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Abstract—Analyzing human mobility patterns is valuable
for understanding human behavior and providing location-
anticipating services. In this work, we theoretically estimate the
predictability of human movement for indoor settings, a problem
that has not yet been tackled by the community. To validate the
model, we utilize location data collected by ambient sensors in
residential settings. The data support the model and allow us
to contrast the predictability of various groups, including single-
resident homes, homes with multiple residents, and homes with
pets.

Index Terms—prediction, compression, human mobility, smart
homes

I. INTRODUCTION

Studying human movement patterns helps researchers to
understand human behavior. If human movement can be
anticipated, this information can improve intelligent services
that are provided by smart cities and smart homes [1]. One
question that has captured the attention of researchers is deter-
mining how predictable human motion is. Given the ability to
collect massive amounts of geolocation data, researchers have
formalized models of large-scale outdoor human movement,
population migration, and epidemics. These advances lead
to improvements in city planning, traffic engineering, public
health, and communication.

On the other hand, sensing indoor human mobility offers
untapped potential to model behavior patterns. Indoor activi-
ties occupy most of our daily routine. According to the Envi-
ronmental Protection Agency, Americans spend up to 89% of
their time indoors, 69% specifically inside residences [2]–[4].
Using ambient sensors, researchers can continuously monitor
the locations and activities of building occupants without re-
quiring resident effort or behavior change [5], [6]. Discovering
indoor mobility patterns facilitates providing mobility-aware
services and automatic detection of abnormal behaviors. In
buildings with multiple inhabitants, accurate prediction of each
individual’s movements is also key to tracking and responding
to each person’s needs.

In this work, we investigate the theoretical limit of the
predictability of indoor human mobility. This investigation
is accompanied by quantification of the effect of multiple

This material is based upon work supported by the National Science
Foundation under Grant No. 1543656.

TABLE I
EXCERPT OF SENSOR EVENTS COLLECTED IN SMART HOME M3

Time Tag Sensor ID Message
2016/12/27 7:44:58 BedroomADoor ON
2016/12/27 7:44:59 BedroomAArea ON
2016/12/27 7:45:01 BedroomADoor OFF
2016/12/27 7:45:05 BedroomAArea OFF
2016/12/27 7:45:08 KitchenAArea ON
2016/12/27 7:45:09 BedroomAArea ON
2016/12/27 7:45:11 HallwayB ON
2016/12/27 7:45:13 BedroomAArea OFF
2016/12/27 7:45:14 BedroomAArea ON
2016/12/27 7:45:15 BedroomAArea OFF
2016/12/27 7:45:15 HallwayB OFF

residents and pets on prediction accuracy. We also assess the
performance of existing mobility prediction models.

We empirically validate our theoretical analysis by ana-
lyzing 140 million motion sensor readings recorded in 117
CASAS smart homes. In these homes, ambient sensors in-
cluding passive infrared (PIR) motion sensors, magnetic door
sensors, and contact-based item sensors, are deployed to track
residents and their interaction with objects in the home. The
sensor map for a sample smart home site, home m3, is shown
in Figure 1.

Whenever the state of the sensor changes due to resident
activity, the sensor sends a message to the smart home
gateway, and the message is uploaded to a central database.
Each sensor message is a three-tuple containing the time of
the observation, the sensor identifier that observed the resident
movement, and the state of the sensor. Table I shows an excerpt
of sensor messages collected in one smart home testbed.
Because a ”deactivate” message (OFF for motion sensors,
CLOSE for magnetic door sensors, and PRESENT for item
sensors) always follows an ”activate” message (ON for motion
sensor, OPEN for magnetic door sensor, and ABSENT for item
sensors), we only analyze the ”activate” messages. Data are
continuously collected in these environments while residents
perform their normal daily routines.

II. HUMAN MOBILITY

Human mobility has been the subject of investigation in
many fields, but the advent of mobile computing has opened
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Fig. 1. Floor plan and sensor positions in a sample smart home (home m3).

the door to creating statistical models based on passively-
observed movement patterns. In their seminal work, Song
et al. [7] formulated an upper bound on outdoor human
mobility predictability by entropy rate estimation. In this study,
geolocation data are obtained from cell tower logs. Here, an
individual’s location is identified by the closest mobile tower
each time they use a phone. Data are then extrapolated to
form a continuous hourly record for estimating the entropy
rate. Based on Fano’s inequality, the authors concluded that
the potential predictability of human mobility could be as
high as 93%. This early study ignited a series of follow-up
work [8]–[13] that replicate the outdoor mobility experiments
using data collected from high-resolution GPS, embedded
sensors on mobile devices, and wireless signal strengths to
understand mobility predictability at various spatial and tem-
poral resolutions. However, Smith et al. [11] noticed that, in
geolocation data, each individual only visits a small fraction
of all locations. As a result, the upper bound claimed by Song
et al. [7] is an overestimate, an observation that is echoed by
Xu et al. [14], and the actual limits could be 11-24% lower.

