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Recent Developments in Privacy-Preserving Mining of Clinical Data

CHANCE DESMET and DIANE J. COOK,Washington State University

With the dramatic increases in both the capability to collect personal data and the capability to analyze large amounts of data,
increasingly sophisticated and personal insights are being drawn. These insights are valuable for clinical applications but also open up
possibilities for identification and abuse of personal information. In this paper, we survey recent research on classical methods of
privacy-preserving data mining. Looking at dominant techniques and recent innovations to them, we examine the applicability of
these methods to the privacy-preserving analysis of clinical data. We also discuss promising directions for future research in this area.
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1 INTRODUCTION

The acquisition and analysis of data form the backbone of the Industrial Revolution 4.0 and fuels much of current clinical
research. At the same time, the HIPAA Privacy Rule demands that individuals’ health information be protected. Data
mining offers essential insights in medical, industrial, and governmental fields, thus prevention of the abuse of mined
data is a critical yet often difficult task [37, 124]. Maintaining anonymity has typically consisted of merely removing
key attributes such as a person’s name, address, social security number, and other unique identifiers. However, the
recent proliferation of high-dimensional data sets introduces the possibility of piecing together a person’s complete
profile from seemingly disparate and anonymized pieces of information [84, 159]. This danger is heightened when
collected information is linked to ubiquitous, location-tracking mobile devices [37, 45, 92, 173].

This increased awareness of digital exposure has sparked a similar rise in research to maintain the privacy of sensitive
information in the face of data mining. New privacy-preserving data mining (PPDM) methods are being continuously
proposed to combat the corresponding expansion of data exploitation methods. Figure 1 illustrates how the number
of PPDM articles has grown over the past decade, with no indication of slowing down. This coincides with a rise in
clinical vulnerability to data compromise, as in recent years there has been a marked increase in the use of online, open
access data sharing services [112].

A factor in this surge of interest might be attributed to the desire for commercial entities to protect themselves from
the loss of their customers’ data. According to the General Data Protection Regulation set in effect in the European
Union, organizations are responsible for the misuse of information that is processed on their systems [92]. Thus it is

Authors’ address: Chance DeSmet, chance.desmet@wsu.edu; Diane J. Cook, djcook@wsu.edu, Washington State University, P.O. Box 642752, Pullman,
Washington, 99164-2752.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2019 Association for Computing Machinery.
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/1122445.1122456


53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

2 Chance DeSmet and Diane J. Cook

Fig. 1. This rate of growth has been steadily increasing.

not just the individual person that is interested in the security of their data [7, 142, 150, 178], but many commercial
enterprises who process these data are motivated to ensure that they are not subject to unintended disclosure through
neglect or otherwise.

Another factor in the growing desire for patient privacy preservation stems from the United States government’s
HIPAA act, which regulates how a health care center may use its client’s data. Medical electronic data use increases
led to a surge in accidental disclosures, costing medical centers time and resources [73, 163]. On the other hand, it is
frequently desirable for clinical data to be shared with other organizations, including other medical institutions, public
health organizations, law enforcement, and even military inquirers [40, 121, 162]. Therefore, it is in the best interest of
medical centers to ensure that the data they provide to external sources cannot be traced back to their clients.

In this paper, we survey the development of PPDM approaches and their current clinical usage. Because of the
increasing importance and influence of privacy-preservation on the data mining field, this has become a popular area of
research. Aggarwal and Yu [5] provide an early survey of the topic. In recent years, authors focus on specific aspects of
PPDM, while others provide a longitudinal look at the field [178]. When examining the field as a whole, some authors
focus on particular methods such as random noise addition, mapping, or learned models [120, 187, 189]. Others, such
as Wagner and Eckhoff [187], review a range of alternative privacy metrics. Still, others concentrate on a domain of
application, such as transactional medical data or big data analytics [143, 148, 182].

The goal of this paper is to privacy a comprehensive look at PPDM methods and their value for clinical application.
Easily-accessible data creates more opportunities for the exposure of personal information [4]. We, therefore, focus on
clinical applications of privacy-preserving data mining. The rest of this paper is organized as follows: We first define
PPDM terms in Section 2, then review and compare classes of PPDM methods and metrics in Section 4. Section 5
discusses adversarial strategies to combat PPDM methods. Because location information is valuable for monitoring and
assessing health, Section 6 the unique challenges preserving the privacy of location information. Finally, we close with
a summary of the surveyed topics in Section 7 and examine directions for future clinically-relevant PPDM research in
Section 8.
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Recent Developments in Privacy-Preserving Mining of Clinical Data 3

2 DEFINITIONS

Designing privacy-preserving data mining techniques poses a challenge for researchers and practitioners because of
the multiple, sometimes conflicting, goals associated with this endeavor. While PPDM methods should obscure the
identity of human subjects and other sensitive information to the greatest degree possible, the integrity of the shared
data and resulting models also needs to be ensured. Similarly, researchers need to balance the thoroughness of any
PPDM technique with the additional computational expense. Considering these varied and conflicting goals, several
metrics are used to evaluate PPDM algorithms. Here we introduce and discuss the relative merits of these common
performance measures.

Clinical data: This survey focuses on PPDM techniques that process clinical data. Based on a definition by Iavin-
drasan et al. [68], we restrict clinical data to be those that relate to the behavior or medical condition of a person. Thus,
we discuss mitigation strategies that address attacks on the gathering (i.e., clinical pathways, discussed in Section 4.6.3)
or application of such data.

Quasi-identifier: A quasi-identifier is a piece of information that on its own may not identify an individual in data,
but a cohort of these quasi-identifiers may have enough strength together to divulge an individual’s identity.

Sensitive attribute: A sensitive attribute is one that, if divulged, violates the privacy of the referenced individual.
Data composition vulnerability: Data are not always inherently vulnerable to re-identification; data that bear

no relation to the individual they came from introduce no threat to that individual’s privacy. Data containing quasi-
identifiers, however, can be vulnerable to disclosure. A quasi-identifier is an attribute that, while on its own cannot
positively identify an individual, can be used in conjunction with other quasi-identifiers to identify that individual.
Ensuring that quasi-identifiers are suppressed or altered in such a way that they do not reveal a user’s identity is a
primary goal of PPDM. In this way, the inherent data composition can be seen as part of the vulnerability. Defining
metrics to evaluate data composition vulnerability is largely an untapped problem, particularly since the amount and
specificity of quasi-identifiers vary widely between datasets.

Performance/privacy trade-off: A critical decision PPDM researchers make is how to balance the desire for
privacy with the goal of maintaining usable data [55, 83], because these two goals are inversely related. Increasing
the privacy of a data point generally involves distorting the point in some way, which damages its usefulness as a
representative of real-world phenomena [63, 83, 122]. To increase utility of privacy-preserved data, many of the methods
we survey exhibit varying levels of privacy protection. Because PPDM methods reach peak performance at different
privacy settings, comparisons between the methods sometimes prove difficult.

K-Anonymity: K-Anonymity is a property that can be used to describe the security of a data set. A data set with this
property ensures that every point is indistinguishable from 𝑘 other data points [172]. Formally, if 𝑋 represents a data set
and𝑄 represents the set of all non-sensitive quasi-identifiers in 𝑋 , then 𝑋 satisfies K-Anonymity if, for all combinations
of 𝑄𝑖 in 𝑋 , there are at least K examples of each 𝑄𝑖 [172]. Equation 1 states this description mathematically.

∀𝑄𝑖 ∈ 𝑋

| |𝑄𝑖 | | ≥ 𝐾
(1)

This property is very helpful in ensuring that data outliers are not immediately identifiable. Table 1 shows an example
of a data set with K-Anonymity where k=2, because each unique combination of attributes is exhibited by at least 2
data points.
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4 Chance DeSmet and Diane J. Cook

Sex Age Country of origin
Male [20-40] United States
Male [20-40] United States
Male [40-60] Australia
Male [40-60] Australia
Male [40-60] Australia
Female [60-80] Montenegro
Female [60-80] Montenegro

Table 1. Example clinical data illustrating K-Anonymity measure. This table displays a K-anonymity of 2, as each entry has at least
one identical record.

