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1 INTRODUCTION 

Individuals with amnestic mild cognitive impairment (MCI) and Alzheimer’s Disease typically experience 
symptoms such as memory loss, difficulty with language and visual-spatial abilities, decreased ability to focus, 
and issues with reasoning, planning, and complex decision making. Of these symptoms, difficulty with everyday 
memory exhibits the greatest degree of impairment and can negatively impact one’s independence and quality 
of life [1]. To assist with memory impairment in performing daily activities, compensatory devices, such as 
pagers and memory notebooks, have been successfully introduced [2]. Recently, technology has enabled 
enhanced digital versions of such compensatory devices, utilizing mobile apps and smart environments. For 
example, a digital memory notebook app can use notifications to remind users to log important events, tasks, 
and notes. Such an app can also be coupled with a smart home. The smart home continuously and 
unobtrusively collects naturalistic data, which can be automatically labeled with corresponding activity labels 
such as cook, work, and sleep. Using labeled activities to provide context, smart home algorithms can 
automatically provide in-the-moment digital memory notebook prompts to remind residents to perform common, 
day-to-day activities and encourage digital memory notebook use [2], [3].  

Beyond providing compensatory assistance, smart homes and memory notebook apps serve a dual 
purpose for MCI and Alzheimer’s Disease stakeholders. Automated algorithms can continuously analyze smart 
home sensor data to model activity and behavior patterns over time [4]. If there is a sudden or slow onset of 
behavior change detected, care providers and family members can be notified and provide early treatment. 
Recently, researchers are using behavior markers and machine learning to map smart home data onto clinical 
health scores [5]–[8]. Such mappings could then be used to regularly screen for changes in health, 
complementing more traditional clinical assessment methods and leading to proactive intervention. These 
mappings are also based on continuous data, which may provide additional insights and could further augment 
data collected in a brief visit with a physician. When combined with additional information sources, such as 
demographic information or wearable data, the accuracy of these health score predictions can be further 
improved [5]. If an intervention tool such as a memory notebook app is introduced into a daily routine, use of 
the tool itself can also provide a unique source of information that may correlate with cognitive health. This 
process of merging data from different sources (i.e., modes or modalities) to feed machine learning problems 
is called multimodal fusion [9].  

In this paper, we explore multimodal fusion to predict ten different clinical assessment scores using 
regression techniques (see Section 3.2 for clinical assessment details): 
Objective Testing Scores  

1. Repeatable Battery of Neuropsychological Status (RBANS) 
2. Wechsler Test of Adult Reading (WTAR) 
3. Delis-Kaplan Executive Function System F-A-S (FAS) test 
4. Delis-Kaplan Executive Function System Design Fluency Test (DFT) 

Self-report Measures 
5. Prospective and Retrospective Memory Questionnaire (PRMQ) 
6. Instrumental Activities of Daily Living - Compensation Scale (IADL-C) 
7. Geriatric Depression Scale Short Form (GDS) 
8. Quality of Life Scale – Alzheimer’s Disease (QoL-AD) 
9. Coping Self Efficacy Scale (CSE) 



3 

10. Satisfaction with Life Scale (SWLS) 
Our data modalities include behavior markers extracted from ambient sensors embedded in smart homes, a 
memory notebook tablet app called EMMA (Electronic Memory and Management Aid) [10], and participant 
demographic information. We hypothesize that smart homes and digital memory notebooks offer informative 
behavior markers, that when the markers used in combination, can predict multiple clinical health scores. We 
validate our methods and provide evidence to support our hypothesis using data collected from N = 14 
participants with amnestic MCI who participated in the EMMA/smart home partnered condition of a pilot 
randomized controlled clinical trial [10]. 

This paper offers both clinical and technical contributions. In terms of clinical contributions, we introduce 
and evaluate the ability to automatically assess health in naturalistic, unscripted settings. We further describe 
how an intervention app can provide dual use as an assessment tool as well as a compensatory device. Based 
on our participant sample, we offer insights on the relationship between cognitive health assessments and 
behavior marker sets describing activity patterns and memory notebook usage. In terms of technical 
contributions, we introduce methods for extracting digital markers that reflect patterns in behavior, writing 
content/style, and intervention adherence. We describe and compare multiple approaches to fusing these 
multimodal data. Furthermore, we consider the design of machine learning techniques to predict precise clinical 
scores. Finally, we utilize joint prediction to boost assessment performance by harnessing the predictive 
relationship between multiple assessment measures. 

2 RELATED WORK 

A growing body of research has explored mapping sensor-based features to clinical assessment scores using 
machine learning techniques. Studies utilizing smart home-based features and text-based features are the most 
relevant to the present study.  

2.1 Smart Home-based Assessment Prediction 
Data collected from ambient sensors installed in environments, such as homes, offices, and cities, can be used 
to quantify and track the activities and behaviors of people over time. Recent research has shown that features 
extracted from smart home data can be used to identify current or past activities [11] and forecast occurrences 
of future activities [12]. These methods build a foundation for modeling patterns of activities [13], detecting 
changes in activity-based behavior over time [4], and identifying behavioral differences between subject groups 
[14]. In this paper, we build on the foundation of prior activity modeling research to extract features from activity-
labeled smart home data that reflect long-term behavior patterns. 

Similarly, research has indicated that smart home sensor data can be analyzed to detect target health 
conditions. Much of the prior work focused on designing machine learning models to predict diagnostic 
categories such as MCI [7], [15] and loneliness among older adults [16]. Earlier studies have also mapped smart 
home-based features to numeric health assessment scores, including Mini-Mental State Examination, Clinical 
Dementia Rating [7], Repeatable Battery of Neuropsychological Status, and Timed Up and Go test [5], [6], [8] 
measures. Alberdi et al. [8] further employed regression algorithms to predict Arm Curl test, Digit-Cancellation 
test, Prospective and Retrospective Memory Questionnaire, and Geriatric Depression Scale measures. Like 
these studies, in this paper we use smart home data to predict ten clinical assessments. Unlike these previous 
works, we fuse smart home data with other information sources to improve assessment accuracy. 
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2.2 Text-based Assessment Prediction 
Several studies have used text-based features for clinical analysis. The text originates from a variety of sources, 
such as paper-pencil writing [17], typed text [18]–[23], and speech transcriptions [9], [19], [24]–[30]. Text 
features vary from simple to complex, including statistics like word count, mean number of words per sentence, 
and lexicon category frequencies; classic natural language processing-based features like part-of-speech 
proportions/ratios, readability scores, sentiment analysis, and term frequency-inverse document frequency (TF-
IDF) values; and more recent neural network-based features like word/document embeddings and topic models. 
These text mining methods have successfully been used to detect cases post-traumatic stress disorder [22], 
depression [18], [26], [31], MCI [9], [17], [24], [25], and Alzheimer’s Disease [17], [19], [28]–[30]; determine 
correlation with life satisfaction [23], [27], [28], and analyze language differences between patients pre- and 
post-liver transplant [20]. Text-based features are used in these applications because research has shown that 
one’s lexico-syntactic patterns not only change over time but change more drastically with onset of health 
conditions. For example, the early stages of Alzheimer’s Disease typically exhibit a decreased vocabulary, 
simplified syntax/semantics, and increased use of empty filler words [29].  