A limitation of earlier investigations is that the geolocation
data monitors only outdoor human movement. Understanding
outdoor movement supports analysis of viruses, city planning,
and management of resources. Unfortunately, the theoretical
bound of indoor human mobility predictability is a subject
that has not received this same level of investigation. Under-
standing indoor movement is also valuable. Researchers have
used such information to detect changes in a person’s health

[15], identify possible in-home security threats [16], design
proactive behavior interventions [17], and provide resident-
aware home automation [18]. Predicting future resident lo-
cations is a central task of smart homes; thus researchers
have proposed algorithms to model the indoor mobility of
residents [19]. For example, Gopalratnam and Cook [20]
proposed an online Lempel-Ziv sequence prediction algorithm,
Active LeZi, which converges to 47% accuracy for predicting
indoor locations using one month of smart home data. Alam et
al. [21] introduced SPEED, an algorithm that predicts future
events through a partial match, and reported 88.3% accuracy in
predicting next sensor events over one month. Jayarajah and
Misra [22] used WiFi logs on an urban campus to monitor
indoor activities and observed an 87% predictability across
building sections (e.g., classroom, food outlet, meeting space).
Minor et al. [23] introduced a structured prediction algorithm
that forecasted the times of upcoming activities with a MAE
of 16 minutes, although this was not applied to movement
prediction.

To analyze movement in smart homes with multiple resi-
dents, Ghasemi and Pouyan create a Markov chain that maps
states to indoor sensors. This Markov model is used to predict
the next location of each resident [24]. Doty et al. [25]
further improve smart home state estimation by introducing
flag hidden Markov models that contain a finite-state Markov
chain as well as a structured observation process wherein
a subset of states emit flags (i.e., observations) while other
states are unmeasured. Lin and Cook [26] analyze the Markov



order that best fits behavior observed by smart home sensors.
While the focus of this paper is on deriving an upper bound
on indoor mobility predictability rather than providing a best
fit of smart home data, researchers including Begleiter et al.
[27], Dimitrakakis [28], and Bejerano [29] have contributed
several additional methods for improving prediction methods
with variable-order models.

As an alternative method to model smart home behavior,
Roy et al. [30] model the movement of smart home residents
as actions taken in a multi-agent stochastic game. Thus, the
mobility of all residents, characterized by a policy (i.e., the
probability of a state-action pair), can be learned using a Nash
H-learning algorithm. These authors reported 90% prediction
accuracy for residents and 40% accuracy for visitors based
on smart home data recorded over three weeks. These works
are complementary to our analysis. However, they cannot be
directly compared because we focus on the theoretical bound
of indoor human movement predictability.

III. ENTROPY RATE AND PREDICTABILITY

The goal of this research is to investigate the theoretical
bound for the predictability of indoor human mobility in real-
world settings. Here we present the relationship between pre-
dictability and entropy rate estimated from actual smart home
empirical data, using alternative computational approaches.

As introduced in Section I, the indoor locations of smart
home residents are identified by ambient sensor messages.
A person’s indoor trajectory, T , is represented as a series
of sensor messages, {Xi}i∈Z, where Xi is the ith sensor
message in the trajectory. We define indoor mobility prediction
as prediction of the next sensor message activated by the
smart home resident(s) based on their past trajectories. In
the case of multiple residents, we initially consider predicting
the next sensor message caused by any of the residents at
the site, without attempting to identify which of the residents
was responsible for the message. Using this method, multiple-
resident prediction can thus be viewed as prediction of a
single, more ”complex” resident in the building. The upper
bound of the predictability of indoor mobility can be calculated
by estimating the entropy rate of the underlying stationary
stochastic process [7].

A. Entropy Rate and Predictability
We assume that ambient sensor-detected resident trajectory

inside a building can be modeled by a stationary stochastic
process X = {X1, X2, . . . , Xn}, where Xi is a random
variable representing the ith sensor message. For smart home
data, the values of each variable Xi are the identifiers of
activated sensors, representing the location of a smart home
resident at time i. The entropy rate, H(X ), measures the av-
erage conditional entropy H(Xn+1|Xn, Xn−1, . . . , X1) when
n approaches infinity, as shown in Equation 1. This rate can
also be interpreted as the growth of the information contained
in the trajectory compared to the length of the trajectory.