L-Diversity: The idea of K-Anonymity can be extended to L-Diversity, which requires that each sensitive attribute
in the data set also contains at least 𝑙 examples with the same value for that attribute [109, 125]. Through this process,
L-Diversity improves K-Anonymity by ensuring that not only are samples well represented, but there are enough varied
examples to prevent easy identification of data points. Formally, let 𝐷 be a data set,𝑄 the non-sensitive quasi-identifiers
in this data set, 𝑄𝑖 the combinations of 𝑄 that exist in 𝐷 , and 𝑆𝑖 the set of sensitive attributes associated with each 𝑄𝑖 .
Equation 2 shows how L-Diversity can be defined in this context [109]. L-Diversity has been additionally extended for
increased utility, resulting in such measures such a c-diversity (a categorically minded extension of L-Diversity) [79]
and t-closeness (ensuring that the distribution of provided sensitive attributes is no more than t distance away from the
true sensitive attributes) [96].

∀𝑄𝑖 ∈ 𝑋

∀𝑆𝑖 ∈ 𝑄𝑖
| |𝑆𝑖 | | ≥ 𝑙

(2)

Table 1 is not L-Diverse for 𝑙 = 2, because if one saw this data set and knew that their queried person was female or
that their age was 76, they would be able to determine that the corresponding country of origin was Montenegro, even
though there are more than one of these examples in the data set.

Differential Privacy:Measures such as K-Anonymity and L-Diversity attempt to define the privacy of an individual
point within a data set. Similarly, differential privacy is used to measure if the omission of a member’s data from a set
would have a greater loss of privacy than 𝜖 when an operation 𝑇 is performed on the data set before and after removal
[25, 41, 63, 81]. The amount of disclosure risk afforded by 𝜖 varies based on the properties of the data [44, 101, 118, 188].
As a result, it is difficult to set a standard 𝜖 that signifies confidence in a user’s privacy. However, among similar data
sets, differential privacy can be used to determine how sensitive a data set is to small changes in its composition.

Disclosure:Disclosure is the discovery of one’s private information in a data set by an unauthorized actor. Disclosure
has many causes, including accidental disclosure and disclosure due to the re-identification of a person in an anonymized
data set [34]. The amount of information that must be leaked to signify a disclosure is often disputed, but in some cases,
discovering a single feature about a person would constitute a disclosure [94]. The likelihood that a data set can have
elements disclosed is referred to as disclosure risk and is quantified in several ways. One measure of this disclosure risk
is the proportion of elements in a data set that are unique [166]. Similar in concept to K-Anonymity, this metric could
be used to compare different sets of data to see which ones are the most susceptible to disclosure.
Manuscript submitted to ACM
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Recent Developments in Privacy-Preserving Mining of Clinical Data 5

Utility: One criterion by which PPDM algorithms differentiate themselves is the extent to which they impact the
utility of the resultant data. Some PPDM methods can have a variable impact on performance, allowing users to choose
an acceptable balance of utility and privacy to fit their needs. The utility of a specific PPDM technique is measured for a
specific application. On the one hand, PPDM methods may calculate utility loss in terms of the deviation of the new
data from the old. This deviation can be quantified using metrics such as Wasserstein’s distance or Kullback–Leibler
divergence. Alternatively, the impact can be measured as a loss in the predictive performance of a model that is
trained on the manipulated data rather than the original. A number of measures have been introduced to quantify such
predictive performance, such as accuracy, sensitivity/specificity, f1 measure, and area under the ROC curve. We will
refer to accuracy throughout the paper as a representative predictive metric. In a clinical setting, the clinical utility of
data represents the amount that the data may be used to facilitate treatment [62, 208]. Manipulating the data to retain
privacy may decrease the effectiveness of treatment that emanates from the new data.

3 PPDM CASE STUDIES

Following the introduction of the HIPAA “Privacy Rule” and guidance from the European General Data Protection
Regulation [13], the common-practice method of anonymization was to remove obviously-identifiable information
from collected data including names, birth dates, and Social Security numbers. However, recent investigations into the
security of public data sets revealed that in many instances, data thought to be anonymized contained flaws that led to
the identification of members within the data set [173, 175]. As the disclosure of these data can be disastrous for those
involved, researchers have not only investigated known events of privacy loss but have also taken a closer at data sets
that could be vulnerable to compromise.

One well-publicized case of a compromised data set with far-reaching consequences is the Facebook-to-Cambridge
Analytica data leak, resulting in unauthorized actors gaining access to private information of over 83 million individuals
[92]. Through inadequate access control, Facebook was also found to be inadvertently providing third parties with the
ability to view user’s birth dates, widely considered a private attribute [38]. Similarly, the AccuWeather application
transmitted location data for its iOS users to a third party that used this data for targeted advertisements, a severe
invasion of user privacy [92].

While medical and government data are often viewed as most at-risk, other data sources are also vulnerable to
exposure. Power grid information such as resource usage or consumption rates is considered private as it may lead to an
adversary obtaining knowledge of the consumers’ lifestyles, or even an absence from their house, resulting in burglary
[30]. Automated safety messages sent out by automobiles are also a privacy concern, as they can reveal location data of
the occupants to unintended recipients [48].

On a clinical note, in the state of Washington, researchers accessing medical data that had been de-identified were
able to find newspaper stories on injuries that led to the identification of 43% of the patient medical records [173]. This
de-identification was accomplished by crosschecking newspaper print dates with hospital admission/injury reports.

In another instance of clinical data vulnerability, based on South Korean government-issued identity numbers,
researchers were able to manipulate publicly-available check-sum and encoded member data to positively identify
every person in a 23,163-person list of weakly-encoded prescription data [175]. This breach was possible because each
prescription contained demographic information about the recipient, including date of birth, gender, and place of birth.
While the data was assumed to be secure because numbers were substituted for letters in the identifiers, this process
was reversed using logical reasoning from known patterns in the data [175].
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6 Chance DeSmet and Diane J. Cook

Sex Age Blood Pressure
Male 21 57
Male 39 76
Female 45 67
Female 47 78
Mean 38.00 69.50
Std Dev 11.83 9.61

Table 2. Sample patient data.

Sex Age Blood Pressure Weight
Male [20-39] [50-79] 2
Female [40-59] [50-79] 2

Table 3. Abstracted data. Here sample data are aggregated into two different weighted groups.

Privacy-preserving data mining can take many forms, and there is a correspondingly diverse set of metrics to evaluate
its success. In this paper, we review recent methods that address privacy preservation with an eye toward a clinical
environment. We categorize historic approaches as well as recent privacy-preserving data mining techniques into four
groups: abstraction methods, random methods, mapping methods, machine learning methods, and synthetic methods.

4 METHODS

At the same time that growing evidence supports the necessity of privacy preservation, researchers have introduced
new strategies to ensure data privacy. For this paper, we will focus on surveying approaches for data anonymization and
privacy preservation. We categorize these as random, mapping, abstraction, learned-model, and synthetic generation
methods. Here we review these popular methods, highlight recent innovations, and contrast their approaches to data
and inference security, particularly for clinical applications. To illustrate the alternative ways these PPDM methods
modify the data, we utilize an example set of patient data provided in Table 2.

4.1 Abstraction Methods

Many privacy-preserving data mining methods alter the form of a data point in some way, such as adding noise to distort
the value, mapping it to a new point in the space, or swapping some attributes with another data point. However, there
are other methods that create new points using combinations of the original data points. Also known as substituting or
abstracting the data, these methods group data points into increasingly larger sets, until all identifiable data points have
been subsumed by an aggregation of the larger set [24, 53, 97, 134]. Abstraction methods often merge points into a
combined group until a pre-determined privacy threshold has been reached. A pre-defined measure of privacy such as
K-Anonymization may provide such a threshold. In the case of a K-Anonymization threshold, points will be combined
into larger groups until each original data point in the set is not distinguishable from 𝑘 − 1 other points (Section 2).