While much of the prior work in text-based clinical assessment distinguishes diagnostic categories (e.g., 
healthy vs MCI [9]), creation of the ADReSS benchmark dataset [32] created an opportunity for researchers to 
design regression methods that predict numeric Mini-Mental State Examination scores based on speech 
features for individuals with cognitive impairments [27], [28], [30]. Ostrand and Gunstad extracted 16 linguistic 
features from speech transcriptions to predict current and future Mini-Mental State Examination scores for 
participants with cognitive impairment [27]. The researchers concluded linguistic features were good predictors 
of Mini-Mental State Examination scores at the time when they were recorded and one year in the future. 

Most of these prior studies used text sourced from speech transcriptions for clinical domain mappings. 
Fewer studies have used health-related text originally sourced by study participants in a written form, like we 
are proposing in this paper. Dreisbach et al. review methods for mining patient-authored text for symptom 
extraction [33]. Other studies that analyze written text include one analyzing text messages from patients to 
care providers [20] and one analyzing self-narratives describing traumatic experiences [22]. Dickerson et al. 
[20] analyzed patient-authored messages to care providers from controls and patients with end-stage liver 
disease pre- and post-liver transplant. The researchers used 19 natural language processing features extracted 
from the messages to detect differences in language between controls and patients pre- and post-transplant. 
He et al. [22] similarly extracted natural language processing-based features from online surveys that included 
free-response questions about traumatic experiences and related symptoms. The responses were pre-
processed into unigrams, bigrams, and trigrams, then mined for keywords related to stress. Combining free-
form text features with multiple choice survey responses, the researchers trained classifiers to predict the 
presence or absence of post-traumatic stress disorder. The authors reported accuracy improvements from 0.94 
(no text-features) to 0.97 (using fusion with the text features). 

The work we present in this paper builds on these prior studies. As with the approaches that predict Mini-
Mental State Examination scores, we introduce natural language processing-based methods to predict numeric 
clinical scores. Unlike the prior work, we mine a core set of text features that are used to predict multiple clinical 
measures and further utilize the relationship between the measures to boost predictive performance. 
Additionally, we fuse natural language processing with mining of smart home sensor data and intervention app 
usage data to offer a more comprehensive assessment of a person’s health status. 
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2.3 Multimodal Fusion 
New forms of technology have enabled data collection from many different sources, or modes. Often data from 
disparate sources, such as motion sensors and audio, are combined as input to machine learning algorithms to 
solve health-related problems and/or make predictions. This fusion process can improve machine learning 
results because the different modes typically capture different (though possibly redundant) aspects of the same 
process [9], providing a more holistic view. Researchers in a variety of health-related contexts have explored 
different approaches to combine data from multiple modalities. For example, researchers have combined 
speech and text to detect MCI [34], Alzheimer’s Disease [28], and depression [26]. The most common 
approaches include early fusion, late fusion, and hybrid fusion [35]. Using early fusion, features from different 
modes are concatenated for input to a machine learning algorithm. With late fusion, features from different 
modes are input to separate machine learning algorithms; then a second algorithm learns how to combine the 
mode-specific predictions into a final target variable. While hybrid fusion approaches vary in design, one 
example is stacked generalization fusion, which is an ensemble approach to combining predictions from diverse 
modality classifiers. Recently, Alkenani et al. implemented stacked fusion to predict Alzheimer’s Disease using 
speech and writing datasets [19]. 

In the current paper, we combine data from different modes, including demographic information, smart 
home sensors, digital memory notebook usage, and patient-authored text. Gosztolya et al. utilized linguistic and 
acoustic features from speech recordings to detect MCI, finding the best results were achieved using a late 
fusion of the two feature types [34]. However, little work focuses on fusing information from more heterogeneous 
sources. In one published case, Fraser et al. explored early and late multimodal fusion (at various levels) of 
comprehension questions, eye-tracking data, and audio recordings (speech and transcription) to classify 55 
participants as MCI or healthy control [9]. Using natural language processing techniques, Fraser et al. extracted 
language features from the transcription text, including total words, mean sentence length, phrase type 
proportions (prepositional, noun, and verb groups), and part-of-speech ratios. Using logistic regression and 
support vector machines, the researchers concluded that the best classification results were achieved using a 
variation of late fusion. The work we present here represents a new direction for fusing health-related 
information sources. While fusing behavior data with app usage and free-form text requires combining 
dramatically different types of features, all of these information sources have independently been identified as 
indicators of cognitive health. We therefore conjecture that the fusion of these data will provide an enhanced 
ability to predict clinical health measures. 

2.4 Joint Prediction 

Recent machine learning research has utilized joint prediction as a strategy to improve prediction performance 
[5], [12], [36]. Typically, with joint prediction, the predictions of a target variable are combined with predictions 
of other, related variables, to expand the feature vector that is fed to a machine learning algorithm. Minor et al. 
used joint prediction to improve forecasting of smart home activity occurrences using multi-output regression 
[12]. To do this, the researchers first performed independent prediction (called the baseline model) by utilizing 
sensor-based features to predict the time until each smart home activity would occur. Next, the authors designed 
joint prediction by adding each activity’s previous occurrence predictions to the original sensor-based features 
as joint features. Using this joint prediction technique, the researchers were able to achieve an 85.11% decrease 
in prediction error compared to the baseline model. Sprint et al. investigated patient similarity and joint prediction 
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to improve Functional Independence Measure motor score prediction for 27 inpatient rehabilitation participants 
[36]. The authors utilized features extracted from wearable sensors while participants performed activities in an 
ecological rehabilitation environment. For joint prediction, the sensor-based features were augmented with 
Functional Independence Measure score predictions for similar participants in the training set as joint features. 
The best leave-one-out cross validation Functional Independence Measure regression results were achieved 
when predictions utilized the joint features (r = 0.88).  

