

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 9

Fig. 13: Modifying an automation by setting duration of
each event.

or ratings (guidance) that indicate the degree to which the
resident likes (or does not like) an automation policy. For each
policy, the user can provide a rating between 1 and 5. PAM
then updates its HAM model automatically based on this user
guidance by changing the activity’s potential value according
to (6), where the ratings will be mapped to corresponding
evidence values.

The usability studies performed on CASA-U [23] revealed
that the interface was relatively clear and easy to navigate, but
additional training is needed for residents to make effective use
of smart home technologies.

VII. EXPERIMENT RESULTS

The goal of this project was to design smart home system
that could automatically learn policies that reflect resident
behavior and that could effectively incorporate implicit and
explicit feedback from the user into the models. In this section
we evaluate the ability of the CASAS software to meet this
goal using synthetic-generated data as well as and real data
collected from a residential apartment as well as our lab-based
physical testbed.

A. Evaluation of FPAM

We first want to evaluate FPAM’s ability to find frequent
and periodic patterns from smart home event data. To test
the algorithm on synthetic data, we implemented a synthetic
data generator that simulates events corresponding to a set of
specified activities. Timings for the activities can be varied
and a specified percentage of random events are interjected to
give the data realism. In addition to synthetic data, to evaluate
FPAM on real world data, we tested it on data obtained through
sensors located in one room of the CASAS smart workplace
environment. In addition, we performed evaluation on data that
was collected in the CASAS smart apartment..

For the first experiment, we generated one month of syn-
thetic data that represented a number of different frequent
and periodic activity patterns in a home. The data contained
various random activities stretched over one month, along
with several target activities that either appear frequently,

Oven

Water

Sensor

Lights

Example

Motion

Sensor

Fig. 14: The layout of sensors in smart apartment.

or repeat based on regular periods. To test the effect of
startup triggers, we included several triggers such as ”sitting
on couch”, ”walking to TV”, ”walking to living room” and
”sitting on bed”. The periods for these activities ranged from
6 to 24 hours. Details of these target activities are listed in
Table. II.

Our expectation was that FPAM would correct identify all
target activities among random events with their corresponding
periods, startup triggers, start times, and durations. In fact,
FPAM was able to find all of the activities with their correct
periods. In addition, FPAM identified triggers where they
existed. When faced with two events that are scheduled to
occur at the same time, the synthetic data generator randomly
picks just one of the events to simulate. Because of this design
feature, the frequency of some of the detected activities was
not as high as expected and thus the compression rates were
lower than anticipated.

In addition to these synthetic data experiments, we also
tested FPAM on real smart environment data collected in a
smart apartment equipped with motion sensors, light sensors,
water sensors, and some appliance controllers (Fig. 14). The
data contained 62 hours of events that span four days of daily
activities for two residents living in the apartment and contains
approximately 19,000 recorded events. Again we ran FPAM
on data to see how well it can find patterns in large dataset.
FPAM was again able to discover some patterns in data, for
example ”M15: ON - Oven: High - Water: Running”, which
shows a pattern where the resident walks up to turn on the
oven, and then opens the water tap. In this case, M15, a
motion sensor (all motion sensors start with M in layout),
acts as a startup trigger. Another example is pattern ”M17:
ON- Oven: High-Oven: Low”, which shows that the resident
walks up to change the oven from high to low. The periodic
patterns were far less common in this dataset; probably due to
the fact the participants were students with somehow chaotic
schedules, therefore most patterns were frequent with no
particular periodicity.

Because only a few appliances are currently equipped with
controllers the number of emergent patterns is small. However,

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 10

TABLE II: Target activities (”-” indicates the activity is frequent as opposed to being periodic).

Start time Period Events

1 6:00 6 hours (1) Kitchen-Light-ON (2) Coffee-maker-ON (3) Toaster-ON

2 - - (1) Sitting-on-Couch (2) Couch-Light-ON (3) Music-ON

3 7:00 24 hours (1) Bathroom-light-ON (2) Water-Hot

4 10:00 24 hours (1) Windows-Blind-OFF

5 15:35 12 hours (1) Sprinklers-ON (2) Walking-to-living-room

6 - - (1) Walking-to-TV,TV-ON

7 19:00 6 hours (1) Dining-Table-light-ON (2) Music-ON (3) Coffee-maker-ON

8 - - (1) Sitting-on-Bed (2) Lamp-ON

the results indicate how FPAM will work on real large datasets.
We also tested FPAM on data obtained in our AI lab testbed.