As an example, we modify Table 3 from Table 2 by abstracting attributes in several ways. Sex cannot be abstracted
without combining all feature values into one category, so that remains unchanged. However, age is discretized into
ranges [0 − 19, 20 − 39, 40 − 59, 60 − 79, 80−), and blood pressure is discretized into ranges [0 − 49, 50 − 79]. In both of
these cases, the abstracted ranges were derived from K-Anonymization with 𝑘 = 1. As can be seen from this example,
one of the chief concerns in using the abstraction method is the loss of information that occurs when over-abstracting
Manuscript submitted to ACM
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Recent Developments in Privacy-Preserving Mining of Clinical Data 7

the data. More so than some other methods, the accuracy/privacy trade-off is prevalent for abstraction methods. Thus,
abstracted data may result in generally poor modeling performance if privacy demands are great. This can be shown by
observing that as the groups grow, the corresponding features correspond to the entire possible value ranges, removing
the possibility of distinguishing between population subgroups.

There are many ways to abstract data. Individual data points can be iteratively subsumed into greater approximations
until the desired privacy level is reached [172]. These privacy levels can be based on K-Anonymity thresholds or more
stringent privacy requirements such as variants of L-Diversity. One L-Diversity variant was introduced by Gong et
al. [54]. Using their proposed (𝐾, 𝐿)-diversity method, data are abstracted until a desired privacy level is reached. As
before, this algorithm abstracts feature values ranges. Additionally, this method also handles overlaps between multiple
datasets. Specifically, one datum may appear in more than one dataset (with overlapping features). When this occurs,
abstraction is applied to both entries to ensure that the privacy metric (e.g., K-Anonymization) is met for both entries in
both datasets. This method, called 1:M generalisation, offers an important capability, as standard PPDM methods suffer
when duplicates exist [177].

Another abstraction approach was proposed by Lin et al. [103]. These researchers cluster data for similar patients to
relay significant adverse medication reactions without divulging user identities. Similarly, Abidi et al. cluster data and
then define the sensitive attributes of each data point to be the cluster mean [3]. As highlighted by these methods, data
abstraction performs a similar role as the random methods discussed in Section 4.2. Specifically, abstraction loosens
precision on individual data points just enough that privacy is maintained. As Savi et al. observe [157], the degree of
abstraction will have a direct impact on the resulting classification accuracy and thus should be chosen carefully.

While many types of abstraction PPDM methods aggregate precise feature values into value ranges, data can also be
abstracted into a new, synthetic version that bear similarity to the original data, but do not contain any actual entries
that may be used to identify an individual person [186, 199]. Typically, synthetic data are generated by combining
observed values to create new data points, or by utilizing statistical information about a data set such as the distribution
of features to create data points that exhibit the same statistical properties [22, 43, 90]. Synthetic data are often then
employed for purposes such as testing software or validating models. To ensure that user privacy is being preserved
throughout the data generation process, Vreeken et al. [186] define a criteria to ensure that a sample from the original
data set is unlikely to appear in the generated set unless it is very common in the original data. This is an important
criterion for generative methods, because if the generator randomly combines data feature values, then there is a
possibility that a unique, real example could be included in the generated set. This is discussed further in Section 4.5.

4.1.1 Clinical Usage. Abstraction-based methods offer a useful approach for many clinical goals due to their ability
to easily handle both categorical and text data. These data types are commonly found in clinical data and represent
limitations for many other PPDM methods.

An abstraction method designed to cluster and sanitize candidates from data was introduced by Wu et al. [198].
The authors demonstrate that generating sanitized data with minimum deviance from the original data is an NP-hard
problem. In order to approximate the optimal privacy abstraction trade-off, the authors propose a greedy approach that,
each iteration, marks individual data points for sanitation or subsumption based on their customized privacy metric. The
greedy iterations continue until the desired trade-off is reached between privacy and classification accuracy. As testing
of this model indicated a high level of privacy protection as well as minimal data loss, this represents a useful method for
securing clinical data. Abstraction was also adopted by Khan et al. Like Lin et al. [103], these researchers hypothesized
that a clustering and minimal-abstraction approach could be successful in protecting HIPAA-compliant health data [80].
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8 Chance DeSmet and Diane J. Cook

Sex Age Blood Pressure Perturbed Age Perturbed Pressure
Male 21 57 15.52 65.99
Male 39 76 49.85 73.37
Female 45 67 41.60 47.89
Female 47 78 39.07 72.78
Mean 38.00 69.50 36.50 65.01
Std Dev 11.83 9.61 14.73 11.89

Table 4. Perturbed data where the noise value 𝑐 is drawn from a Gaussian distribution and is used to modify values from Table 2.

Khan et al. used differential privacy risk (described further in Section 4.6.4) to cluster sensitive attributes into separate
“buckets.” The design disallows linkage attacks (Section 5.1) between members of different buckets. These methodologies
exemplify the power of abstraction methods that are capable of removing data specificity until individual members of
the data are no longer at risk while still maintaining much of the original data information content.

4.2 Random Methods

Random PPDM methods exploit the original data distribution to randomly inject “noise” into each data entry [151, 164].
This noise can be generated using a variety of statistical manipulations that make it difficult for an adversary to discern
the original data point [156].

To explain the general framework for injecting noise into data, let 𝑥 represent an original data point, 𝑐 represent
noise that is added to the data, and 𝑥 represent the resulting perturbed data point that will be added to the data set.
Here, 𝑥 and 𝑥 each contain 𝑛 features [6, 45, 151]. Equation 3 formalizes the process of adding random noise to a sample.
In this equation, 𝑥𝑛 represents a feature of 𝑥 , and 𝑥𝑛 represents the perturbed version of that feature. The value 𝑐𝑛
represents a unique amount of noise that is added to the corresponding feature, influenced by the distribution of each
feature within the data.

∀𝑥𝑛 ∈ 𝑥

𝑦𝑛 = 𝑥𝑛 + 𝑐𝑛
(3)

Random PPMD methods often distinguish themselves by adopting unique approaches to generating values for 𝑐
[45, 141, 164]. Traditionally, 𝑐 is a random term with a mean set at 0, drawn from a distribution that is dependent on the
feature it is perturbing. In one of the seminal papers on this method, Agrawal and Srikant experimented with both
uniform and Gaussian distributions [6]. Using a decision tree classifier, they evaluated the classification accuracy of the
data modified by noise drawn from these distributions [6, 76]. The change in classification accuracy was most apparent
when choosing to modify the data more dramatically with the goal of heightened privacy, pointing to a need for random
methods to be able to provide enough noise for a specific feature to not reveal sensitive information, but still retain
usability. Both Gaussian and uniform noise addition were adept at preserving the classification, with accuracy staying
between 5% and 15% of the original classification margin [6]. This accuracy was consistent throughout several different
privacy levels, which dictated the breadth of the distribution that was used to generate the noise [6, 76].

We illustrate the process of perturbing data in Table 4. For this example, 𝑐 is drawn from a normal distribution, and
the sex of the person is not considered a private attribute. It can be seen from this table that the perturbation process
Manuscript submitted to ACM
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does affect both the mean and the standard distribution of both blood pressure and age, thus the perturbation caused
these to shift considerably. In a data set containing a larger sample, it is likely the mean and standard deviation would
exhibit less variance once perturbed.

While random noise addition works well at obfuscating data, adding a noise value to each feature independently
of the others can damage relationships between features that contain dependencies [71]. Age and blood pressure are
considered to be independent in this example, so the noise factor 𝑐 was calculated independently for each feature. To
perturb data sets with dependent variables, a method was introduced in which matrices perform the noise addition,
shown by Equation 4, where 𝑋 represents a set of data points, 𝑋 represents the new perturbed set of points, 𝐸 is a
covariance matrix representing relationships between the features of 𝑋 , and 𝛼 is a random variable used to permute 𝐸
[127, 151].