More recently, Cook and Schmitter-Edgecombe applied joint prediction to predict seven clinical health 
assessment scores (Wechsler Test of Adult Reading, Telephone Interview of Cognitive Status, Repeatable 
Battery of Neuropsychological Status, Delis-Kaplan Executive Function System F-A-S test, Timed Up and Go, 
Dysexecutive questionnaire, and Alzheimer’s Disease Cooperative Study Activities of Daily Living Inventory) 
from smartwatch and smart home sensor data [5]. For this study, clinical assessment scores, smart home data, 
and smartwatch data were collected from 21 older adults. Using these data, a set of digital behavior markers 
were extracted from each sensor source and concatenated to form a participant’s “behaviorome.” The 
behaviorome was used as input to independent and joint prediction regression models to predict each score. 
Some regression models were trained using the smart home and smartwatch data separately, while some were 
trained using a combination of the two sensor modalities. The greatest performance was achieved for each 
assessment using joint prediction over independent prediction. One of the seven assessments exhibited the 
best performance using a fusion of features from both modalities (Telephone Interview of Cognitive Status). 
The remaining six assessments were best predicted using either smart home data alone or smartwatch data 
alone. This earlier work represents the first use of joint prediction of multiple clinical measures found in the 
literature. In this paper, we extend the technique of joint prediction to encompass an expanded set of clinical 
measures. As in the previous study, we anticipate that assessment performance will be enhanced through joint 
prediction because of the predictive relationship that is inherent between multiple clinical measures. We further 
extend the earlier work by including additional, and more varied, sources of information than sensor-based 
behavior markers. Specifically, we fuse text markers and app use with the behavior markers for the joint 
prediction models. 

3 METHODS 

Our approach to clinical assessment prediction utilizes a custom digital memory notebook app, EMMA, with 
smart home integration (Section 3.1), an EMMA/smart home-based data collection protocol (Section 3.2), 
extracted smart home-based behavior markers (Section 3.3), extracted EMMA text-based behavior markers 
(Section 3.4), and clinical assessment prediction making use of the markers (Section 3.5). The following 
sections describe these facets of the study. 

3.1 Digital Memory Notebook Application and Smart Home Integration 

To help individuals compensate for memory difficulties, we introduce a digital memory notebook, called EMMA, 
that runs on an iPad [3], [10], [37]. EMMA’s interface was designed for older adults and individuals with MCI [2]. 
EMMA supports two text-based functions, “tasks” and “notes”. A task, highlighted in Figure 1(a), consists of a 
date, optional start and end times, and a description. Users create task descriptions that provide details about 
the task “who”, “what”, “where”, “why”, and “how”, such as: 

• “On [date], take [item] for [person] to [address]” 
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• “Fill medicine box [frequency]” 
• “Schedule appliance repair for [date] at [time]” 

In these examples, the brackets are placeholders for specific information an EMMA user might include. From 
any screen, tapping on the notes tab button at the top brings the user to the notes screen where the user can 
view and edit previously created notes, as well as add a new note. Figure 1(b) shows a screenshot of the notes 
screen. An EMMA note is free-form text that allows a user to document personal lists, processes, projects, and 
long-term goals. Here are a few examples: 

• “At grocery store, be sure to pick up milk, eggs, bread, apples, …” 
• “When filling medicine box, put 2 of [prescription] in each day’s compartment…” 

 

  
(a) The “add a new task” screen with the task description 

textbox shown in a red outline. 
(b) The “add new note” screen with the note content textbox 

shown in a red outline. 

Figure 1: EMMA app screenshots of the two screens where free-form (a) task and (b) note text are entered by the user.  

Task and note content and metadata, as well as all other recorded EMMA interactions, are saved to a cloud 
database. These data include timestamps for each visited EMMA screen and each user tap. From these data, 
we extract EMMA usage features describing the time and duration of user interactions with each app screen. 
From the free-form task and note text we utilize natural language processing to mine informative features about 
an EMMA user and their behavior. We hypothesize that such EMMA usage and text features are predictive of 
clinical assessments, such as the ones described in Section 3.2. 

A unique aspect of the EMMA notebook is its interface with the CASAS smart home technology [38]. 
Ambient sensors are installed throughout the smart homes which include passive infrared motion sensors, 
ambient light sensors, magnetic door sensors, and ambient temperature sensors. To model home-based 
behavior, time series data collected from the sensors are analyzed with activity recognition algorithms [11]. 
Activity recognition maps sensor readings (e.g., new motion near the kitchen stove, front door opens) to a pre-
defined set of activity labels. We evaluate recognition accuracy in previous studies for the activities bed-toilet 
transition, cook, eat, enter home, leave home, personal hygiene, relax, sleep, wash dishes, and work [11].  



8 

As activities are detected, the information is sent from activity recognition through the smart home 
middleware to EMMA [3]. A RabbitMQ message broker sends a stream of messages in real time from the smart 
home to EMMA, containing recognized activity labels. These labels are sent to a Python-based event listener 
to store in the database. EMMA receives updated activity information by sending requests to a Flask web 
application. This Flask application further stores all user interactions with EMMA, which we analyze in this paper. 
We hypothesize that the collected smart home-based features can provide additional predictive indicators of 
clinical measures. 

3.2 Study Design 

The data used for analysis in the present study represents data from 14 individuals with amnestic MCI who 
participated in the EMMA/smart home partnered condition of a five-month long pilot randomized clinical trial 
[10]. The trial enrolled 32 participants with amnestic MCI and was designed to examine whether learning and 
sustained use of EMMA could be augmented through partnership with a smart home that initiated activity-aware, 
transition-based smart prompts to engage with EMMA. All participants met criteria for amnestic MCI [39]. These 
criteria included (a) self- or informant-report for 6 months or more of memory complaints, (b) objective cognitive 
impairment in the memory domain; generally, 1.5 standard deviations below appropriate norms taking into 
account premorbid abilities, (c) did not meet criteria for the Diagnostic and Statistical Manual of Mental Disorders 
Major Neurocognitive Disorder (DSM-5), and (d) no severe depression at start of intervention (GDS score < 
10). Upon enrollment, participants were randomly assigned to either the EMMA/smart home partnered condition 
(N = 15) or the EMMA only condition (N = 17). For the purposes of this paper, we exclusively use the data 
collected from the participants in the EMMA/smart home partnered condition due to the availability of smart 
home data, and therefore smart home-based behavior markers. These participants had a CASAS smart home 
in a box (SHiB) installed in their home which served as a second longitudinal data collection modality [38] in 
addition to the data collected throughout the study via the EMMA app. Because one person in the partnered 
condition did not complete training, the data in this study represent the 14 participants who completed training 
and three additional months of data collection. Table 1 provides an overview of the demographics for the 
participants in the EMMA/smart home partnered condition included in this work.  
 