H(X ) = lim
n→∞

1

n

n∑
i=1

H(Xi+1|Xi, . . . , X1) (1)

The most powerful prediction model for indoor mobil-
ity, characterized by the conditional probability distribution
f(Xn+1|Tn), would predict the next sensor message (at time
n+1) based on the complete past history of resident trajecto-
ries (for times 1 through n). Here, Xn+1 represents the next
sensor message, and Tn represents the past history of resident
trajectory up to time step n. The maximum predictability
Πmax, defined as the prediction accuracy of the next sensor
message averaged over the entire observed sequence, can be
formulated according to Equation 2. In this equation, P (Ti)
represents the probability at time i of having observed a
particular resident trajectory Ti.

Πmax = lim
n→∞

1

n

n∑
i=1

∑
Ti

sup
Xi+1

f(Xi+1|Ti)P (Ti) (2)

Given an observed trajectory Ti, a predictive estimator
g(Ti) = X̂i+1 will output an estimated value of X̂i+1. The
probability of the estimator’s error is then defined as the
probability that the estimate does not match the actual next
sensor message, Xi+1, or Pe(Ti) = P (X̂i+1 ̸= Xi+1). Fano’s
inequality, which relates information lost in a noisy channel
to the probability of predictive error [31], states that

Hb (Pe(Ti)) + Pe(Ti) log2(N) ≥ H(Xi+1|Ti) (3)

In Equation 3, Hb(P ) is the binary entropy function shown
in Equation 4 and N represents the number of possible
messages that could be observed (number of sensors in the
home).

Hb(P ) = −P log2 P − (1− P ) log2(1− P ) (4)

Given the conditional entropy H(Xi+1|Ti), Fano’s inequal-
ity guarantees a lower bound of the probability of error
Pe(Ti), and thus an upper bound of the predictability Π(Ti) =
1− Pe(Ti). We can represent the left side of Equation 3 as a
function Π(Ti), expressed in Equation 5.

HF (Π(Ti)) = Hb(1−Π(Ti)) + (1−Π(Ti)) log2 N (5)

Based on the concavity of HF (Π(Ti)), we can associate
the maximum predictability Πmax with the entropy rate of the
underlying stationary stochastic process by applying Jensen’s
inequality, as shown in Equation 9.



H(X ) = lim
n→∞

1

n

n∑
i=1

H(Xi+1|Xi, . . . , X1) (6)

= lim
n→∞

1

n

n∑
i=1

∑
Ti

H(Xi+1|Ti)P (Ti) (7)

≤ lim
n→∞

1

n

n∑
i=1

∑
Ti

HF (Π(Ti))P (Ti) (8)

≤ HF

(
lim
n→∞

1

n

n∑
i=1

∑
Ti

Π(Ti)P (Ti)

)
(9)

= HF (Π
max) (10)

According to Equation 10, given the entropy rate of the un-
derlying stochastic process, the upper bound of predictability
of the sequence can be calculated numerically.

B. Estimating Entropy Rate
Having established the association between entropy rate

and predictability, the key challenge is to reliably estimate
the entropy rate from empirical data with a universal coding
method. The entropy rate, defined in Equation 1, is the
conditional entropy of the future random variable as the length
of the random process approaches infinity. Due to the limited
sample size of our empirical data, we implement multiple
entropy rate estimators to ensure the consistency of entropy
rate estimation.

Previous work by Song et al. [7] and Smith et al. [11]
used an entropy rate estimator based on Limpel-Ziv data
compression, proposed by Kontoyiannis et al. [32]. In this
approach, let X = {Xi} be a stationary ergodic process with
entropy rate H(X ) > 0. We can then state:

lim
n→∞

1

n

n∑
i=1

Λi
i

log2 n
=

1

H(X )
(11)

In Equation 11, Λk
i is the length of the shortest substring

starting at position i that does not appear as a continuous
substring of the previous k symbols.

The entropy rate can also be estimated using the code
length after compressing the data. Let R(Tn) denote the
size in bits of a sequence Tn = {Xn, Xn−1, . . . , X1} after
performing data compression. Takahira et al. verify that the
code length per unit, r(n) = 1

nR(Tn), is always larger than the
entropy rate H(X ) [33]. Additionally, provided the stochastic
process is stationary and ergodic, a universal text compressor
guarantees that the encoding rate converges to the entropy
rate. Thus, we estimate the entropy rate by calculating data
compression. In our experiments, we compare several state-
of-the-art data compressors for this process. Specifically, we
select 7-zip deflate (an implementation of Lempel-Ziv 77 [34]
with Huffman coding), 7-zip LZMA (an optimized version of
LZ77), and 7-zip PPMD (a lossless data compression using
prediction by partial matching [35]).