We recruited a participant to execute a simple script in the
smart testbed environment. The participant moved through the
environment shown in Fig. 9 for about an hour, repeating the
script ten times. In order to inject some randomness into the
data, the participant was asked to perform random activities
for about one minute in step three of the script. The script is
defined as follows:

1) Turn on right desk light, wait 1 minute.
2) Turn off right desk light.
3) Perform random activities for 1 minute
Because the testbed area was fairly small, the participant in-

advertently created patterns in the random actions themselves.
In addition, the motion sensors picked up slight motions (such
as hand movements) which resulted in a randomly-triggered
pattern that occurred between steps 1 and 2 in the script,
which FPAM then split into two subsequences. Despite these
issues that occur in a real-world situation, FPAM was able to
accurately discover the following patterns:

• Right desk lamp on, Compression: 12, Trigger: Walking
nearby

• Right desk lamp off, Compression: 9
• Left desk lamp on, Compression: 2
• Right desk lamp on, Right desk lamp off, Compression:

10
• Whiteboard light on, Compression: 2
The first and second patterns are the result of splitting the

sequence ”Right desk lamp off, Random event, Right desk
lamp on” into two subsequences. The ”walking” trigger is
correct because after turning the light off, the participant
performs a random action and heads back to the right desk
to turn on the light, which usually involves walking across the
room to reach the desk. The difference in compression values
between the first and second sequences is due to multiple
triggers from the light sensor for a single light on or light off
action. The third sequence is the result of a random activity;
the compression value is relatively small compared to the main
script activities. The fourth sequence reflects the embedded
activity, and the last sequence is a frequent activity associated
with random events, again with a smaller compression value.
These results support our claim that FPAM can detect patterns
correctly.

In another experiment, in order to test the effect of noisy
data on the sequence discovery procedure, we injected dif-

0

20

40

60

80

100

120

5 8.3 10 12.5 20 33 50
C
o
r
r
e
c
t
ly
 I
d
e
n
t
if
ie
d

P
e
r
c
e
n
t
a
g
e

Noise Percentage

Noise Injection Results

Correctly identified

Fig. 15: Noise injection results.

ferent percentages of noise into the data. We used the same
data set as in the first experiment (refer to Table. II). For
this experiment, we set the compression value to 0.3, and the
fine and coarse grained periodic confidence to 0.9. To inject
noise, a certain percentage of sequences in data were changed
randomly, in a way that the whole sequence structure was
different with respect to the original sequence (every single
event in the sequence was changed).

As it can be seen in Fig. 15, FPAM acts robustly despite
the presence of noisy data up to 12.5% noise (100% of the
original sequences are correctly identified), but after that point,
injecting more and more noise into the system leads to less and
less regularity in patterns such that eventually the sequence’s
compression value will fall below the compression threshold
(in this case, 0.3). It is possible to lower the compression
threshold in order to increase robustness. The resulting algo-
rithm might find less frequent sequences too, which may not
be very interesting for us.

In another experiment, in order to test the effect of noisy
data on the sequence discovery procedure, we injected dif-
ferent percentages of noise into the data. We used the same
data set as in the first experiment (refer to Table. II). For
this experiment, we set the compression value to 0.3, and the
fine and coarse grained periodic confidence to 0.9. To inject
noise, a certain percentage of sequences in data were changed
randomly, in a way that the whole sequence structure was
different with respect to the original sequence (every single
event in the sequence was changed).

As it can be seen in Fig. 15, FPAM acts robustly despite
the presence of noisy data up to 12.5% noise (100% of the
original sequences are correctly identified), but after that point,

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 11

injecting more and more noise into the system leads to less and
less regularity in patterns such that eventually the sequence’s
compression value will fall below the compression threshold
(in this case, 0.3). It is possible to lower the compression
threshold in order to increase robustness. The resulting algo-
rithm might find less frequent sequences too, which may not
be very interesting for us.

