect therapy providers’ perceived
clinical utility of wearable sensor data for mobility assessment.
The interview consisted of four main components: 1) general
conversation about technology, 2) rating usefulness of sensor-
based metrics, 3) questions regarding sensor-based clinical
assessment predictions, and 4) evaluating visualizations. We
present and discuss the responses received from the therapists
and suggest future computing research directions to potentially
enhance therapy services and increase the adoption of wear-
able sensor systems for mobility assessment.



II. RELATED WORK

Wearable IMUs have been utilized for several healthcare
applications [2], including gait analysis [3] and rehabilitation
[4]. In addition, performance on common clinical assessments,
such as the Timed Up and Go (TUG) test, have been character-
ized with IMUs [3], [5], [6], [7]. Existing commercial systems
such as BioSensics [8] offer IMU-based metrics; however,
the testing protocols are specific to clinical laboratory-based
assessments with a narrow range of ambulatory tasks.

Previous studies have found therapists are open to using
wearable technology, particularly when the system provides
additional information about their patients [9], when shown
evidence that the technology is effective [10], or when the
collected health data promotes patient engagement [11]. In
addition, medical professionals in hospitals are more likely to
use wearable computer systems if the technology improves
day-to-day work efficiency [12]. From the patient’s perspec-
tive, several studies provide evidence that patients exhibit an
overall positive attitude regarding the use of wearable sensors,
even in their daily life [1], [13], [14], [15]. Several groups
have generated tools that visualize sensor data [16], [17], [18],
[19]. When presented to therapists, visualizations were deemed
helpful in drawing insightful conclusions from data about
patients’ rehabilitation progress [19]. Recently, commercial
products have been introduced for use with rehabilitation
that generate movement metrics and visual representations of
patient performance [8]. The aforementioned studies have
investigated the acceptance of wearable technology for various
healthcare applications. To our knowledge, the clinical utility
of individual wearable sensor metrics and visualizations for
physical therapists assessing patient mobility during rehabili-
tation has not been explored. This is the goal of the study we
present here.

III. METHODS

To better understand the clinical utility of wearable sensor-
derived metrics and visualizations for mobility assessment,
we conducted interviews with physical therapists and physical
therapy assistants at an inpatient rehabilitation facility. The
interview content was based on an ongoing study at the facility
that utilizes wearable inertial sensors, named the ambulatory
circuit wearable sensor study [20].

A. Ambulatory Circuit Study

For the ambulatory circuit sensor study, three inertial sen-
sors (Shimmer3 [21]) are attached to the bodies of patients
(N = 35 to date) undergoing inpatient rehabilitation. Partic-
ipants in the study are mostly recovering from stroke and
non-traumatic brain injuries. One sensor is placed on the
participant’s center of mass (COM) and one sensor is placed
on each ankle. The accelerometer range is set to ±2g for the
COM sensor and ±4g for the ankles. The gyroscope ranges
for the ankle and COM sensors are set at 500 °/s and 250 °/s,
respectively. The data are collected at a sampling frequency
of 51.2 Hz for all sensor platforms.
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Fig. 1: The ambulatory circuit. The solid line represents the
circuit path and the dashed line represents the mirrored return
portion.

While wearing the sensors, participants perform an am-
bulatory circuit (see Fig. 1 for a diagram of the AC), a
continuous sequence of activities in a simulated community
environment at the rehabilitation facility (see Fig. 2 for
images of the AC environment). The AC includes rising from
a seated position in a chair, moving with both linear and
curvilinear gait, surface transitions, a transfer into and out
of a sport utility vehicle, and sitting back down in the chair.
AC data are collected at two different testing sessions, with
each session collecting data from two trials of the AC. The
first session (S1) occurs shortly after the participant became
physically able to walk the distance required of the gait task.
The second session (S2) occurs one week later, a date that is
typically close to their discharge. In summary, the AC is an
extension of the common clinical assessment, the traditional
TUG test [6], including a greater range of functional tasks
(e.g., car transfers) and situational challenges (e.g., different
flooring surfaces; a curvilinear pathway). Although the AC
environment is unique to the facility, the majority of the AC
mobility metrics we report (see Table I) can be computed from
any assessment in any environment involving a chair transfer
and walking (5 Times Sit-to-Stand, TUG, etc.).