Table 1. EMMA/smart home condition participant demographics. 

N Gender 
Age 

(years) 
Highest Grade of 

Education 
Marital Status 

14 
4 male; 10 

female 
74.429 ± 5.653 17.07 ± 2.235 

4 widowed; 6 married or domestic partner; 2 
divorced; 2 single 
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Figure 2: Study timeline. EMMA=Electronic Memory and Management Aid, T=timepoint. Note: All clinical data used in 

this study were collected at timepoint T6. 

Data collection for the EMMA study participants was divided into approximately five one-month periods. The 
periods are separated by six timepoints (T1 through T6) when four objective and six self-report clinical 
assessments were administered, and portions of an EMMA intervention were delivered (the intervention is 
described in detail below). Figure 2 shows a timeline of the timepoints that segment the total data collection 
duration into five distinct periods (T1-T2, T2-T3, T3-T4, T4-T5, and T5-T6). At T1 and T6, four objective 
laboratory assessments were administered, including RBANS [40], the Wechsler Test of Adult Reading (WTAR) 
[41], the Delis-Kaplan Executive Function System F-A-S (FAS) test, and the Delis-Kaplan Executive Function 
System Design Fluency Test (DFT) [42]. RBANS is a reliable and well-validated suite of 12 subtests that 
measure cognitive abilities related to attention, language, visuospatial/constructional abilities, and memory. 
WTAR measures verbal knowledge and intellectual skills via a reading test. Subjects are given a list of 50 words 
with irregular pronunciation and are instructed to read the words aloud. The FAS assesses executive functioning 
by having subjects state as many words as possible that start with the letters F, A, or S in a one-minute time 
window. Lastly, the DFT assesses executive function, and more specifically problem-solving and visual 
processing, by asking subjects to complete designs by connecting dots. Age-corrected standard scores were 
used in the analyses. 

In addition to these objective laboratory assessments, several self-report questionnaires were administered 
at each timepoint (T1, …, T6) throughout data collection. Raw scores were used for the questionnaire data. 
These included the Prospective and Retrospective Memory Questionnaire (PRMQ) [43], Instrumental Activities 
of Daily Living - Compensation Scale (IADL-C) [44], the Geriatric Depression Scale Short Form (GDS) [45], the 
Quality of Life Scale – Alzheimer’s Disease (QoL-AD) [46], the Coping Self-Efficacy Scale (CSE) [47], and the 
Satisfaction with Life Scale (SWLS) [48] assessments. The PRMQ is a 16-item questionnaire measuring various 
types of prospective and retrospective memory, including short-term, long-term, self-cued, and environmentally 
cued memory. The IADL-C is a 27-item scale that assesses early functional difficulties and compensatory 
strategies. It has four domain subscales, including money/self-management, daily living, travel/event memory, 
and social skills [44]. The shorter version of the GDS is a 15-item questionnaire detecting depression in the 
elderly, physically ill, and mildly demented. The QoL-AD is a 16-item scale assessing quality of life via five 
different domains, including material/physical well-being, relationships, social/community/civic activities, 
personal development/fulfillment, and recreation. The CSE is a 26-item assessment that measures a subject’s 
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perceived confidence and ability to cope with various life challenges. Lastly, the SWLS asks subjects five Likert-
scale questions about satisfaction with their life in its entirety (as opposed to specific domains of their life, such 
as finance). Table 2 shows the mean and coefficient of variation (CV) for each clinical measure at timepoint T6 
for the 14 participants. These ten T6 scores are predicted for each clinical assessment (RBANS, WTAR, FAS, 
DFT, PRMQ, IADL-C, GDS, QoL-AD, CSE, and SWLS) for each participant using behavior marker data 
collected throughout the study (see Sections 3.3 and 3.4 for behavior marker details; see Section 3.5 for clinical 
assessment prediction details). 

Table 2: Clinical scores and their distributions for EMMA/smart home condition participants at timepoint T6. 

 Measure Construct Assessed (Min, Max) Mean ± CV% 

Objective 
Laboratory 

Assessments 

Repeatable Battery of 

Neuropsychological Status 
(RBANS) 

General neurocognitive 

status 
 

(66, 110) 92.214 ± 13.980% 

Wechsler Test of Adult Reading 
(WTAR) 

Verbal intellectual 
abilities  

(84, 123) 112.857 ± 10.292% 

Verbal Fluency on F-A-S letter 
fluency (FAS) 

Executive function (5, 19) 12.214 ± 30.155% 

Design Fluency Test (DFT) Executive function (8, 18) 11.214 ± 22.983% 

Self-report 
Questionnaires 

Prospective and Retrospective 
Memory Questionnaire (PRMQ) 

Memory (30, 62) 42.143 ± 23.265% 

Instrumental Activities of Daily 

Living - Compensation (IADL-C) 
scale 

Everyday functioning 

and compensatory 
strategies 

(1.370, 

4.111) 

2.414 ± 35.385% 

Geriatric Depression Scale 
(GDS) 

Depression (0, 11) 3.184 ± 95.260% 

Quality of Life Scale (QoL-AD) Quality of life (26, 49) 38.500 ± 18.889% 

Coping Self Efficacy (CSE) Coping abilities (66, 128) 95.500 ± 19.228% 

Satisfaction with Life Scale 

(SWLS) 