Though all of the above approaches will converge to the
true entropy rate, the accuracies of the estimates differ and

are affected by the data sample size. To demonstrate the
differences between the estimators and contrast the estimated
values with the true entropy rate, we generated a state sequence
of 10,000,000 time steps based on a second-order Markov
chain with 20 states, where the probability of the current state
is dependent on the previous 2 states. The state transition
probabilities of the second-order Markov chain, characterized
by P (Xi+1|Xi, Xi−1), are generated randomly. Thus, the true
entropy rate of the synthetic state sequence (i.e., the entropy of
the simulated second-order Markov chain) can be calculated
based on the entropy rate definition shown in Equation 12.

H(X ) = H(Xi+1|Xi, Xi−1)

=
∑

xi,xi−1

P (xi, xi−1)H(Xi+1|xi, xi−1) (12)

In Equation 12, P (xi, xi−1) is the stationary probability dis-
tribution of state sequence {xi, xi−1}, and H(Xi+1|xi, xi−1)
is the entropy of random variable Xi+1 given the values of
the previous two states.

In Figure 2 (top), we plot the entropy rates based on
sequence size. For this plot we compare multiple estab-
lished methods including the LZ77 deflate (HLZ77), LZMA
(HLZMA) and PPMD (HPPMD) algorithms, as well as the
estimator defined in Equation 11 (Hest). Figure 2 (bottom)
plots the corresponding predictability of each estimator. To put
the results in perspective, we also include the random entropy
(Hrand), temporally-uncorrelated entropy (Hunc), and entropy
rate (Hmc), of a first-order Markov chain fitted to the synthetic
sequence. The random entropy Hrand = log2 N represents
the maximum amount of possible information content in any
sequence of N states. The uncorrelated entropy Hunc assumes
that there is no temporal correlation between consecutive
random variables in the random process. In other words, the
sensor message at each time step is independently drawn from
a probability distribution P (Xi). Thus, Hunc can be calculated
according to Equation 13, where P (Xi) can be estimated by
counting the occurrences of each observable symbol.

Hunc = −
∑
Xi

P (Xi) log2 P (Xi) (13)

The Markov chain-based entropy rate Hmc assumes that
the state sequence can be modeled by a Markov chain,
characterized by the conditional probability of state transition
P (Xi+1|Xi). Based on the empirical data, the transition prob-
ability can be estimated by maximizing the likelihood of the
observed sequence. Thus, the entropy rate of the constructed
Markov chain can be calculated according to Equation 14 [31].
Here, P (Xi) is the stationary state distribution of the Markov
chain, calculated by solving Equation 15.

HMC = −
∑

Xi+1,Xi

P (Xi)P (Xi+1|Xi) log2 P (Xi+1|Xi)

(14)
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Fig. 2. Entropy rate (top) and predictability (bottom) estimated from synthetic data generated by a second-order Markov chain.

P (Xi) =
∑
Xj

P (Xi|Xj) ∀j (15)

In Figure 2, the true entropy rate (the red dashed line) is
calculated according to Equation 12. As shown, all estimators
(HLZ77, HLZMA, HPPMD, and Hest) converge to the true
entropy rate as the sequence length increases. Among the
estimators based on the compressed code length (HLZ77,
HLZMA, and HPPMD), PPMD yields the tightest upper
bounds and fastest convergence. Due to the dictionary size,
the entropy rates reported by those estimators are higher than
the actual process entropy rate. Comparatively, Hest provides

the most accurate estimate among all of the tested entropy rate
estimators. However, Hest may undershoot when there is not
enough data, leading to an over-estimated predictability. The
estimators based on compressed code length are guaranteed to
be an upper bound to the actual entropy rate.

The entropy rate of any stochastic process with an alphabet
size of 20 should lie between the random entropy Hrand (4.33
in this example), indicating that the process is entirely random,
and 0, indicating that the process is fully deterministic. The
second-order Markov model has an actual entropy rate of
1.35, and thus a corresponding predictability of 83.51%. The
entropy rates estimated by Hest and HPPMD are 1.52 and



1.60, resulting in an error of predictability of 3.5% and
4.01%, respectively. Since the synthetic data in this example
is generated by a second-order Markov chain, a first-order
Markov chain is not sufficient to capture patterns in the data.
As a result, entropy rate HMC calculated by fitting a first-
order Markov chain to the synthetic data is 3.58, much higher
than the actual entropy rate of the second-order Markov chain
or the estimates reported by Hest and HPPMD.