The inertial movement data collected from the AC sensors
are processed with a custom Python program designed for
the AC data. First, the timestamps are aligned from the three
different sensor platforms. Next, to correct for the orientation
of the ankle sensors, the sensor local coordinate system is
transformed to the body coordinate system [22]; a right
handed system with the X-axis along the anterior-posterior
body axis, the Y-axis along the vertical body axis, and the
Z-axis along the medial-lateral body axis. Acceleration data
are filtered with a 4th order zero-phase band pass Butterworth
filter using cutoff frequencies of 0.1 Hz and 3 Hz for the COM
accelerometer [23] and 0.1 Hz and 10 Hz for the ankles [24].
The gyroscope signals for all sensors are low passed filtered
at 4 Hz [25]. Fig. 3 outlines the AC sensor data processing
sequence.

B. Physical Therapy Provider Interviews

Data collected from the AC wearable sensor study were
presented to physical therapists (N = 5) and physical therapy



(a) The hotel lobby.

(b) The vehicle transfer.

Fig. 2: The simulated community environment at St. Luke’s
Rehabilitation Institute.
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Fig. 3: Sensor data processing. Wearable inertial sensor data
are timestamp aligned, oriented, and filtered before metrics are
computed and analyses are performed.

assistants (N = 2) to collect their perceived clinical utility of
the information. The group had a mean age of 40.14 ± 9.49

years (M = 1, F = 6) and had been working in rehabilitation for
11.86 ± 12.56 years. Interviews were audio recorded and later
transcribed independently by two researchers. The interview
consisted of four main components:

1) Familiarity with technology: Conversation related to the
following topics:
• Their level of comfort with technology
• Their willingness to learn new technology
• The current technologies they use
• What technologies they wish they had
• What visualizations they use
• How they evaluate patient gait and transfer ability
• How they evaluate change in patient gait and trans-

fer ability
2) Metric rating: Evaluations on a scale from 1 (not useful)

to 5 (very useful) for the following two ratings:
• To rate the metric for how useful it is for providing

therapy services for patients
• To rate the metric for how useful it is as an indicator

of the Functional Independence Measure (FIM) [26]
motor score at discharge

3) Prediction usefulness: Questions related to the utility of
a system providing discharge FIM motor score predic-
tions:
• How useful would you consider the prediction?
• Would you make use of a technology-assisted pre-

diction of FIM motor score to help you provide
therapy services? Why or why not?

4) Visualization evaluation: Evaluation of three wearable
sensor data visualizations: 1) task duration bar plot (see
Fig. 4), 2) gait cycle bar plot (see Fig. 5), and 3)
effect size forest plot (see Fig. 6). Evaluations on a
scale from 1 (strongly disagree) to 5 (strongly agree)
for the following three ratings related to each plot:
• I think that I would use this plot frequently
• I thought the plot was easy to understand
• I would image most patients would learn to use this

plot very quickly
Additional questions were asked to facilitate dicussion
about each plot, including:
• How do you foresee using the plot to help you

provide therapy services for your patients?
• What might you change about the plot?

Metrics presented to interviewees for evaluation of their
clinical utility were selected to be representative of the metrics
computed by the research community and commercial sensor
systems (see Table I for a list of the metrics). The presented
metrics are grouped into three categories: task duration and
speed, whole body movements computed from the COM sen-
sor, and gait features derived from the ankle sensors. During
the interviews, each metric was explained to the therapy
provider. Evaluations on a scale from 1 (not useful) to 5 (very
useful) were collected for the following two ratings: 1) to rate
the metric for how useful it is for providing therapy services



TABLE I: Metrics computed from wearable inertial sensor data grouped by category: task duration and speed metrics, whole
body movement metrics, and gait features.

Metric Units Description

Duration s Total time to complete the ambulatory circuit or an individual task of the ambulatory circuit.
Floor surface speed ratio Measures the effect of walking speed on two different floor surfaces.
Walking speed m/s Walking speed as determined by distance divided by time.

Center of mass peak angular
velocity

Maximum rotational velocity of the center of mass (COM) around the Z-axis.

Movement intensity m/s2/s Square root of the mean of the squares of each COM acceleration signal (normalized by time).
Represents acceleration magnitude [27].

Walking smoothness index Ratio of even to odd harmonics of the vertical Y-axis COM acceleration signal. A higher harmonic
ratio represents a smoother walking pattern [28].