𝑋 = 𝑋 + 𝐸

𝐸𝑖, 𝑗 = 𝛼 ∗ 𝐸𝑖, 𝑗
(4)

As seen in Equation 4, this new variation of random noise addition relies on amatrix drawn from a random distribution
with the same co-variance as the original data. This equation creates new data that possess the same relationship
between features as is exhibited in the original data [127, 151].

While the previously-discussed approaches employ standard distributions such as Laplace and Gaussian, some
authors explored methods that create noise based on characteristics of each individual dataset. As an example, Eyupoglu
et al. [45] introduce a data perturbation algorithm that is based on chaos theory. In this method, data points are selected
as shown in Equation 5, based on the number of unique features. These points are then modified by the logistic mapping
function, which is a chaotic function.

𝑥𝑛+1 = 𝜆 ∗ 𝑥𝑛 ∗ (1 − 𝑥𝑛)

𝜆 ∈ (3.99, 4)
(5)

A chaotic function is one where small changes to the input values have a large effect on the behavior of the series
[45]. In Equation 5, the initial value of 𝑥 is specified a priori [45]. Here, values close to 4.0 are used for 𝜆 as they generate
the maximum variance and unpredictability for the mapped values. This chaotic function makes it nearly impossible
for an adversary to determine the initial conditions and therefore determine the specifics of the noise that was added to
the data.

Though random noise strategies can be effective tools at tailoring the amount of data privacy, they are applicable
primarily to continuous-valued data. Often, clinical usagemay necessitate the use of data that are described by categorical
attributes as well [10]. Adding noise is difficult for such data, and many attempts to do so operate on associations
between different categorical terms, rather than gaining an understanding of what the terms signify [151]. To combat
this tendency, Rodriguez-Garcia et al. [151] integrate ontological relationships to advance the data obfuscation principle
of noise addition. In the text mining applications that they consider, they examine the meaning of an expressed sentiment
and find replacement terms that are taxonomically similar to the word or object. For example, the word “Headache”, or
an instance of a specific type of headache, might be replaced with Concussion, Fracture, or Migraine to generalize the
phrase but still convey a meaning that is similar to the original word. Figure 2 illustrates one example taxonomy to
abstract words contained within a clinical document.
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Fig. 2. A natural language taxonomy allows words to be replaced with similar nominal term values. Using this graph, words at one
level of the taxonomy can be grouped with terms at a higher level.

4.2.1 Clinical usage. While on the surface it may appear as a less-sophisticated privacy-preserving method, random
noise addition remains useful for clinical PPDM, both as a standalone method and as an augmentation to other strategies.
For example, the Priward algorithm [154], introduced by Rüth et al., added noise by allowing two parties to calculate
likelihoods from hidden Markov models without disclosing either the model or the observation sequences to the other
party. By using cryptographic techniques and secure operators, each party can input their portion of the data and
obtain a result without discovering or being able to deduce contributions from other parties. This algorithm offers a
unique benefit because a relatively simple addition of random noise provides enough abstraction to contribute to an
otherwise-unrelated algorithm’s ability to provide privacy protection.

Another recent example of random noise addition was offered by Ni et al. [129]. In their MCDBSCAN clustering
algorithm, the goal is to ensure that differential privacy is not violated for data points within each cluster. To achieve this
goal, they inject Laplacian noise to individual data points, adding uncertainty to the individual points within the cluster.
By adding variance to the data points within the clusters, differential privacy is ensured for each added data point
while the resulting clusters will preserve privacy as well. This approach actually combines elements of noise injection,
data abstraction (Section 4.1), and differential privacy (Section 4.6.4) guarantees, approaching the problem of privacy
preservation from several angles. Finally, Aaronson and Rothburn showed how a differential privacy-satisfying level
of added noise can be abstracted to the gentle measurement of quantum states [1]. This investigation was performed
by observing the relationship between varying the amount of data privacy change due to inclusion or omission and
finding quantum states that cause as little disruption to individual states as possible. The investigators noted how well
differential privacy concepts can be extended to other disciplines where information about individual members of a set
should be considered in the context of the group. From these recent endeavors, the utility of random noise injection
can be seen. Not only does this strategy privatize data with minimal impact on the number of samples or the form
of the samples, but it pairs well with differential privacy guarantees. This is because random injection supports an
easy-to-calculate differential privacy score from the noise parameters.

4.3 Mapping Methods

Many times while mining data, the relationships between different data elements offer critical insights. As a result,
privacy preservation needs to retain the relationships to the extent they exist in the original data [147]. For example, if
a patient has a medical condition that always requires attention when their blood pressure is double their heart rate,
an algorithm that attempts to predict either of these values will need this relationship to be retained when the data
are privatized to maintain the same predictive accuracy. To meet this need, PPDM methods have been developed that
Manuscript submitted to ACM
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Fig. 3. An example of data rotated 180° around the origin.

Fig. 4. The donut method rotates a selected point to the gray area, forcing a minimum distance from the original feature value.

transform the data into a new form, while still preserving if not replicating the internal relationships. This may be
accomplished by mapping the data into a new space where the individual’s traits are unrecognizable. Alternatively,
the PPDM algorithm can perform internal rotations. These rotations are typically performed by selecting two or three
random features in a data set and rotating them around a given axis. The resulting data bear minimal similarity to their
original form. If done properly, however, they retain the distribution and relational dependencies from the original data
set. While the rotations can damage the predictive ability of some classifiers, other methods, such as SVM and k-nearest
neighbor classifiers, are often rotation-invariant. As a result, the classification error of these methods is not affected by
such rotations [27]. Figure 3 shows an example of how a two-dimensional data set may be rotated. In this diagram, two
features are rotated 180°around the origin, changing the data substantially while still preserving the distances between
the individual points.

Sometimes, mapping or rotation may occur within previously-defined clusters, generated using methods from Section
4.1 [24, 61, 76, 123, 135, 147]. In these cases, rotation PPDM methods are constrained to occur within clusters, thus
ensuring that the rotation keeps similar points together while differentiating distinct clusters [24]. This process ensures
that swapping only occurs between similar values, in order to preserve as much structure in the data as possible.
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In an influential paper on rotational methods, Olivera and Zaiane proposed several different mapping methods [132].
In one such method, TDP, each feature in the data is offset by the same amount, perturbing the data, but possibly having
an adverse effect on the proportions between data points, and therefore utility [132]. They then proposed another
method where two features at a time are selected and rotated simultaneously within an R2 space, repeating the process
until every feature has been rotated at least once [132]. This method, called RDP, was found effective at preserving
both privacy and classification accuracy [77].

Once points are clustered, mapping methods can be applied. One unique design by Upadhyay et al. [184] extended the
RDP method by selecting three features at a time to rotate in an R3 space, repeating this process until all features had
been rotated at least once. This method further improved data privacy while still supporting machine learning-based
classification. The method yielded predictive performance within 1% of the original data using K nearest neighbors, J48
decision trees, and naive Bayes classification methods, outperforming 2-dimensional rotations such as RDP [184].

Another style of mapping, known as the “donut method”, maps each data point a distance between a minimum and
maximum value, creating a torus, or donut shape when applied to increasingly-high dimensions [61]. This algorithm is
called the donut method because the inclusion of a minimum distance means that the possible area for the new point is
bounded between two concentric circles, as opposed to other methods with no minimum threshold, which creates a
“circle”. This method was developed for the anonymization of patient location data by moving the location in a random
direction within a specified range. Figure 4 shows how the authors improved their method over a standard rotation.
When mapping location coordinates, a maximum translation distance may be specified. In the standard approach, the
translation value, 𝑟 , may vary anywhere from the original point (the central point in Figure 4) to the maximum value.
However, using the donut method, a minimum distance is also enforced, forcing 𝑟 to be selected from values in the
gray area between the minimum and maximum. This method is adept at preserving privacy in cases where individual
data points are easily distinguishable, possibly due to the minimum distance threshold ensuring that each data point
is sufficiently rotated [61]. The donut method outperformed standard aggregation measures in both sensitivity and
specificity while preserving the privacy of users’ locations.