Additionally, the predictability estimated by HMC is more
than 30% lower than estimates derived from Hest or HPPMD.
Compared to HMC , the temporally-uncorrelated entropy
Hunc is less powerful for capturing regularities in the synthetic
data. Quantitatively, the predictability corresponding to the
uncorrelated entropy is close to a fully-random sequence,
which is more than 40% lower than the first-order Markov
chain, and about 80% lower than the predictability calculated
from the actual entropy of the sequence. In this example,
the random entropy Hrand = 4.33 sets the upper bound
of the information contained in any data sequence with 20
symbols (the number of states in this case). The random
entropy can only be achieved if, at any time step, each state is
equally probable, meaning P (Xi) = 1/20. Thus, the average
predictability of such a random stochastic process equals 0.05,
as shown in Figure 2.

IV. PREDICTABILITY OF INDOOR HUMAN MOBILITY

In the previous section, we investigated a formal method
to determine the theoretical limits of indoor human mobility
predictability in real-life settings. Here, we validate our the-
oretical formulations based on sensor message data collected
from 117 smart homes, characterized in Table II. We collected
these data from participants using the CASAS Smart Home
in a Box technology [6], [36]. Residents in the smart homes
performed their normal daily routines while ambient sensors
collected data. Data collection in these homes ranged from 2
weeks to over 11 years. Among these homes, 45 smart homes
have ≥ 2 residents and 14 of these include pets. The remainder
of the 72 smart homes are single-resident, 10 of which include
pets. Many of these datasets, as well as the code, are available
online1.

Since the estimated entropy rate accuracy is affected by
the data sample size, we start by establishing the relationship
between entropy rate estimators and the length of the recorded
message sequence. For all of the evaluations, the estimators
are trained separately from a random initialization for each
home. Figure 3 plots the estimated entropy rates (top) and the
corresponding predictability (bottom) against the number of
sensor messages. In this example, the sensor messages were
collected in a home with multiple residents, home m3, over 6
months. This home was chosen because it houses multiple
residents (making the data complex). Furthermore, ground
truth resident labels are provided for a subset of this home’s
data, associating each sensor message with a corresponding
resident ID. To provide a time reference in the graphs, the plots

1Links to code and datasets are online at http://casas.wsu.edu

include red vertical lines indicate the first, second, third, and
fourth weeks, as well as the second, third, and sixth months,
on a log scale. Entropy rates in Figure 3 are estimated using
the code length of the compressed data based on the LZ77
(deflate) (HLZ77), LZMA (HLZMA), and PPMD (HPPMD)
algorithms, as well as the entropy rate estimator Hest defined
in Equation 11. The results are compared against random
entropy Hrand, uncorrelated entropy Hunc, and the entropy
rate Hmc calculated by fitting a first-order Markov chain to
the sensor messages. The predictabilities plotted in Figure 3
are calculated according to Equation 10. Since there are 25
sensors in home m3, the size of alphabet N in Equation 10 is
25.

Among the entropy rate estimators (HLZ77, HLZMA,
HPPMD and Hest), Hest provides the lowest estimates. In
the figure, Hest oscillates when there is not enough data,
and stabilizes after consuming two months of data. Based
on such observations, we acknowledge that the entropy rate
reported by Hest is the best approximation to the true entropy
rate of the underlying stochastic process that generates the
observed human trajectories. As shown in Figure 3, the upper
bound of indoor mobility predictions in this home converges
to 79.3% according to the entropy rate estimated by Hest.
If a first-order Markov model is used to predict the next
sensor message triggered by the residents living in the smart
home, the prediction accuracy, according to the entropy rate
Hmc, is 67.5%, indicating that an improvement of 11.8% can
potentially be achieved.

By repeating the above experiment for each smart home,
we calculated the predictability upper bound of each home.
Figure 4 summarizes the upper bounds of resident mobility
predictability using entropy estimator Hest. Homes with single
residents are shown in red and multi-resident homes are
colored blue. Homes with pets as well as human residents are
indicated with a star symbol. The indoor mobility of residents
in some of these homes exhibits high orders of regularity,
where the prediction accuracy of resident movement exceeds
95%. As expected, these occur in single-resident homes with
no pets. On the contrary, in many multi-resident smart homes,
the predictability is much lower and, in some cases, drops
below 65%.

A. Homes with Multiple Residents

To further explore the effect of multiple residents and pets
on indoor mobility predictability, we pictorially compare pre-
dictability between a single resident smart home and a multi-
resident smart home. Figure 5 shows two resident trajectories
that are subsets of the collected sensor data. One trajectory is
recorded in a single-resident smart home (home s4) and the
other is recorded in a multi-resident smart home (home m3). In
the single-resident trajectory recorded in home s1, the resident
generally triggers sensors along the path as the individual
moves from one part of the home to another. In this case, the
next sensor message is expected to be strongly correlated to
the previous sensor message. In multi-resident home m3, the
merged (dual-resident) trajectory is indicated by red arrows.