Ankle peak angular velocity °/s Maximum rotational velocity of the ankle around the Z-axis during the gait cycle. This occurs during
the swing phase.

Ankle range of motion ° Range of integrated Z-axis angular velocity for each gait cycle. Provides an estimate of the degrees
of ankle movement [3].

Cadence steps/min The average number of steps taken per minute.
Double support percent % Percentage of the gait cycle that both feet are in stance phase. Computed as the sum of the initial

double support time and the terminal double support time [3].
Gait cycle duration s Duration to complete one stride (time between two consecutive initial contacts of the same foot) [3].
Number of gait cycles Total number of complete gait cycles (strides) that occurred.
Step length m Distance between initial contacts of opposite feet [29].
Step regularity % Regularity of the acceleration of sequential steps. Computed using the autocorrelation of the vertical

Y-axis of the COM acceleration [30].
Stride regularity % Regularity of the acceleration of sequential strides (see step regularity) [30].
Step symmetry % Ratio of step regularity to stride regularity [30].

for patients and 2) to rate the metric for how useful it is as an
indicator of the Functional Independence Measure [26] motor
score at discharge. The FIM rating refers to previous research
studies investigating the predictive ability of wearable sensor-
derived metrics for estimating clinical assessment scores [20],
[31], [32].

In our previous work, we investigated the predictive abilities
of features derived from wearable inertial sensor data to
predict discharge FIM scores without re-administering the FIM
assessment battery [20]. The FIM is administered at admission
and discharge from inpatient rehabilitation by clinical staff
who are credentialed to administer the instrument. The FIM is
a well-validated assessment measuring functional status on a
0-7 rating scale for 18 items representing 6 domains: self-care,
sphincter control, transfers, locomotion, communication, and
social cognition [26]. In addition to a total FIM score, separate
scores are developed from the motor function items and cog-
nitive function items. The results of our previous work include
leave-one-out-cross-validation correlations between actual and
predicted discharge FIM motor scores as high as r = 0.97
(normalized root mean square error = 5.80%) for 20 AC
study participants. To gather insights about the utility of such
wearable sensor-based FIM predictions, during the interview
therapists were instructed to consider a system that provides
a highly accurate prediction of their patients’ discharge FIM
motor scores. The predictions would be available at any point
between admission and discharge.

Three wearable sensor data visualizations were presented to
interviewees for evaluation. The first visualization presented
was the task duration bar plot (see Fig. 4). Task duration
plots show AC task durations for performances one week
apart (S1 and S2) for an individual patient. The X-axis lists
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Fig. 4: The task duration bar plot shows a patient’s ambulatory
circuit task durations for session 1 (S1) and 2 (S2), one week
later.

the the ambulatory circuit tasks and the Y-axis shows task
duration, measured in seconds. A bar represents the time
to perform the task. Blue bars correspond to S1 and green
bars correspond to S2, one week later. This plot was chosen
because of its simplicity; the amount of time to complete
a task is a commonly used clinical assessment of progress,
as is the case with the TUG. Bar plots are also a common
visual representation of data that many people are proficient
in reading.

The second presented visualization was a gait cycle bar
plot (see Fig. 5), which plots gait cycle metrics derived
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(b) Patient B.

Fig. 5: The gait cycle bar plots visualize ankle peak angular
velocities for patient A (top figure) with a left side impairment
and patient B (bottom figure) with no paresis. The colored
horizontal band around the dashed line mean (µ) is ± one
standard deviation (σ).

from sensors attached to both ankles. The gait cycle plot in
Fig. 5 shows a patient’s left and right ankle peak angular
velocities. On the X-axis are the gait cycle (stride) numbers
during the linear walking section of the ambulatory circuit. The
Y-axis represents peak angular velocity, measured in degrees
per second. A bar represents the peak angular velocity for a
gait cycle. Blue bars correspond to the right ankle peak angular
velocity and green bars correspond to the left ankle peak
angular velocity. The dashed horizontal lines correspond to
the mean peak angular velocity values. The colored horizontal
band around the mean is ± one standard deviation. The
plot was selected due to its similarity to graphs included
in commercial reports [8]. To facilitate discussion with the
therapy providers, two gait cycle bar plots were presented,
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Fig. 6: The forest plot visualizes walking smoothness index
effect sizes after one week of physical therapy. The whiskers
represent the 95% confidence interval (CI). The vertical dashed
line is the group effect size and the surrounding band is the
group 95% CI.

each from a different patient. Fig. 5 shows the two gait cycle
bar plots, one for a participant with a left side gait impairment
(patient A, see Fig. 5a) and one for a participant with no
paresis (patient B, see Fig. 5b).