As with random methods, researchers have investigated privacy-preserving mapping methods for nominal data sets.
As an example, Rodriquez-Garcia et al. [152] extended their work on nominal data to taxonomically classify ailments
and use these classifications to employ swapping. By identifying words and phrases that are close in meaning, terms
can be transformed with categorical synonyms, resulting in privacy preservation of data that can still be useful for
research, as it contains information about a very similar class of problems.

Another style of mapping involves observing the relationship between different data points. In one instance,
distributed medical data was able to be mined for information between different parties by observing the relationship
and distances between different clusters of data [158]. This PPDM topic is particularly relevant for clinicians, as it would
support learning from data without introducing the risk of compromising actual data [35]. Learning from distributed
data with mapping methodologies was also investigated by Teo et al., where secure operators were introduced that
allowed each party to use information from the others without knowing the actual information contained within [180].

4.3.1 Clinical usage. With the ability to allow high utility as well as easily shareable permutations, mapping methods
are a flexible, albeit computationally-expensive option for mining clinical data. A primary challenge with these methods
is that they are difficult to apply to streaming data, as they generally process the entire set of data at once.

Recent research involving mapping methods includes the work done by Chamikara et al. [24], who use a covariance
matrix generated by points within a cluster to perform intra-cluster rotation. Once the rotation is complete, the clusters
Manuscript submitted to ACM
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are merged and the data points are randomly ordered, yielding the new data. This method was tested on several data
sets using the k-nearest-neighbors classifier and exhibited generally-superior accuracy when compared to basic rotation
and abstraction methods. The results indicate that rotation of data-defined clusters can be used to generate new, private,
data samples that provide predictive accuracy comparable to the original data. Additionally, this method was shown
to preserve the proportional relationships between the original and mapped data, further improving the overall data
utility.

Mapping methodologies apply to multiple types of clinical data. In a new work by Aloufi et al., transforms of collected
data, including waveforms of voice recordings, were used to privatize the recordings. Mapping these clinical data to an
unrecognizable dimension ensures privacy of the unique information [9]. This example illustrates a potential advantage
of mapping methods. Both the addition of random noise and abstraction of waveform data may run the risk of tending
this data toward the mean, greatly degrading its quality and usability. For example, perturbing waveform data may
degrade the corresponding voice recording to gibberish. However, by mapping the data to an unrecognizable dimension,
the component of the audio that is considered sensitive, the emotion, remained private while the speaker and the speech
were still recognizable.

Finally, mapping methods were combined with machine learning and cryptography in work by Ping et al. [139]. This
work introduces a model that facilitates private support vector clustering (SVC) between clients and a server, with data
undergoing a mapping transform to maintain privacy. This work illustrates how mapping methods may complement
many different styles of data protection, such as encryption. They provide an easy-to-enact way of obscuring real
distances and relationships between sensitive data, while still allowing the underlying correlations to be maintained.

4.4 Learned Models

To this point, our discussion has centered on PPDM techniques that are designed to safeguard the whole or part of a
dataset. In some cases, data privacy can be maintained by sharing a learned model of the data (or inferences derived from
the data) rather than sharing the data themselves [56, 58, 89, 107]. There are many methods that, when used correctly,
generate models which do not reveal individual-specific information. As an example, Mao et al. [117] demonstrated
how facial recognition-based deep learners could preserve individuals’ privacy. This result benefits medical applications
that deal with the imaging of specific disease patterns, as they could use deep learning to detect these diseases without
compromising privacy. Such models have been learned via random forests, perceptrons, and deep learning methods
[14, 21, 26, 69, 100, 117, 136, 169, 196, 209, 210]. These learned models differentiate themselves from other learning
methods that leave members of the data vulnerable to re-identification. Models that run the risk of re-identification
include support vector machines and naive Bayes models trained on small data sets [50, 102]. It is possible, however, to
utilize some of these normally-insecure methods in such a way that they still ensure a level of privacy. As an example,
Lin and Chen [102] modified the typical support vector machine classifier in such a way that the support vectors were
not made up of individual data points, and therefore the classifier produced a result that was privacy-preserving. This
was done by modifying the support vectors to include ones that provided the same decision boundary but were not
drawn from the original data, similar to a mapping method mentioned in Section 4.3.

4.4.1 Clinical Usage. Some research has introduced PPDM solutions for specific clinical use cases. Recently, Alabdulka-
rim et al. employed a random forest to protect privacy by presenting the most likely maladies an individual might
possess without giving specific details on the patient, helping physicians perform differential diagnoses [8]. Another
recent method supporting the private usage of clinical data was a federated deep learning model for the segmentation
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of brain tumors by Li et al. [99]. In this context, "federated" refers to the fact that there are multiple collaborating deep
networks, allowing researchers to use information from the trained model without requiring access to the original
training samples. The deep networks shared information only after the gradients of each network had been modified by
Laplacian noise, guaranteeing a degree of differential privacy.

One downside to using these privacy-preserved machine learning models is that they provide insight into only the
target concept. While the learned model may address the original analysis question, methods that retain as much of the
original data as possible offer insights for a broader range of clinical analyses. Therefore, it may often be better to use
PPDM methods that provide as much raw data as possible, allowing the end-user to design their own machine learning
method for answering additional questions about the data.

4.5 Synthetic Data

In general, the previously-discussed PPDM archetypes modify existing data to make the individuals safe from re-
identification. Synthetic PPDM approaches instead attempt to provide privacy through the generation of synthetic
data and have shown to be a useful tool in the acquisition of knowledge in a clinical setting [93, 202]. Additionally, the
proliferation of big data for clinical use has resulted in concerns over the applicability of the data, and whether it can
wholly encompass the population being measured [18, 60]. Synthetic data can help to alleviate this issue by ensuring
that the output data is of a realistic form characteristic of the entire populace.

As mentioned in Section 4.1, synthetic data generation offers an effective method for providing privacy while
maintaining model utility [70]. Just as abstraction methods attempt to group part or whole of the data to protect
vulnerable elements, synthetic data generation augments part or whole of the data with additional artificial samples
that do not need privacy. The resulting infusion lends privacy to the original members of the data. Developing new
methods of synthetic data generation that are more adept at recognizing patterns in original data could yield superior
artificial data aimed at privacy-preserving. These generative techniques are designed to use many measures of the
data such as distribution, clustering cosine similarity, outlier analysis. In this way, data generation could mirror the
original information as closely as possible, providing more data to researchers. Along with the privacy protection
provided by synthetic data generation, this strategy can bring “new life” to historic data that has been shown to be less
representative of how the current populace [153]. Representative synthetic data generation could greatly increase the
quality and quantity of available data in terms of both privacy to users and utility to clinicians.

Deep learning is revolutionizing many aspects of machine learning and has begun to affect PPDM processes as
well [133]. Along with other deep learning systems, generative adversarial networks (GANs) can be used to maximize
privacy preservation while ensuring the accuracy remains as high as possible, balancing these two “adversarial” goals
[105, 183, 192].

4.5.1 Clinical Usage. In recent work, Abay et al. [2, 14], used a deep learner to generate synthetic data, yielding
promising results for both accuracy and privacy. While GANs can generate high-quality synthetic data, the results are
not always both sufficiently private and accurate. Yale et al. [202] attempted to address this through the introduction of
medGAN, a GAN optimized for clinical synthetic data generation. Dash et al. also successfully applied medGAN to
generate private time series data [36]. Demonstrating application to time series data is important for process mining,
the analysis of how an entire patient event log can help determine the efficacy of the treatments [126, 137].
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4.6 Ancillary Approaches

In addition to methods that protect privacy through data manipulation, other methods may be used to augment privacy
by limiting the accessibility of the data, changing the form of the data, or assess the privacy of the data. While these
often support the previously-discussed methods, they can still be employed on their own.