TABLE II
SUMMARY OF THE SMART HOME DATASETS USED FOR EVALUATION

Site Sensors Residents Messages Weeks Site Sensors Residents Messages Weeks
m1 27 2 1,178,506 54 m2 42 2 6,826,679 236
m3 25 2-3 1,378,574 31 m4 70 2 18,944,701 614
m5 36 2-3 973,349 52 m6 19 2 1,155,121 31
m7 22 2 1,550,683 132 m8 17 2-3 980,093 10
m9 39 2-3 409,115 23 m10 47 2-3 176,412 8

m11 22 2-3 2,144 2 m12 37 2-3 129,213 6
m13 35 2-3 60,377 13 m14 60 2-3 426,996 13
m15 40 2-3 236,637 8 m16 51 2-3 293,211 10
m17 24 2 153,603 10 m18 27 2 228,634 10
m19 22 2 376,708 10 m20 30 2 840,649 16
m21 30 2 377,391 13 m22 35 2 1,432,718 80
m23 36 2 70,066 3 m24 27 2 249,987 10
m25 19 2 307,187 10 m26 25 2 284,137 11
m27 36 2 220,960 14 m28 24 2 324,905 12
m29 34 3 472,826 15 m30 30 2 114,684 4
m31 30 2 249,387 14 b1 27 2 328,260 9
b2 33 2 437,733 23 b3 25 3 784,428 21
b4 20 2 120,469 4 b5 27 4 594,493 13
b6 19 2 423,214 14 b7 21 2 242,491 10
b8 33 2 311,322 15 b9 21 2 288,301 13

b10 30 3 1,431,903 24 b11 30 3 599,925 19
b12 30 2 249,289 11 b13 32 2 528,142 15
b14 35 2 63,146 6 p1 20 1 1,509,615 82
p2 31 1 207,690 12 p3 29 1 224,022 10
p4 18 1 759,750 51 p5 20 1 3,884,561 220
p6 26 1 611,724 18 p7 30 1 296,860 14
p8 23 1 286,749 18 p9 18 1 489,311 21

p10 35 1 91,890 7 s1 32 1 327,271 26
s2 32 1 285,207 26 s3 32 1 256,301 26
s4 19 1 639,517 54 s5 20 1 56,729 7
s6 34 1 2,583,713 92 s7 30 1 2,399,519 146
s8 21 1 2,683,317 299 s9 33 1 2,460,156 118

s10 30 1 3,154,735 276 s11 39 1 2,028,153 169
s12 33 1 3,395,594 269 s13 27 1 5,393,455 239
s14 33 1 3,423,249 309 s15 20 1 298,254 21
s16 29 1 1,117,701 73 s17 26 1 3,778,629 273
s18 20 1 818,002 51 s19 19 1 205,246 24
s20 16 1 385,107 44 s21 25 1 2,991,898 153
s22 27 1 1,528,537 223 s23 20 1 906,345 100
s24 28 1 438,681 31 s25 16 1 845,371 85
s26 18 1 12,299 22 s27 32 1 2,460,714 220
s28 17 1 1,654,459 178 s29 17 1 1,161,989 181
s30 20 1 4,323,961 175 s31 20 1 1,715,885 98
s32 26 1 371,175 27 s33 14 1 1,379,134 211
s34 20 1 1,155,121 211 s35 15 1 1,681,679 207
s36 18 1 217,944 8 s37 25 1 116,878 14
s38 24 1 280,500 12 s39 32 1 267,881 12
s40 20 1 86,996 10 s41 22 1 364,617 9
s42 28 1 287,873 14 s43 23 1 565,153 20
s44 17 1 888,745 60 s45 17 1 2,745,749 28
s46 19 1 5,321,015 61 s47 19 1 9,768,315 90
s48 17 1 773,010 67 s49 19 1 439,836 43
s50 22 1 395,083 20 s51 30 1 596,031 20
s52 17 1 316,837 20 s53 21 1 185,086 19
s54 20 1 517,534 15 s55 26 1 285,168 10
s56 31 1 311,815 12 s57 29 1 254,952 10
s58 30 1 700,171 22 s59 23 1 611,557 19
s60 36 1 468,679 10 s61 36 1 134,012 11
s62 19 1 117,986 12

The actual paths of each resident, identified as R1 and R2,
are shown with dotted green arrows and dotted blue arrows,
respectively. In multi-resident smart homes, given that sensor
messages are not mapped to specific residents, the combined
movement is more complex and, therefore, more difficult to
predict. As a result, we expect that the predictability of resident

mobility is lower in multi-resident settings when compared to
the single-resident scenario. According to the statistics shown
in Figure 6, the predictability limit of resident mobility in
single-resident homes averages 81.86%, while the upper bound
of mobility predictability in multi-resident settings is 74.40%,
approximately 7.46% lower on average.
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Fig. 3. Entropy rate (top) and corresponding upper bounds of predictability (bottom) estimated based on sensor messages recorded in a sample smart home
(home m3).