The last plot presented was the effect size forest plot (see
Fig. 6). The effect size forest plot displays effect sizes
quantifying change after one week of physical therapy for
individual participants and for the participants as a group.
Before explaining the effect size forest plot, we will first
provide an overview of the statistical methods we applied. An
effect size based on Cohen’s d for repeated measures (RM)
data is used to quantify the strength of changes in each of the
computed metrics [33]:

dRM =
XS 2 − XS 1

S D
(1)

Where XS 1 is the mean group score from data collected at
S1, XS 2 is the mean group score from data collected at S2,
and S D represents the standard error of difference between S1
and S2 scores. In cases where the S1 and S2 scores have equal
variance, S D is calculated using the formula [33]:

S =D = sS 1
√

2(1 − r) (2)

In Equation 2, sS 1 is the standard deviation for the S1
participant pool and r is the test-retest reliability coefficient
measured between trial 3 and 4 at S2 testing. An unbiased
estimation of population test-retest reliability is derived using
r [33]. When S1 and S2 variances are not equal, as determined
by the Levene’s test of equal variances, an adjustment is
applied to the estimate of S D [33]:

S ,D =
√

s2
S 1 + s2

S 2 − 2rsS 1sS 2 (3)



TABLE II: Average therapy provider-rated metric usefulness
for providing therapy services for patients and as an indicator
of the discharge Functional Independence Measure (FIM)
score. The scale was 1 (not useful) to 5 (very useful). Standard
deviations are in parentheses. Horizontal lines divide the
metric categories (task duration and speed metrics, whole body
movement metrics, and gait features.

Metric Usefulness FIM Indicator

Curvilinear walking duration 3.71 (1.38) 3.29 (1.38)
Floor surface speed ratio 3.57 (1.27) 3.14 (1.35)
Sit-to-stand duration 4.14 (1.46) 3.29 (1.70)
Stand-to-sit duration 3.86 (1.46) 3.29 (1.60)
Total ambulatory circuit duration 3.71 (1.38) 2.71 (1.11)
Vehicle load duration 3.14 (1.07) 2.43 (1.13)
Vehicle unload duration 3.14 (1.07) 2.43 (1.13)
Walking speed 4.00 (1.41) 3.29 (1.89)

Center of mass movement intensity 3.14 (1.07) 2.57 (1.40)
Center of mass peak angular velocity 2.86 (1.07) 2.29 (1.25)
Walking smoothness 3.71 (1.25) 2.71 (1.60)

Ankle peak angular velocity 3.43 (1.40) 2.14 (1.07)
Ankle range of motion 3.71 (1.38) 2.43 (1.27)
Cadence 4.00 (1.00) 2.86 (1.21)
Double support percent 3.43 (1.40) 2.29 (1.25)
Gait cycle duration 3.71 (1.38) 2.71 (1.50)
Number of gait cycles 3.71 (1.25) 2.71 (1.60)
Single support percent 3.86 (1.35) 2.71 (1.60)
Step length 3.71 (1.25) 2.43 (1.27)
Step regularity 3.57 (1.27) 2.29 (1.38)
Stride length 3.71 (1.25) 2.43 (1.27)
Stride regularity 3.71 (1.25) 2.43 (1.27)

The resulting effect sizes, dRM (Equation 1), are used to
evaluate changes in gait parameters over the course of one
week of inpatient rehabilitation. Additionally, the confidence
intervals for each ES are computed using a small sample size
approximation with alpha set at 95% [34].

Effect size analysis and the effect size forest plot were
included in the interview to facilitate conversation about visual
presentations of statistically quantified performance change
and to determine whether physical therapy providers consider
comparisons between participants useful. The X-axis of Fig. 6
represents effect sizes for the walking smoothness index metric
(see Table I for metric descriptions). The effect size values are
shown on the right side of the Y-axis for each individual, with
the associated confidence intervals in parentheses. Individual
participant IDs are on the left side of the Y-axis. The points in
the plot are each individual’s effect size. The horizontal lines,
or whiskers, extruding from the points depict 95% confidence
intervals. The vertical red dashed line is the effect size for the
group and the vertical red band around the dashed line is the
95% confidence interval for the group.