Satisfaction with life as 

a whole 

(11, 33) 25.214 ± 25.899% 

 
The duration from T1-T2 served as a baseline data collection period in which smart home data were collected 
for activity recognition training purposes. Participant use of EMMA did not begin until T2, which was the start of 
the EMMA training intervention. The intervention included 5-6 formal training sessions with a clinician on how 
to use EMMA during the T2-T3 period. Details about the intervention, which were conducted in participants’ 
homes, can be found in prior work [10], [37]. During post-intervention months T3-T6, participants were 
encouraged to continue to use EMMA to record information about past activities, to help them remember to do 
important tasks and to support day-to-day activities, including both short- and long-term goals. Furthermore, 
during T2-T3, T3-T4 and T5-T6, smart home activity recognition-aware prompts were delivered to the study 
participants via EMMA to remind them to use EMMA. Smart home reminders to use EMMA were not delivered 
to participants during T4-T5. 
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From the collected participant information and two data collection modes, the smart home and the EMMA 
app, we extract five different sets of behavior markers to model an EMMA study participant’s behavior: 

1. DEMO: T1 Demographics (age, gender, education level, and marital status; see Table 1) 
2. SHBM: T2-T6 Smart home behavior markers (see Section 3.3) 
3. USAGE: T2-T6 EMMA app usage behavior markers (see Section 3.4) 
4. NOTE: T2-T6 EMMA app note entry text-based behavior markers (see Section 3.4) 
5. TASK: T2-T6 EMMA app task description text-based behavior markers (see Section 3.4) 

As a pre-processing step, any feature with near-zero variability across the participant periods was removed and 
not used for prediction. For the demographic features, this included the ethnicity and race features which 
exhibited zero variability across features (all participants were non-Hispanic/Latino and Caucasian). 

3.3 Smart Home Behavior Markers (SHBM) 

In recent work, we created a set of digital behavior markers for a smart home resident by extracting 556 features 
from activity-labeled smart home data [5]. To do this, we computed features that describe behavior at the hour 
level, then aggregated these features at the day level. Additional features describing a person’s overall routine 
over several days were then computed by aggregating the daily features over a longitudinal period. Examples 
of each of these time period-based behavior markers are as follows: 

• Hourly: # of sensor readings, # of distinct activities performed, # of distinct locations visited, time spent 
on each activity, time spent at each location. 

• Daily: Daily totals for each of the hourly features, time of day for first occurrence of each activity, time 
of day for first visit to each home location. 

• Overall: Statistics for hourly and daily behavior markers (e.g., mean, median, standard deviation, max, 
min), regularity indices, circadian rhythm strength. 

Complete descriptions of the extracted smart home behavior markers are detailed in the literature [5]1. For the 
current study, we extract these 556 behavior markers from the smart home data collected between periods T2-
T6 to form the smart home behavior marker set. 

3.4 Digital Note Behavior Markers (USAGE, NOTE, TASK) 
To expand upon our prior work with smart-home based behavior markers, we explore new behavior markers 
computed from a different mode of data collection, the EMMA app. Table 3 summarizes these EMMA-based 
behavior markers that we extract between data collection periods T2-T61. First, from the EMMA app database, 
we extract USAGE behavior markers. These are similar to the smart home behavior markers (e.g., # of distinct 
uses, time spent in the various screens of the app, time of day for first use, regularity indexes, circadian rhythm 
strength), but based on the participant interactions with EMMA. In addition to quantifying a participant’s usage 
of the EMMA app, we are interested in utilizing information from the tasks and notes a participant enters in 
EMMA. This text contains valuable information about a person’s daily and overall behavior routine and goals, 
as well as a person’s writing content/style. To tap into this information, we first extract two different sets of free-
form participant text from the EMMA database, the task description text (TASK), and the note content text 
(NOTE).  

 
1Code to extract smart home and text digital behavior markers is available at https://github.com/WSU-CASAS/DM  
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Prior to computing behavior markers from these two categories of text, we perform pre-processing to clean 
the text and prepare it for different types of natural language processing. First, we tokenize the text into phrases 
and extract only the unique phrases authored by a participant during each period. We do this because notes 
can be edited and tasks can be scheduled to repeat, causing some phrases to appear multiple times within a 
period. With the unique phrase text, we extract initial features for which text artifacts like capitalization, 
punctuation, and verb tense are important. These include named entity recognition features (e.g., the number 
of specific datetimes, locations, organizations, and persons) and Linguistic Inquiry and Word Count (LIWC) 
features [49]. LIWC is a standard tool used in computational linguistics to extract features that are relevant for 
psychological analyses. LIWC is primarily comprised of a hierarchical dictionary that maps over 86% of common 
words used in writing and speech to categories. The categories include 21 linguistic dimensions (e.g., 
percentage of words that are different parts of speech), 41 psychological construct categories (e.g., percentage 
of words that are related to affect, cognition), 6 personal concerns categories (e.g., percentage of words that 
are related to work, home), and 5 informal language categories (e.g., percentage of words that are related to 
assents, fillers). In addition to these category-based features, LIWC produces additional features such as total 
word count, words > 6 letters, summary language composite scores (e.g., percentiles measuring analytical 
thinking, clout, authentic, and emotional tone measures), and punctuation use (e.g., percentage of text that are 
periods, commas).  

Next in the pre-processing pipeline, we follow standard text normalization steps to prepare for additional 
natural language processing techniques [21], [22], [50], including:  

• Converting text to lowercase 
• Replacing contractions with their expanded form 
• Removing punctuation marks (e.g., replace “&” with “and”) 
• Removing numeric characters 
• Removing stop words (using Python NLTK stop words) 
• Performing word stemming (using Python NLTK Porter Stemmer) 
We then compute natural language processing features that have exhibited predictive power in previous, 

related work [18], [28], [29], including readability scores from the Python Textatistic library (e.g., Dale-Chall 
score, SMOG score), sentiment analysis features using the Python TextBlob library (e.g., polarity, subjectivity), 
term frequency-inverse document frequency (TF-IDF) values for the 100 most frequent unigrams and bigrams 
using Python’s Sci-Kit Learn library, word embeddings using the Python Gensim library, and Latent Dirichlet 
Allocation topic modeling with 5 latent topics using Sci-Kit Learn (see Table 3 for a list of all EMMA-based 
behavior markers). To elaborate, we compute TF-IDF features by fitting a TF-IDF vectorizer on the training text 
and using this vectorizer to transform the testing text. From these TF-IDF vectors, only the values for the 100 
most frequent unigrams and bigrams in the training text are included as features. For word embeddings, we 
explored several Word2Vec models, including pre-trained models and a model trained on the available training 
set text each fold of cross validation. The best results were obtained using a Word2Vec model named glove-
wiki-gigaword-50, which is pre-trained on the Wikipedia 2014 + Gigaword 5 dataset to obtain a 50-dimensional 
vector for each word. Following Gonzalez-Atienza et al., all the word vectors in a period are averaged to produce 
a 50-dimensional vector summarizing the dominant word embeddings for the period. From this vector two 
additional features, the mean and standard deviation, are extracted [29]. 
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Two of these natural language processing feature types, TF-IDF and topic modeling, require information 
extracted over a corpus and are therefore computed right before training on the pre-processed training text from 
each fold of cross validation. We do this to prevent data leakage from the test set to the training set when using 
cross validation. As an example of how data leakage can occur, consider computing document frequencies 
over the entire corpus (all participant text) and then using these frequencies to compute TF-IDF vectors for each 
participant’s feature vector. In this manner, artifacts from feature vectors held out for testing are embedded in 
training feature vectors’ data (e.g., the document frequencies). 