In addition to the uncertainty caused by multiple residents,
pets in the household can also trigger ambient sensors and
cause the creation of sensor messages. Because of their smaller
mass, some pets do not consistently trigger passive infrared
motion sensors, causing what appears to be a “teleporting”
effect. This causes an increase in data noise and an overall
decrease in predictability. In the experiments, we studied the
predictability limits of smart homes with pets in comparison
with the smart homes without pets. Based on these results,
we found that the decrease in the predictability of indoor
mobility caused by pets is 3% in both single-resident and

multi-resident scenarios. Specifically, the predictability limit
for single resident homes with pets averages 79.00% and
multi-resident homes with pets averages 72.10%.

Because of the inherent difficulty in associating sensor
messages with specific individuals in multi-resident scenarios,
a simple Markov chain is commonly used to construct a
human mobility model based on recorded sensor messages
for these situations [24]. A Markov chain conditions the
probability distribution of the next sensor message only on the
previous sensor message. To model multi-resident movement,
we initially fit a first-order Markov chain to the recorded data



Fig. 4. Scatter plot of the entropy (top) and predictability (bottom) of resident mobility estimated in each smart home as a function of the number of sensors
in the home. Single resident smart homes are represented as red circles, and multi-resident smart homes are represented in blue. A star marker indicates that
the household includes pets.
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Fig. 5. Example of resident trajectories observed in a single-resident smart home (home s4, left) and a multi-resident smart home (home m3, right).

and calculated both entropy rates and associated predictability.
In Figure 6, we average these values across all single-resident
homes without pets, multi-resident homes without pets, single-
resident homes with pets, and multi-resident homes with pets.
We also compute and plot the theoretical upper bound on
predictability for these house categories. In single-resident
cases where there are no pets in the household, we found that
the predictability of the first-order Markov chain is 6% below
the theoretical upper bound of the estimated predictability,
while in multi-resident homes or smart homes with pets,
the predictability is closer to 8% below the theoretical limit.

We note that the multi-resident homes exhibit the greatest
variability in number of residents as well as overall movement
patterns. At any particular point in time, the number of
residents in these spaces can vary from 0 to 4+. As the number
of residents increases, so may the randomness observed in the
sequence. Based on the above results, there is certainly room
for improvement in constructing more representative mobility
models than are found in first-order Markov chains, especially
in multi-resident settings.

One possible improvement to consider is employing meth-
ods to track multiple resident movements within a smart home
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and use this information to disaggregate the combined sensor
data time series into separate components. If such a method
can effectively track each resident, then we can analyze each
resident separately. We explore this idea by utilizing GAMUT,
a smart home multi-resident tracking algorithm [?]. Based on
analyzing the aggregated sensor stream, GAMUT associates
each sensor reading with a corresponding resident. To do
this, the algorithm maps sensors onto a latent space using a
technique borrowed from word embeddings [37]. Just as words
with similar meanings can be mapped close together in a latent
space, so GAMUT maps sensors to a latent space such that the
distance between a pair of sensors in that space reflects how
often one sensor in the pair generates a reading soon after the
other.

To track multiple residents based on observed sensor read-
ings, a Gaussian mixture probability density filter is used to
model each resident’s likely movements. The model needs to
account for possible movements within the home as well as
cases when a resident enters or leaves, false readings due to
noise, and reading caused by more than one resident moving
together. Ultimately, a sensor reading is assigned to a resident
that yields the highest likelihood. Based on the probability
hypothesis density of the residents through time, GAMUT also
estimates the number of residents that are in the space at any
given time. From this information, one time series containing
sensor readings corresponding to movements for r residents
is automatically split into r time series, one per resident. This
method yielded association accuracies of 0.82 for a home with
2 residents and 0.80 for a home with 4 residents. In these
homes, external staff manually annotated 12 days of sensor
readings with corresponding resident identifiers to provide

ground truth labels. The results of this analysis are included
in Figure 6 and show that neither the estimated predictability
nor the Markov-modeled predictability exhibit much deviation
from the original approach of modeling multiple residents as
a single complex entity.

B. Staypoints

Our analysis so far focused on all movements that a resident
makes within a home. A separate but related consideration is
the predictability of a resident’s intended location destinations.
For example, if the resident is heading from the kitchen to an
office area, sensors will generate readings along the path be-
tween the origin and destination locations. These intermediate
locations may be more geometrically constrained (e.g., sensors
in doorways and along hallways) and thus boost predictability.