4.6.1 Cryptography. An important contribution of recent ancillary methods is cryptographic techniques. These are
used to secure data and grant access only to authorized users [98, 140, 155, 161], making it extremely difficult for an
adversary to gain access to the data. As discussed in Section 5.3.2, cryptographic methods are often less efficient than
PPDM methods for clinical data sharing and distribution. This is largely due to the difficulty of ensuring that only
authorized recipients have access to the data. A further contribution is the computational expense of the cryptographic
methods themselves [74].

4.6.2 Sanitation. A harsher approach to PPDM is to sanitize attributes from the data [114, 131]. Sanitation refers to
removing all items viewed as “sensitive” from the data, rendering the resulting data devoid of any similarities to the
original sensitive attributes [49]. This data can still offer some utility, but much value may be lost in this sanitation
process. This is a different method than discussed in Section 4.1. Instead of grouping the data into non-uniquely-
identifiable sections, sensitive data is strictly removed, additionally carrying the risk that some sensitive data may
remain.

Focused on removing access to the data rather than making them confidential, sanitation methods are sometimes
included in the literature as PPDM methods. However, in isolation, cryptography and sanitation are often unsuited for
clinical data, as they severely limit the cohort that may be able to use the data or diminish the utility of data.

4.6.3 Clinical Data Variations. While much of this paper focuses on the relationship between PPDM methods and
clinical data related to patient health, health data may take many different forms, including images (in the form of
x-rays or other diagnostic visual aids) and processes (in the form of a clinical pathway, also known as a care map).
Privacy preservation of images used in a clinical setting often takes the form of cryptographic methods, designed to
ensure that only trusted individuals gain access as well as establishing control of the image [67, 78, 204]. Despite this,
there exist some contemporary clinical image PPDM methods designed to facilitate this sharing of sensitive images. Li
et al. demonstrated that through the addition of noise to a deep learner’s weights, information learned from medical
images may be shared with outside observers with a differential privacy guarantee on the data [99]. In a similar vein,
Kim et al. constructed an encoder to obfuscate medical images presented to it, while still preserving enough utility in
the images to be useful in "task-specific" analysis [82].

Kinsman et al. [88] define a clinical pathway as a recorded log or series of medical interventions that are performed
for a patient [130]. This record makes clinical pathways available for process mining, facilitating the improvement of
treatment protocols. These plans of care may be vulnerable, however, to exposing the patient’s treatment regimen or
even their condition to outside observers [116, 144]. To mitigate such attacks, privacy-preserving methods will suppress
or generalize logs to include only abstract information [138], or sanitize logs to meet K-anonymity and T-closeness
requirements [46]. Recently, a clinical pathway PPDM method was proposed by Mannhardt et al. [115]. This method
added noise to log queries from non-trusted entities. We note that while specific clinical tasks, such as supporting
clinical pathways, spark the creation of new algorithms, the underlying PPDM methods remain consistent with those
introduced in the rest of this survey.
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4.6.4 Differential Privacy. As discussed in Section 2, differential privacy is often used as a guarantee of the desired
privacy level for a given purpose [170, 205, 212]. We elaborate on differential privacy as an ancillary method due to
its increasing usage in PPDM work as well as its great ability to augment and validate other PPDM methods. This
can be seen in several examples. Cheu et al. [29] proposed a shuffling methodology evaluated by differential privacy
to verify the sensitivity of messages sent between two parties. Differential privacy was also used to clarify the level
of different protections given to defenses against attacks on machine learning models [65, 95]. Finally, Xu et al. used
differentially-private guarantees to address multi-party learning and ensure that all members in this collaborative
environment retained a suitable amount of privacy [200].

Recently, differential privacy was enhanced by a method called “integral privacy”, which is a strengthening of
differential privacy to include not just a member of data, but subsets of the data. This refinement is useful to many
clinical and pharmaceutical endeavors as they often look at data sub-components [66]. Using this measure, the privacy
of “niche” data subsets can be evaluated in addition to the privacy of the entire dataset [66]. Differential privacy has
also been adapted to suit the type of privacy it is guaranteeing. Additionally, differential privacy can take the form
of central differential privacy or local differential privacy [11, 47, 57, 119, 201]. Central differential privacy ensures the
privacy of data once they have all been collected, whereas, in local differential privacy, each submitting contributor
ensures the privacy of their data before they are included [11, 119].

In addition to strengthening differential privacy requirements when needed, differential privacy requirements can
also be relaxed to address situations when such stringent privacy specifications are not needed [25]. This can be seen in
the work by Asi et al., where differential privacy may be relaxed to allow users of differing involvement to be segmented
by their differing privacy needs. For example, if a hospital employee was treated at that same hospital, the person
may not be harmed by being listed as having visited that hospital, while another person that only visited this hospital
once for a specific health concern may be harmed [12, 91]. The concept of differential privacy relaxation was further
extended by Kim et al. [85] in their presentation of MPPDS, a privacy-preserving sharing system. This system used
personalized differential privacy to facilitate different levels of privacy depending on trust between users.

5 RE-IDENTIFICATION

When designing and comparing PPDM methods, it is wise to also consider possible attack avenues. Awareness of attack
techniques can motivate a choice of PPDM method and a desired privacy level [195].

5.1 Attack Vectors

As reported by case studies in Section 3, many parties attempt to identify private features from supposedly secure data
sets. These parties may be malicious, or they may simply be curious researchers or journalists. No matter the intent, it
is still up to the data collectors to ensure that the sensitive features are not exposed [15]. Studies on re-identification
attempts have shown that the success rate for these re-identification attacks is typically between 26% and 34% [15].
While these findings do not take into account the low degree of confidence in the results, they still demonstrate how
often an attack can yield at least some information about supposedly secure data.

A popular re-identification method links two different sets of data [15, 17, 111, 171, 193, 211]. Many linkage strategies
are based on the work of Sunteb and Fellegi [171], who compare two data sets by examining the probability that
a point from each of the sets reference the same point. This method has been used by several re-identification
strategies [175] and has been extended to big data [193]. In another case study analysts successfully linked newspaper-
recorded deaths to stored family structures, allowing the analysts to discover detailed genealogical information for
Manuscript submitted to ACM
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over half of the individuals [111]. Links can be discovered in numerous public sources, revealing private information
[13, 42, 111, 165, 174]. Linkages aid in identifying individuals from sparse information even when supposedly private
information has been removed. For example, 86% of the United States population is identifiable using only their birth
date, sex, and 5 digit zip code [15, 111].

In clinical data, Reisaro et al. [146] found that adversaries could link different parts of genomic data together to
identify participants. While a common attack strategy, linking is also practiced within clinical research as a way of
discovering additional information in data, using association rule mining [31, 87, 191]. Recently, work has been done to
secure data against these forms of linking attacks. Telikani et al. [179] used evolutionary computation to keep the data
impenetrable. This evolutionary process employed swarm-based optimization to make the data increasingly impervious
to association rule mining invasions.

5.2 Potential Vulnerabilities

Of the methods surveyed in Section 4, potentially most vulnerable to linkage-based attack is abstraction aggregation. As
mentioned, linking attacks attempt to identify common elements from multiple different data, using similarities between
shared elements to attempt to discover relations between these different elements. Aggregation creates opportunities for
data to be linked with other data sets, even when aggregated [194]. Applying linking methods, attackers can determine
with a variable degree of certainty to which records a person belongs. Aggregation is also vulnerable to data outliers as
well as attackers’ knowledge of real constraints on data types such as realistic age ranges [15, 195].

Mapping and random methods are somewhat more secure than abstraction, but both do have inherent vulnerabilities.
Mapping methods may reveal a weak point around the axis of movement, as points there experience the least rotation.
Because these points move less compared to others, an attacker may use the smaller movements to determine the
overall mapping of some or all of the set [28]. Similarly, simple swapping methods exchange feature values within
small clusters, allowing an adversary to determine what the possible original values might be for the points within that
neighborhood [28, 195].