Table 3: EMMA-based behavior markers. 

Behavior 
Marker Set 

Feature # Features Reference 

USAGE  
(21 markers) 

Mean daily # of taps in the app 1  

Mean daily # of distinct uses (5 mins of inactivity has passed between 
uses) 

1  

Mean daily total minutes used 1  

Mean daily first use (minutes past midnight) 1  

Mean daily minutes spent on app screens (login, main, help, event, 
note/journal, milestone, reminder) 

7  

Regularity index (within weeks, within days, within each day of week) 9 [51] 

24-hour circadian rhythm (measured over the period) 1 [5] 

NOTE and 
TASK 
(265 markers 
each) 

Text structure (% unique phrases, % stop words, % unknown words, mean 

# of characters per word, mean # of syllables per word) 
5  

Readability (Dale-Chall score, SMOG score) 2 [28] 

# of named entities (datetimes, locations, organizations, persons) 4  

Sentiment analysis (mean/std sentence polarity and subjectivity) 4  

LIWC features (summary dimensions, affect, social, cognitive processes, 
perceptual processes, biological processes, drives, time orientation, 

relativity, personal concerns) 

93 [18] 

TF-IDF features* 100 [18], [28] 

Word embeddings (50-length vector, mean/std of vector) 52 [28], [29] 

Latent Dirichlet Allocation topic modeling (probabilities for 5 latent topics)* 5 [18] 

* = Computed from the training set of each fold of cross validation. 

3.5 Clinical Assessment Prediction 

We hypothesize that smart home and EMMA-based digital markers provide information about a person’s overall 
behavior routine and therefore may be predictive of various clinical measures of behavior. To investigate this 
hypothesis, we conduct several machine learning experiments to predict each of the assessments described in 
Table 2 at timepoint T6 using behavior markers from T2-T6. Our experiments explore different applications of 
recent developments in joint prediction and multimodal fusion. 
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3.5.1 Joint Prediction 

Joint prediction is a branch of machine learning research that aims to leverage predictions as “joint” features. 
What types of predictions are used as joint features are problem-specific; however, they are typically predictions 
in a similar feature space as the target variable Y. For example, recent research has explored the following 
possibilities for joint features: 

• Oracle features: ground truth Y values for similar and/or complementary training instances [12], [36].  
• Predicted features: predicted Y values (𝑌") for similar and/or complementary training instances [12], 

[36]. 
• Related variable prediction features: predicted values for variables similar and/or complementary to 

target variable Y for a testing instance [5]. 
In this paper, we explore utilizing related variable predictions as joint features. Using joint prediction, a 

separate model for each predicted clinical measure is trained using behavior markers. To improve prediction 
accuracy, a second set of models is then trained to predict each measure using the original features combined 
with the predicted scores of all other measures. In this manner, prediction for a new participant’s clinical 
assessment A at timepoint T6 is a set of n values for assessments A ∈ {RBANS, WTAR, FAS, DFT, PRMQ, 
IADL-C, GDS, QoL-AD, CSE, SWLS}. The predicted values are based on predictions for the n – 1 assessments 
in the set, without needing to administer the assessments. We hypothesize that predictions of measures 
assessing different clinical constructs are informative because of the predictive relationships that exist between 
the constructs themselves. We design our experiments to include two main components, independent 
predictions and joint predictions. Figure 3 provides an overview of this two-part prediction process. First, for 
each assessment A, an independent predictor utilizes an input feature matrix comprised of some subset of the 
five behavior marker sets listed in Section 3.2. Using cross validation, the independent predictor produces a 
single clinical assessment score prediction for each participant, producing a vector of predicted scores. All 
independent assessment predictions are combined into an independent prediction matrix where each column 
is an assessment vector and each row represents a participant.  

During joint prediction, this independent prediction matrix is joined with the original feature matrix to 
produce a new input feature matrix. For each assessment, the independent prediction for this assessment is 
removed from the joint feature matrix so each joint predictor only has access to independent features and 
predictions from other assessments. This step prevents data leakage and ensures the machine learning 
algorithms explore the predictive power of the independent and joint features. In the same fashion as the 
independent prediction vectors, the joint prediction vectors are combined to produce a final joint prediction 
matrix to be used for evaluation. Joint prediction can offer performance improvements when the target prediction 
variables are related, as is the case for our experiments. We hypothesize that when predicting a clinical 
assessment score at timepoint T6, including joint features (e.g., same-subject predictions for other 
complementary clinical assessments measured at timepoint T6) will improve prediction accuracy because joint 
features capture different aspects of behavior. 
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Figure 3. Independent (white background) and joint (gray background) prediction workflows for predicting participant 
scores on a clinical assessment. Steps needed to prepare for joint prediction are shown with dashed arrows. Highlighted 

in the green circle with the dashed outline are the parts of Figure 3 that vary in implementation across Figure 4(a)-(c). 

3.5.2 Multimodal Fusion 

Recent work by Fraser et al. explored using two different variations of multimodal fusion to classify participants 
as MCI or not MCI [9]. The variations were early fusion, where features from different modes are combined 
before serving as input to a machine learning algorithm, and late fusion, where each mode’s features are input 
to their own machine learning algorithm. With late fusion, there is an additional machine learning algorithm that 
combines the predictions from the individual modality’s machine learning algorithm. Benefits to early fusion 
include the ability to model relationships between features extracted from different modes and less 
computational complexity since only one algorithm needs to be trained. A drawback of early fusion is the 
resulting high-dimensional feature space that accompanies combining features from different modes. Late 
fusion addresses this disadvantage by keeping the dimensionality of each algorithm’s input small. Another 
benefit of late fusion includes the ability to use different machine learning algorithms for each mode, allowing 
for more fine-grained tuning [52]. This flexibility is a trade-off of increased computational complexity for late 
fusion. 