To assess intended location predictability, we filter the
original data to only consider “staypoints”, or sensor-observed
regions where the resident stays for at least one minute before
moving to another location. The results for staypoint analysis
of single-resident homes is shown in Figure 6. As the graph
indicates, predictability is lower for staypoint locations than
for all locations. The drop in predictability occurs for both the
estimated predictability and the predictability of the Markov
model.

C. Sensor Resolution

In this section, we analyze the observed impact of varying
spatio-temporal sensor resolution on movement predictability.
Resolution differences are very apparent when comparing
indoor and outdoor mobility. A notable difference between
outdoor and indoor mobility tracking is the data resolution.
Outdoor analyses based their findings on hourly reports with



spatial resolutions varying from 10 meters [8] to 3 kilmeters
[7]. In the case of our indoor analysis, the mobile sensors
update their state every 1.25 seconds and the spatial resolution
is 1 meter. Lin et al. [8] note that a trade-off exists between
predictability and spatial resolution, thus the observed differ-
ence in resolutions indicates that indoor predictability will
likely be higher than outdoor predictability. Another factor
in comparing these sources of information is that the smart
home sensors provide constant monitoring. In contrast, Lin et
al. and Song report up to 25% and 80% missing locations,
respectively. Such missing information introduces uncertainty
into the empirical estimates.

An important consideration for the practical application of
predictability analysis is to observe the impact of spatial sensor
resolution on mobility predictability. To provide insight on the
relationship between spatial resolution and predictability, we
simulate a lower spatial resolution by aggregating individual
sensors and their readings into just one “simulated” sensor
for each room or region of the home. On average, we are
replacing three sensors in the original data with one sensor
in the aggregated data. The results are shown in Figure 6. As
the graph indicates, the predictability of both single resident
homes and multiple resident homes increases as the sensor
resolution decreases. This experiment assumes that there are
still no gaps in coverage, just less precision for monitoring
movement. As a result, there are fewer states to model and
predict, thus simplifying the prediction problem.

D. Sensor Reliability

We note that the empirical results discussed here are subject
to sensor error. For PIR motion sensors, error can originate
from multiple sources. In some homes, there may be gaps
in coverage. As a result, residents may move to locations that
are not reflected in the sensor message sequence. Occasionally,
motion sensors can generate false positive messages when hit
with heat from an outside source such as a laser printer or
baseboard heater. We estimated these errors occurred fewer
than 0.05% of the days that were monitored. More commonly,
sensor messages may be lost due to communication errors. In
the CASAS smart homes, these are alerted as ”radio errors”.
Such errors occurred on less than 0.45% of the monitored
days.

Some of the errors due to ambient sensors could be cor-
rected by fusing multiple sensor sources [38], such as fusing
ambient sensor data with that of wearable and object sensors.
Each data source is faced with challenges including sen-
sor noise, participant non-compliance, and gaps in coverage.
However, fusing data from multiple sources can harness the
strengths of the individual sensor modalities to compensate for
the weaknesses of others.

V. CONCLUSIONS

In this study, we investigated the limits of predictability for
indoor human mobility. We examined multiple methods for
modeling this predictability and provided evidence to support
the models based on sensor messages collected from 117 smart

homes. In single-resident smart homes, we found that the
upper bound of the prediction accuracy for the next sensor
message averages 83%. With the presence of multiple people
in the smart home, the predictability lowers on average by
11%. If pets are present in smart homes, the predictability
decreases by approximately 3% for both single-resident and
multi-resident settings.

Although deriving a predictive model for a particular res-
ident is beyond the scope of this paper, the above results
provide an expectation of mobility prediction performance
in real-world deployments. For applications that rely on the
prediction of resident movement trajectories, developers can
make more educated design decisions to achieve an improved
user experience based on the statistical limits of mobility
prediction performance.

Moreover, we can use the difference between the theoretical
limits of predictability and the prediction accuracy of a par-
ticular mobility model as a quantitative absolute measurement
of the performance of the mobility model. In the experiments,
we assessed the performance of Markov chain-based mobility
model in both single-resident and multi-resident settings. In
terms of predictability, we found that the performance of
Markov chain models is approximately 6% lower than the
theoretical upper bound in single resident settings and 11%
lower in multi-resident settings. The results indicate that more
representative models could be developed for indoor human
mobility, especially in multi-resident homes. To construct a
mobility model that achieves a performance above the theo-
retical limit of predictability, information in addition to the
residents’ past trajectory, such as the time of day, the day of
the week, and the length of resident stay at specific locations,
will be needed.
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