Random methods are further vulnerable to discovering the degree of added noise, allowing attackers to determine
the range of possible initial values [28, 75, 195]. If an attacker can discover the distribution of added random noise, then
they can infer a likely range of initial values [76, 156]. This sort of discovery is also possible if the adversary can find a
sample of unperturbed examples and their corresponding perturbed permutation. An adversary may also use spectral
graph or primary components analysis filtering to determine with a high degree of accuracy the original data [76]. This
represents a difficult challenge for data perturbation methods as increasing the amount of perturbation can weaken the
utility of the data set [156, 157, 164].

5.3 Mitigation Strategies

To address the vulnerabilities outlined in Section 5.2, methods of mitigating attacks have been developed. In this paper,
we survey two methods for combating privacy attacks: a blending of multiple PPDM approaches and a merging of
PPDM practices with those in the cryptography field.

5.3.1 Combining Methods. An effective way to combat attack vulnerabilities is to combine different PPDM methods,
as this can leverage multiple security designs, potentially thwarting the attempts of an attacker to learn the original
data [28, 129, 195]. As seen throughout Section 4, many current clinical methods combine different styles of PPDM.
The combinations range from differential privacy and clustering to abstraction and learned models. Some methods

Manuscript submitted to ACM



885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

18 Chance DeSmet and Diane J. Cook

Fig. 5. Applying random noise to the mapping function creates uncertainty as to the origin of the point.

combine very well, for example, mapping and noise addition complement each other because together they incapacitate
re-identification techniques that are targeted for only one method: A popular approach to re-identify mapped data is
to utilize known unperturbed examples and their subsequent transformations to discover how the data are mapped.
Similarly, for random methods, the goal is to discover the distribution of added noise in order to intuit the likely original
data. Combining mapping and random methods render these strategies ineffective because the addition of random noise
means that possessing previous samples does not give away the mapping. The original point could have been mapped to
a variety of regions, with the noise influencing the final location. Mapping the data to new positions before adding noise
also thwarts attempts to discover the distribution, because even if the distribution of the mapped data is discovered,
this does not necessarily describe the original, unmapped data. Figure 5 shows how the addition of noise to a mapping
method makes the original location ambiguous, due to the unknown noise value. Additionally, the combination of
differential privacy and random noise injection provides a privacy guarantee, allowing clinical users to determine the
degree of safety that they wish to impart on mined data. Combining these PPDM methods and measures can improve
the effectiveness of privacy preservation over traditional or novel approaches used in isolation.

5.3.2 Multi-Party Computation. As the PPDM field matures, researchers incorporate more diverse computer science
ideas to enhance both the privacy and utility of the privacy-preserved data. As discussed in Section 4.5, the introduction
of neural networks such as GANs exemplifies how using external techniques can yield promising results for the private
generation of synthetic data.

Multi-party Computation is a modern security technique that allows multiple groups to perform an analysis on
data without fear of that data leaking [108]. This area of cryptography is quite similar to the goal of many PPDM
methods, attempting to facilitate wide access to sensitive information. A subset of multi-party communication is
known as homomorphic techniques [16, 86, 176, 178]. Homomorphism stems from encryption and is used to denote
a process whereby results can be gathered on encrypted data that mirror the results that would have been gathered
on non-encrypted data [203]. Applying homomorphic and other cryptographic concepts to PPDM is a novel way to
increase security without having to deal with difficulties using encrypted data, such as ensuring trust between parties,
efficiently sharing keys, and facing expensive decryption costs [33, 72]. The parallels between homomorphic encryption
and PPDM are clear; homomorphism may be seen as an extreme application of a mapping method. Both methods
provide users with new data that are representative of the original, protect the privacy of the individuals, and may be
widely disseminated without concerns about end-user “trust.” Recently, PPDM researchers have explored new strategies
that exhibit this feature in order to provide strong security and privacy. Song et al. [167] used homomorphism to develop
a privacy algorithm based on cryptographic models. They combined homomorphic encryption with learned models,
merging these disciplines with PPDM.
Manuscript submitted to ACM
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These homomorphic PPDM strategies reflect a trend for these methods to not only be robust against adversarial
attacks but, in a similar vein as cryptographic methods, to integrate these methods into their design and operation
[185]. As homomorphic methods may bridge the gap between PPDM and cryptography, they may become increasingly
popular, particularly for widely-shared data.

6 PPDM FOR LOCATION INFORMATION

With the rapidly-increasing ubiquity of mobile devices, as well as clinical applications for IOT devices location has
become an increasingly common data feature whose privacy must be maintained. Many smartphone applications
rely upon enabling location services. Doing this opens the door for the network provider and device provider as well
as the app designer to collect (and disseminate) location information. An attacker also uses these locations to learn
intimate details about a person’s life [32, 51, 52, 128]. Location data are also providing increasingly critical insights for
clinicians. Knowledge of a user’s location offers context when examining the influences and symptoms of an individual’s
health. Such contexts include knowledge of frequented locations, activity level, interruptions in daily routines, alerts
of possible wandering behavior, social interactions, and symptoms of specific diseases [20, 23, 39, 110, 113, 145, 168].
Therefore, privacy protection of location data is an important component of ensuring private, applicable clinical data.
While location-based privacy preservation is similar to traditional PPDM methods, unique challenges arise due to both
the comparatively few features and the known value constraints. These challenges mean that while many ideas and
practices can be transferred to location-based problems, they must often be altered to adequately protect privacy while
conveying useful information.

Location data can be difficult to keep private because some mobile operating systems store this information when
location services are enabled. On the other hand, too severe of a privacy threshold greatly degrades the usability of
the location data [52, 181]. Due to these unique constraints on privacy-preserving location mining, standard PPDM
methods must adapt both their PPDM goals and their strategies.

User location data often appear as a series of (latitude, longitude, altitude) coordinates indicating the movement
of a user over a time period [64]. Therefore, methods that attempt to preserve the privacy of user locations typically
modify the reported location values, location time stamps, or both [51, 52, 181, 206]. Location-based privacy should
be addressed separately because of the unique nature of these data. Location trajectories are time series, containing
spatio-temporal relationships between individual readings. As a result, making changes to individual data points can
easily distort the underlying, valuable information.

Many of the methods can be considered analogous to common PPDM methods discussed in Section 4. Moving the
locations by incremental amounts is very similar to random methods [52, 190]. Also, clustering/partitioning location
is very similar to mapping and abstraction methods. One general methodology groups location points and abstracts
them to a broader neighborhood within which multiple clusters can fit [51, 128, 181, 190]. To further ensure privacy,
noise can be added to these broad locations, subsequently increasing the difficulty of determining the cluster locations
[190], similarly to the combined strategies discussed in Section 5. Finally, some versions of mobile privacy introduce
the concept of “trusted nodes”, to which the mobile element will only connect, decreasing the risk of a malicious entity
gaining unauthorized information [197]. Location privacy remains an open challenge that requires additional research
to retain both the value of location data and the privacy of the individuals being tracked. The increased frequency of
patient location data being collected from a variety of sensors presents a unique challenge to the PPDM conscious
researcher and is an increasingly relevant vulnerability that often must be addressed to safeguard the security of data
members. Due to the potential inclusion of location data into a clinical record, safeguards to ensure the security of
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this data are necessary. As such, while the methods and motivations of privatizing location data may not primarily be
focused on clinical usage, the inclusion of location into clinical data necessitates the investigation of this PPDM area.

7 DISCUSSION

Throughout this paper, we survey recent methods for privacy-preserving data mining, assess the vulnerability of the
methods to re-identification, and discuss how to adapt such methods to location-based clinical data. As discussed in
Section 5, accessing sensitive data remains a clear and present threat. Because safeguarding patient personal information
is a high priority, this threat motivates us to find ways to ensure data privacy, while maintaining data utility. Here we
shed light on the strengths and weaknesses of PPDM techniques as well as highlight directions that warrant continued
research. Table 5 summarizes many of the surveyed approaches. From this table, we can view differences between
strategies.

As Table 5 indicates, Abstraction methods typically lose data fidelity when privacy is increased, making them
appropriate only when details of the original data are not required. They may be an effective approach for preserving
the privacy of data that possesses small margins between classes. An example of this could be detecting the volume of
hard-to-locate tumors [19].