In the current paper, we evaluate the predictive impact of using early and late fusion in conjunction with 
joint prediction, aiming to achieve the best possible clinical assessment prediction results. For each experiment, 
we compare different approaches to fusing behavior marker sets. This is to explore the feature space and 
determine the most predictive behavior markers for each assessment. The three main types of experiments we 
conduct are as follows: 

1. NO FUSION: independent and joint prediction for each individual behavior marker set, one at a time 
(see Figure 4(a) for a diagram) 
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2. EARLY FUSION: independent and joint prediction for all possible behavior marker set combinations 
(see Figure 4(b) for a diagram) 

3. LATE FUSION: independent and joint prediction with one predictor for each behavior marker set (see 
Figure 4(c) for a diagram) 

 

	 	
(a). NO FUSION experiment design. 

	 	
(b). EARLY FUSION experiment design. 
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(c). LATE FUSION experiment design. 

Figure 4. Multimodal (a) NO FUSION, (b) EARLY FUSION, and (c) LATE FUSION for independent prediction of 
participant scores on a clinical assessment. Additional steps needed for joint prediction are shown in gray boxes with 

dashed arrows. 

3.5.3 Feature Selection and Reduction 

Because the dimensionality of the feature space is quite high for EARLY FUSION, we explore feature selection 
and feature reduction techniques to further improve EARLY FUSION prediction results. In the case of feature 
selection, we utilize recursive feature elimination with cross validation to find the optimal size and set of features 
for prediction [53]. In the case of feature reduction techniques, we implement principal component analysis with 
the number of components set to the number of instances. We additionally explore using a neural network-
based autoencoder with various values for the number of bottleneck features (e.g., the resulting compressed 
feature vector size, m) [54]. An autoencoder is composed of an encoder and a decoder. The encoder is used 
to compress input data into a latent-space representation, which is typically a lower dimensionality (m) than the 
input dataspace. The decoder reconstructs the data from its latent-space representation back into its original 
form. Once trained and validated, the autoencoder’s encoder can be used in isolation from the decoder as a 
feature reducer. For EARLY FUSION feature reduction, each fold of cross validation we train an autoencoder 
on the fold’s training feature matrix, holding one training instance’s feature vector out to use for autoencoder 
validation. Because the autoencoder is reducing the training feature space only, the fold’s ground truth Y values 
(i.e., clinical assessment scores) and testing data are not provided to the autoencoder, ensuring data leakage 
does not occur. After validation, the encoder part of each fold’s autoencoder is then used to reduce the feature 
set before a regression algorithm is trained. 

3.5.4 Prediction Experiment Evaluation 

To evaluate our experimental design approaches with joint prediction and multimodal fusion, resulting 
independent and joint prediction matrices are evaluated separately using standard machine learning 
performance evaluation metrics. Since the predictions are numeric, the following regression evaluation metrics 
are applied: 

• Correlation coefficient r and associated p-value (𝛼 = 0.01; Bonferroni corrected 𝛼 = 0.01 / 8 clinical 
assessments = 0.00125; conservatively rounded down to 0.001) 

• Root mean squared error:  

𝑅𝑜𝑜𝑡	𝑚𝑒𝑎𝑛	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟 = 	3
∑ (𝑌!"#$!%,' − 𝑌()*+'"#*+,'),-
'./

𝑛  

• Min-max normalized root mean squared error:  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝑟𝑜𝑜𝑡	𝑚𝑒𝑎𝑛	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟 = 	
𝑟𝑜𝑜𝑡	𝑚𝑒𝑎𝑛	𝑠𝑞𝑢𝑎𝑟𝑒𝑑	𝑒𝑟𝑟𝑜𝑟
(𝑌!"#$!%,0!1 − 𝑌!"#$!%,0'-)

× 100% 

All experiments are conducted using leave-one-out cross validation and comparison of three machine learning 
algorithms: decision tree regressors, random forest regressors with 100 estimators, and gradient-boosted 
regressors with 100 estimators. We use decision tree-based ensemble approaches because of their 
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demonstrated success with previous studies that, like the current study, are also characterized by a large 
number of features [5], [55]. 

4 RESULTS 

We analyze unique text authored by participants in the EMMA app that totaled 46,754 words in their EMMA 
notes and 41,429 words in their EMMA task descriptions. These words are used to extract natural language 
processing-based NOTE and TASK behavior markers that we use with demographics markers (DEMO), smart 
home markers (SHBM), and EMMA usage markers (USAGE). We evaluate how our behavior markers can be 
used for clinical assessment prediction by conducting several experiments using leave-one-out cross validation. 
Table 4 summarizes the numerically highest NO FUSION correlation results for each assessment using 
independent prediction and joint prediction. 

Table 4: NO FUSION results: Numerically highest correlations shown for independent (I) and joint (J) prediction 
experiment configurations. Bold correlation denotes numerically higher correlation result between I and J rows. 

Assessment  Marker Set Algorithm r 

RBANS 
I TASK GBR 0.738* 

J TASK GBR 0.810**† 

WTAR 
I USAGE GBR 0.497 

J USAGE DTR 0.502 

FAS 
I DEMO DTR 0.393 

J TASK DTR 0.537 

DFT 
I NOTE GBR 0.407 

J NOTE DTR 0.627 

PRMQ 
I TASK GBR 0.506 
J TASK GBR 0.465 

IADL-C 
I SHBM DTR 0.264 
J NOTE DTR 0.113 

GDS 
I TASK DTR 0.683* 
J SHBM RFR 0.349 

QoL-AD 
I SHBM DTR 0.574 
J SHBM RFR 0.362 

CSE 
I TASK GBR 0.506 

J TASK GBR 0.577 

SWLS 
I SHBM GBR 0.403 

J SHBM GBR 0.508 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 

highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 
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To determine if improved prediction accuracy could be achieved using EARLY FUSION, we perform leave-one-
out cross validation with all possible feature set combinations fused prior to training. The highest performing 
EARLY FUSION correlation results for independent and joint prediction are shown in Table 5. 