B. Evaluation of PAM

In order to evaluate PAM’s ability to adapt to new patterns,
we again tested it on both synthetic and real data. We hypoth-
esize that PAM can adapt to changes in discovered patterns.
To test the hypothesis, for our first experiment we created
one month of synthetic data with six embedded scenarios,
the same as in previous experiment with FPAM. After FPAM
found corresponding activity patterns, we highlighted the third
activity to be monitored for changes. We then changed the
activity description in the data generator such that all event
durations were set to 8 minutes, instead of 5 minutes. PAM
detected the changes accordingly by finding a new duration of
7.3 minutes, which is quite close to the actual 8 minute change.
The data generator does have an element of randomness,
which accounts for the discrepancy between the specified and
detected time change. In similar tests, PAM was also able to
detect start time changes from 19:00 to 19:30, and structure
changes (omission or addition).

We next tested our adaptor on real world data using the
AI lab. A volunteer participant entered the room and executed
two different scripts:

1) Turn on right lamp (1 min), perform random actions
2) Turn on left lamp (1 min), perform random actions
The first activity was repeated 10 times over the course of

two hours with random events in between. Then the participant
highlighted the activity for monitoring and performed the
second scripted version by changing the duration from 1 to 2
minutes. PAM detected the duration change as 1.66 minutes.
The change was made to the correct parameter and in the
correct direction, but did not converge on an accurate new
value due to the detection of other similar patterns with
different durations. These experiments validate that PAM can
successfully adapt to resident changes even in real-world data.
We also found that in addition to changes in duration, PAM
detected some changes in start time. This is another correct
finding by PAM. As in the second dataset, we changed the
duration of all events in all scenarios which resulted in a
shifted start time for all scenarios, in our case 14:55 instead
of original 14:25.

We also empirically validated our theoretical analysis [22]
to see how fast original patterns will be replaced by mod-
ified versions, by generating two sets of synthetic data and
validating the adaptation capability for different decay values
(see Fig. 16). Our findings are consistent with our expecta-
tion, validating that PAM can successfully adapt to resident
changes.

VIII. CONCLUSIONS

In this paper, we presented CASAS, an integrated set of
components that aim toward applying machine learning and

0

10

20

30

40

50

60

70

0 0.1 0.2 0.3 0.4 0.5
R
e
q
u
ir
e
d
 d
e
c
a
y

e
f
f
e
c
t
s

Decay Rate

Pattern adaptation

Analytical Results Experimental Results

Fig. 16: Number of decay effects required to forget a pattern,
with respect to decay rate.

data mining techniques to a smart home environment in order
to detect activity patterns, generate automation policies for
those patterns, and also adapt to the changes in those patterns.
In our ongoing work, we plan to perform more user studies
in real world setting to better understand the strengths and
weaknesses of the system. We are also planning to extend
CASA-U for a real residential apartment, using more realistic
3D modeling. Ultimately, we anticipate adding additional
features such as a voice recognition capability to the system
to increase availability and ease of use. We also intend to
discover additional types of contextual information that allow
the model to better generalize over discovered sequences.

Parisa Rashidi Parisa is currently a Ph.D student at
Washington State University. She received her B.S.c
in computer engineering from University of Tehran,
Iran in 2005. In 2007, she received her M.Sc in
computer science from Washington State University
where she worked on CASAS project as her master
thesis. Her interests include smart environments, AI
and machine learning applications in health care, and
human factors in pervasive computing applications.

Diane J. Cook Dr. Diane J. Cook is a Huie-
Rogers Chair Professor in the School of Electrical
Engineering and Computer Science at Washington
State University. She received a B.S. degree in
Math/Computer Science from Wheaton College in
1985, a M.S. degree in Computer Science from
the University of Illinois in 1987, and a Ph.D.
degree in Computer Science from the University
of Illinois in 1990. Her research interests include
artificial intelligence, machine learning, and smart
environments.

IEEE TRANSACTIONS ON SYSTEMS MAN & CYBERNETICS, PART A 12

REFERENCES

[1] G. D. Abowd, E. D. Mynatt, and T. Rodden, “The human experience,”
IEEE Pervasive Computing, vol. 1, no. 1, pp. 48–57, 2002.

[2] D. Cook and S. Das, Smart Environments: Technology, Protocols and
Applications (Wiley Series on Parallel and Distributed Computing).
Wiley-Interscience, 2004.