Random methods can be very effective in that they change the individual data points slightly while still keeping
the information as similar to the original as possible. This approach can be difficult to enact correctly, however, as
additions of too little noise can result in an adversary being able to “see past” the noise and discover the original data.
At the same time, trying to fix this problem by aggressively adding noise may jeopardize the integrity of the original
data. Random methods are also weak at providing privacy to non-continuous data; the minimum amount of noise to
be added in such cases is an integer value. Despite these flaws, noise addition is still popular with applications using
differential privacy [59, 63, 104]. The addition of noise adds a quantifiable amount of uncertainty, clearly defining a
trade-off between privacy and utility. Because random methods offer flexibility in the amount of data manipulation that
is performed, they allow practitioners to increase privacy for vulnerable populations while opting to retain data purity
for less sensitive cases [158].

Mapping methods are adept at preserving the relationships between different groups of data. This is a useful trait
when the goal of the project is classification. Another use of mapping is feature swapping, which creates semi-new
data points out of the ones in the original data. Mappings are useful when the original data distribution needs to be
preserved. One example in a medical setting is identifying outliers, as will occur when searching for medication errors
[160].

Rather than operate on some data to privatize them as the previous three methods do, machine learning methods
refine the knowledge into a model (e.g., decision tree, deep network). While this may decrease the overall utility of the
information, secure learned models can provide precisely the needed information while not including details that may
leave individuals vulnerable to exposure [58].

The generation of synthetic data represents another shift in approach to the privatization of data. Through a learned
approximation of the original data - by means of statistics or deep learning - a generator creates data that ostensibly
could have come from the original distribution, and exemplifies all the characteristics of the original data. This approach
is difficult to successfully perform with data possessing extreme outliers or abnormal distributions, as accounting for
these may leave those individuals prone to exposure, but ignoring them may severely degrade the quality of the data.
Conversely, when a model can successfully approximate the distribution of the original data, the generation of synthetic
data is a powerful way to effectively sidestep the issue of privacy. When faced with an extreme desire for privacy, such
Manuscript submitted to ACM
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Method Algorithm Performance Vulnerability Data Type Runtime
Abstraction Condensation [207] ΔAcc: within 5% sparse; redundant

features
categorical;
continuous

𝑁 ∗𝐹
𝐾

HM:PFSOM [3] IL: ~0.35 unclustered data categorical;
continuous

𝐹 ∗ 𝑁 2

1:M-Generalization [54] IL: ~0.15 sparse categorical;
continuous

𝑁 log(𝑁 )

MS(k,𝜃 )-anonymity [103] IL: ~0.1 sparse categorical
reports

𝑁 2

Random Noise GADP [127] Dist: no change
from original

topological
irregularities

continuous 𝑁

Chaos Method [45] ΔAcc: within 1% loss of correlation categorical;
continuous

𝑁

Mapping

Donut Method [61] CS: within 10% topological
irregularities

location 𝑁

Translation Data
Perturbation [132]

ΔError: within 7% highly correlated
data

categorical;
continuous

𝑁 ∗ 𝐹

Geometric Data Perturba-
tion [184]

ΔAcc: within 5% mapping method
compromise

categorical;
continuous

𝑁 ∗ 𝐹

P2RoCAl [24] ΔAcc: within 2% large compute time categorical;
continuous

𝑁 3

Generation Privacy Data
Generator [186]

Diss: ~0.06 representative input categorical;
continuous

𝑁 ∗ 𝐹

Table 5. Comparison between different presented PPDM methods, ΔAcc = difference in accuracy after privacy preservation, IL =
information loss after privacy preservation, Dist = change in distribution of data after privacy preservation, Diss = dissimilarity
measure between data before and after privacy preservation, CS = cluster similarity before and after privacy preservation, 𝑁 = number
of data points, 𝐹 = number of features, 𝐾 = number of clusters.

as when dealing with a novel or uncommon affliction, synthetic data generation provides an avenue to share data that
are similar to the original but reference no real participants [149].

Clinical research and practice impose their own constraints on the choice of optimal PPDM methods. Clinical
pathways, medical imaging, and location information all offer a unique challenge for the researcher. Much like more
standard clinical data, effectively safeguarding these data types requires consideration of both the form of the data and
the desired use of that data. When attempting to safeguard sensitive data, the intended use for the data plays as large of
a role in the choice of method as the data. To better illustrate some potential uses for each of the discussed methods,
Table 6 ranks each of the discussed categories across several use cases.

Finally, the computational cost of PPDM methods may impact their value. As seen in Table 5, random noise addition
and mapping methods are not computationally costly, while abstraction and generation both require additional,
potentially costly, steps. Abstraction methods must often use a metric such as K-anonymity to decide which entries to
modify. Data generation methods, especially those using deep learning, must be trained on the data before providing
useful results. As a result, such methods may impose significant computational constraints.

8 SUGGESTED DIRECTIONS FOR FUTURE PPDM RESEARCH

While we highlight novel and robust methodologies in this survey, there are several avenues of research that are
needed to extend and strengthen PPDM. As seen in Section 7, there is no general consensus on best practices to use for
evaluating the efficacy of PPDM methods. While differential privacy has become an increasingly common method of
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PPDM Method Hypothesis tests Clustering Basic statistics Classification Anomaly detection
Abstraction Methods 3 4 4 5 4
Random Methods 1 3 1 4 2
Mapping Methods 2 2 3 1 1
Learned Models 5 1 5 2 5
Data Generation 4 5 2 3 3

Table 6. Sample clinical tasks and ranked suitability of alternative PPDM methods to the task (1=most suitable . . . 5=least suitable).

validating the privacy of privatized data, developing a measure that combines the privacy given to data along with
the preserved utility would be a good method of providing insight into the overall utility of the proposed method. In
particular, developing an evaluation criterion that works across multiple domains, types of data, and classes of PPDM
models would be of great benefit to the community as a whole. Similarly, standardizing the data and testing methods
used for newly-proposed PPDM methods would facilitate comparisons between these different methods as well as
the selection of an appropriate approach to a particular data set. These measures could use many different aspects
of the input data, such as composition (described in Section 2). An example of a criterion that could perform well is
representing the overall utility of a PPDM method as the area under a curve, where the X-axis represents varying
degrees of privacy and the Y-axis represents the utility of the data. Methods that exhibit a large area under the curve
would be ones that retain high levels of utility as PPDM parameters vary. Another possibly more focused avenue for
PPDM metrics is a general-purpose privacy metric for synthetic data. As it currently stands, it is often quite difficult to
quantify the privacy provided through the use of synthetic data. If synthetic data is generated correctly, there exist no
correct ties to the original data, making it difficult to establish a link between a subset synthetic data and any possible
originating record in the original data. However, as synthetic data is not always generated completely free of relation to
the original data, proposing a metric aimed at grading synthetic data quality would be extremely useful.

Along with standardizing the evaluation criteria of proposed PPDM models, an effective further direction for this
field is the integration of a re-identification agent within a PPDM framework. As seen in Sections 4.4 and 4.5, deep
learning models, especially GANs, have shown to be an effective way of augmenting or generating data that protects
the privacy of the members contained within. Creating a GAN that not only evaluates the synthetic data for realism,
but also attempts to re-identify the generated data, could result in a mechanism that produces synthetic data that is
representative of the original, but is also robust against adversarial attacks on the data.

A rewarding avenue for PPDM research may also be the introduction of a class of methods that attempt to provide
private data through a transformation of related data. Transfer learning and domain adaptation are popular research
areas and may be repurposed to facilitate taking secure information and translating it into an insecure domain. This
proposed style of transfer PPDM methods would exhibit the privacy characteristics of synthetic data, but the relevance
to real data of mapping methods. Finally, PPDM practices may be used in the field of adversarial learning [106].
Adversarial learning is characterized by the interplay between a learning model and an agent who attempts to poison
the performance of that model. Modification of the model’s training data using PPDM methods may increase the
robustness of the learned models involved, due to the decreased similarity between data used for the model and data
used by an adversary.
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