IV. RESULTS

All quantitative responses were on a scale from 1 (strongly
disagree/not useful) to 5 (strongly agree/very useful). The
therapy providers were quite comfortable with technology
(4.00 ± 0.82), willing to learn new technology (4.29 ± 0.76),
and interested in using wearable technology for their patients
(4.43 ± 0.53). The technology therapists use to help provide

TABLE III: Average therapy provider-rated responses to ques-
tions regarding the presented visualizations. The scale was 1
(strongly disagree) to 5 (strongly agree). Standard deviations
are in parentheses.

Task duration bar plot (mean rating 3.62)

I think that I would use this plot frequently 3.14 (0.90)
I thought the plot was easy to understand 4.43 (0.53)
I would imagine most patients would learn to use this
plot very quickly

3.29 (0.95)

Gait cycle bar plot (mean rating 2.29)

I think that I would use this plot frequently 2.57 (0.98)
I thought the plot was easy to understand 2.86 (0.90)
I would imagine most patients would learn to use this
plot very quickly

1.43 (1.13)

Effect size forest plot (mean rating 1.76)

I think that I would use this plot frequently 1.86 (0.90)
I thought the plot was easy to understand 2.00 (1.00)
I would imagine most patients would learn to use this
plot very quickly

1.43 (0.79)

therapy services for their patients included computers, the
Lokomat robotic-assistive device, electrical stimulation, the
Nintendo Wii, and video cameras. Of the seven interviewees,
five stated a desire for technology for balance assessment
and gait analysis. To evaluate patient gait and transfer ability,
therapists primarily use observation and an estimate of the
amount of physical assistance the patient requires to perform
certain tasks. To evaluate change in patient gait and transfer
ability, therapists use their memory to compare previous obser-
vations to current ones. One therapist listed several movements
she looks for, “I kinda compare and contrast step lengths. I
will do speed. I will do trunk deviation. If there’s any toe
drags. If they are using an assistive device or not. If they are
using orthoses or not.” All seven therapists stated they do
not currently use visualizations, plots, graphs, or drawings to
describe their patients’ ambulatory ability.

Table II lists the mean and standard deviation of the inter-
viewees’ usefulness and FIM indicator ratings for each metric.
Table III contains rating responses regarding the usability of
each plot presented to the therapy providers (see Section III-B
for an overview of the questions asked and visualizations).
Regarding predictions, interviewees were impartial about con-
sidering discharge FIM motor score predictions useful (3.43
± 1.27).

V. DISCUSSION

Of the three metric categories, metrics in the task duration
and speed group were rated highly for both usefulness (mean
3.66) and as a FIM indicator (mean 2.98) compared to whole
body movement (mean 3.24, FIM mean 2.52) and gait features
(mean 3.69, FIM mean 2.49) groups. Of all the metrics, sit-
to-stand duration was rated the highest for usefulness (4.14 ±
1.46). Walking speed (4.00 ± 1.41) and cadence (4.00 ± 1.00)
were also highly rated. These metrics can be computed without
wearable sensors, indicating a preference toward familiar met-
rics with previously established clinical validity. The metrics



with the lowest rated usefulness included vehicle load/unload
duration, center of mass peak angular velocity, and center of
mass movement intensity. For the vehicle duration metrics,
two therapists stated a patient’s ability to complete these tasks
is more important than the amount of time the patient requires.
For center of mass movement intensity, one therapist stated,
“I’m not sure what that relates to,” indicating she was possibly
trying to map the acceleration-based metric into an assessment
she was familiar with. When she was unable to produce such
a mapping, she rated this metric low (2, not useful).

Four of the seven therapists were enthusiastic about dis-
charge FIM motor score prediction from wearable sensor data.
One therapist stated, “It would be very useful, it could help
with discharge planning if we needed to steer one way or
another.” Another therapist stated, “I would make use of [the
predictions] as an adjunct.” One of the three therapists who
were not convinced of the utility of such a FIM prediction
stated, “I probably wouldn’t [use FIM predictions], mostly
because patients are really variable.” To address the mixed
feelings of therapists about clinical outcome predictions, it
would be best to present the system as a tool to augment
the information available to therapists when making treatment
decisions, and not as a replacement of current methods.