[3] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen,
“The gator tech smart house: a programmable pervasive space,” Com-
puter, vol. 38, no. 3, pp. 50–60, March 2005.

[4] G. Youngblood and D. Cook, “Data mining for hierarchical model
creation,” Systems, Man, and Cybernetics, Part C: Applications and
Reviews, IEEE Transactions on, vol. 37, no. 4, pp. 561–572, July 2007.

[5] A. Fox, B. Johanson, P. Hanrahan, and T. Winograd, “Integrating
information appliances into an interactive workspace,” IEEE Computer
Graphics and Applications, vol. 20, no. 3, pp. 54–65, 2000.

[6] M. C. Mozer, “The neural network house: An environment hat adapts
to its inhabitants,” AAAI, Tech. Rep. SS-98-02, 1998.

[7] F. Doctor, H. Hagras, and V. Callaghan, “A fuzzy embedded agent-based
approach for realizing ambient intelligence in intelligent inhabited en-
vironments,” Systems, Man and Cybernetics, Part A, IEEE Transactions
on, vol. 35, no. 1, pp. 55–65, Jan. 2005.

[8] F. Amigoni, N. Gatti, C. Pinciroli, and M. Roveri, “What planner for
ambient intelligence applications?” Systems, Man and Cybernetics, Part
A, IEEE Transactions on, vol. 35, no. 1, pp. 7–21, Jan. 2005.

[9] L. Liao, D. Fox, and H. Kautz, “Location-based activity recognition
using relational markov networks,” In Advances in Neural Information
Processing Systems (NIPS), 2005.

[10] E. M. Tapia, S. S. Intille, and K. Larson, “Activity recognition in the
home using simple and ubiquitous sensors,” 2004, pp. 158–175.

[11] M. Valtonen, A. M. Vainio, and J. Vanhala, “Continuous-time fuzzy
control and learning methods,” in Communications and Information
Technologies, 2007. ISCIT ’07. International Symposium on, 2007, pp.
346–351.

[12] A. Crandall and D. Cook, “Attributing events to individuals in multi-
inhabitant environments,” Intelligent Environments, 2008 IET 4th Inter-
national Conference on, pp. 1–8, July 2008.

[13] S. Laxman and P. S. Sastry, “A survey of temporal data mining,” in
Academy Proceedings in Engineering Sciences, vol. 31. The Indian
Academy of Sciences, 2006, pp. 173–198.

[14] J. Roddick and M. Spiliopoulou, “A survey of temporal knowledge
discovery paradigms and methods,” Knowledge and Data Engineering,
IEEE Transactions on, vol. 14, no. 4, pp. 750–767, July-Aug. 2002.

[15] R. Agrawal and R. Srikant, “Mining sequential patterns,” 1995, pp. 3–
14.

[16] T. Fawcett and F. Provost, “Activity monitoring: Noticing interesting
changes in behavior,” in In Proceedings of the Fifth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
1999, pp. 53–62.

[17] H. Mannila and H. Toivonen, “Discovering generalized episodes using
minimal occurrences.” AAAI Press, 1996, pp. 146–151.

[18] C.-H. Lee, M.-S. Chen, and C.-R. Lin, “Progressive partition miner: An
efficient algorithm for mining general temporal association rules,” IEEE
Transactions on Knowledge and Data Engineering, vol. 15, no. 4, pp.
1004–1017, 2003.

[19] C. Bettini, X. Sean Wang, S. Jajodia, and J.-L. Lin, “Discovering
frequent event patterns with multiple granularities in time sequences,”
IEEE Trans. on Knowl. and Data Eng., vol. 10, no. 2, pp. 222–237,
1998.

[20] R. Sutton and A. Barto, Reinforcement Learning: An Introduction. MIT
Press, 1998.

[21] S. V. Vaseghi, “State duration modelling in hidden markov models,”
Signal Process., vol. 41, no. 1, pp. 31–41, 1995.

[22] P. Rashidi and D. Cook, “Adapting to resident preferences in smart
environments,” in Proceedings of the AAAI Workshop on Advances in
Preference Handling. AAAI, 2008, pp. 78–84.

[23] ——, “Keeping the intelligent environment resident in the loop,” in Pro-
ceedings of the International Conference on Intelligent Environments,
2008, pp. 1–9.