For the task duration bar plot (see Fig. 4), all therapists
noted the patient was faster for each task except for stand-to-
sit. One therapist stated, “It may have been an improvement
in a safety factor, whereas they may have sat down due
to a loss of balance.” This comment suggests quantitative
information alone is not sufficient for therapists to determine if
a reduction in a value should be classified as an improvement
or regression for an individual patient. Perhaps coupling the
quantitative results with a video or 3D animation of the patient
performing the task would provide sufficient context for the
numeric values. Only one therapist suggested changes to the
task duration bar plot by recommending the tasks on the X-
axis are grouped by activity instead of by location in the AC
sequence (e.g. sit-to-stand next to stand-to-sit). The therapists
also thought patients could understand the task duration bar
plot (3.29 ± 0.95, see Table III). One therapist stated, “[The
plot] would be helpful to get the patient more involved in
seeing their progress.” Another therapist also felt the plot
could be useful for engaging patients, “I could use this as
feedback for a patient as to what changes have been made and
extrapolate as to why that is important that they are faster on
these tasks.” The other two plots, gait cycle bar plot and effect
size forest plot, were deemed too complicated for patients to
learn (1.43 ± 1.13 and 1.43 ± 0.79, respectively).

For the gait cycle bar plot, all seven therapists correctly
classified left side paresis for patient A (see Fig. 5). They also
identified several differences between patient A and patient B’s
gait, such as the higher variability for patient A’s peak angular
velocity. Four of the seven therapists stated they would use the
gait cycle bar plot, with one therapist stating, “It would be for
my own personal measures to see where they are at. The ankle
is really tough to assess when you are by their shoulders.”
This comment suggests additional utility of wearable sensors

could be acquired by placing them on the body in hard to
observe areas. One therapist advocated placing sensors on the
hip, knee, and ankle joints. Changes proposed by the therapists
for this plot included increasing the font size and removing the
standard deviation information to reduce the plot complexity.

The effect size forest plot (see Fig. 6) was the lowest rated
of the visualizations presented to the therapists (see Table III).
Since the plot is statistically-oriented and compares patients
with other patients, the low ratings were expected. Two of
the therapists acknowledged the usefulness of the effect size
forest plot for research, “If I got into a research study to
justify what I was doing then yes, but not for direct patient
care.” Suggestions for improving the effect size forest plot
included grouping patients by diagnosis, or including only
one patient’s data to remove comparisons between patients.
Effect size forest plots can show single participant change for
gait cycle-based features, such as stride length. For example,
each AC trial produces multiple stride length measurements,
one stride length for each gait cycle. Stride length effect sizes
between two AC trials can be computed using Equations 1,
2, and 3. Furthermore, multiple gait feature effect sizes can be
plotted on the Y-axis of an effect size forest plot (e.g. left/right
ankle range of motion, left/right ankle peak angular velocity,
etc.).

A limitation of this study includes the small number of
physical therapists and physical therapy assistants that were
interviewed. Additional limitations include:
• The interviewed therapy providers were all affiliated with

the same rehabilitation facility. Therapist diversity would
yield more representative results.

• The interviewed therapy providers experienced unequal
exposure to the ambulatory circuit study prior to the
interview. Five of the seven therapists were active in
the participant recruiting process and observed the data
collection protocol.

Future work aims to address these limitations by conducting
a larger, multi-facility study to collect physical therapists’
feedback regarding wearable sensors for mobility assessment.
We plan to incorporate the results obtained from the current
preliminary study in the design process.

VI. CONCLUSIONS

In this paper, we presented wearable sensor-based com-
puting algorithms for mobility assessment. To bridge the
gap between design of mobility monitoring technology and
actual use of the technology, physical therapy providers at an
inpatient rehabilitation facility were interviewed to collect their
opinions on the clinical utility of wearable sensor data and
associated algorithms. The responses indicated providers to
be interested in using wearable technology and sensor data vi-
sualizations. We suggest future computing research directions
that may increase the adoption of wearable sensor systems and
visualizations, including: 1) computing metrics that map into
standard clinical assessments of progress, 2) designing visu-
alizations containing a single patient’s information, possibly
compared to normative values for their age/etiologic group,



3) motivating patients with simple sensor-based visualizations
of their progress, and 4) coupling wearable sensor data with
videos and/or animations. We plan to incorporate the feedback
received from the interviewees into a smart wearable system
to provide useful quantitative data and visualizations to aid
therapists in providing therapy services for their patients.
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