Table 5: EARLY FUSION results: Numerically highest correlations shown for independent (I) and joint (J) prediction 
experiment configurations. Bold correlation denotes numerically higher correlation result between I and J rows. 

Assessment  Marker Sets Algorithm r 

RBANS 
I TASK, NOTE, USAGE GBR 0.758* 

J TASK GBR 0.810**† 

WTAR 
I DEMO, USAGE DTR 0.563 
J USAGE DTR 0.502 

FAS 
I DEMO, TASK DTR 0.401 

J TASK, USAGE DTR 0.557 

DFT 
I TASK, SHBM, USAGE DTR 0.721* 

J TASK, SHBM DTR 0.737* 

PRMQ 
I DEMO, TASK, USAGE GBR 0.588 
J DEMO, TASK, USAGE GBR 0.524 

IADL-C 
I DEMO, SHBM, USAGE DTR 0.345 
J NOTE, SHBM, USAGE DTR 0.251 

GDS 
I SHBM, USAGE DTR 0.853** 

J DEMO, SHBM, USAGE DTR 0.861**† 

QoL-AD 
I DEMO, TASK, NOTE, SHBM, USAGE DTR 0.660 
J TASK, SHBM GBR 0.582 

CSE 
I TASK, NOTE, SHBM GBR 0.738* 

J TASK, SHBM GBR 0.748*† 

SWLS 
I DEMO, NOTE, SHBM, USAGE DTR 0.755* 

J SHBM, USAGE DTR 0.857**† 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 
highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 

 
Using EARLY FUSION, we perform recursive feature elimination with cross validation, principal component 
analysis, and an autoencoder each as a pre-prediction step. Of the three approaches, only the autoencoder 
produced improved results, which are presented here. Starting at autoencoder bottleneck size of m = 25, we 
made bottleneck size increments of 50 up to and including m = 175. Using this dimensionality reduction 
technique, the results for four assessments’ EARLY FUSION results improved. The improvements and values 
of m for these assessments are shown in Table 6. 

Table 6: Autoencoder improved EARLY FUSION results: Numerically highest correlations shown for independent (I) and 
joint (J) prediction experiment configurations. 

Assessment  Marker Sets Algorithm m r 

RBANS J TASK GBR 175 0.671* 
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WTAR J TASK DTR 25 0.673*† 

FAS I TASK, NOTE, SHBM GBR 125 0.616 

DFT J TASK, NOTE, SHBM GBR 175 0.871**† 

PRMQ J NOTE, USAGE DTR 175 0.862**† 

IADL-C I TASK, USAGE DTR 175 0.575 

GDS I DEMO, NOTE DTR 175 0.588 

QoL-AD J SHBM, USAGE DTR 75 0.762*† 

CSE J DEMO, SHBM GBR 75 0.585 

SWLS I DEMO, TASK, NOTE, SHBM, USAGE DTR 75 0.576 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 
highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 

 
Following EARLY FUSION, we perform leave-one-out cross validation with LATE FUSION. Table 7 reports the 
numerically highest LATE FUSION correlation results for independent and joint prediction.  

Table 7. LATE FUSION results: Numerically highest correlations shown for independent (I) and joint (J) prediction 
experiment configurations. Bold correlation denotes numerically higher correlation result between I and J rows. 

Assessment  Algorithm r 

RBANS 
I GBR 0.208 
J GBR 0.156 

WTAR 
I RFR 0.602 

J RFR 0.607 

FAS 
I RFR 0.580 

J RFR 0.688*† 

DFT 
I DTR 0.604 
J DTR 0.590 

PRMQ 
I DTR 0.417 
J DTR 0.411 

IADL-C 
I GBR 0.484 

J RFR 0.601† 

GDS 
I DTR 0.812** 
J DTR 0.775* 

QoL-AD 
I RFR 0.249 
J RFR 0.153 

CSE 
I GBR 0.425 

J GBR 0.471 

SWLS 
I DTR 0.577 
J DTR 0.563 

* = p < 0.01, ** = p < 0.001, † = overall assessment experiment configuration across Tables 4-7 with the numerically 
highest correlation, DTR = decision tree regressor, GBR = gradient-boosted regressor, RFR = random forest regressor. 
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To summarize the results across all the experiment configurations reported in Tables 4-7, the correlation 
coefficient r (and associated p-value), root mean squared error, and normalized root mean squared error 
percentage values for each assessment’s experiment configuration with the overall numerically highest 
correlation (experiments denoted with † in Tables 4-7) are shown in Figure 5. 
 

  
(a) Correlation coefficient (r) bars with source r and associated p-value. 

 

  
(b) Normalized root mean squared error (RMSE) with source root mean squared error values. 

Figure 5. Correlation coefficient (a) and normalized root mean square error (b) bars for each assessment’s overall 
numerically highest correlation experiment configuration in Tables 4-7. DTR = decision tree regressor, GBR = gradient-

boosted regressor, RFR = random forest regressor. 

5 DISCUSSION 

In this paper, we explored multimodal fusion and joint prediction as methods for predicting ten clinical 
assessments scores (RBANS, WTAR, FAS, DFT, PRMQ, IADL-C, GDS, QoL-AD, CSE, and SWLS) for 14 
participants with MCI. From our experimental results in Tables 4-7, we observed widespread prediction 
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correlations across the assessments, ranging from weak (r < 0.3) to strong (r > 0.5). Given the relatively small 
sample size and the experimentation with several variables and configurations, such a range of correlations is 
expected. The weaker correlations occurred in cases where a clinical assessment exhibited a relatively small 
variance for the sample, such as WTAR, which had the lowest variance (coefficient of variation = 10.292%) and 
the second lowest overall prediction correlation of r = 0.673 (see Table 2 and Figure 5). Typically, the lower the 
variance, the more difficult the distribution is to learn and predict, making it a more challenging clinical health 
measure to monitor. In the case of WTAR, since it represents an assessment of premorbid abilities, scores are 
unlikely to be significantly impacted by brain neurodegeneration until late in the process. Weaker correlations 
can also occur under different configurations (e.g., NO FUSION and independent prediction vs. LATE FUSION 
with joint prediction), where one configuration yields stronger predictive performance than others, indicating that 
these computational configurations are important for constructing more predictive, and thus usable, models. 
For example, IADL-C had the lowest prediction correlation of r = 0.113 across all the results tables (Tables 4-
7); however, when predicting IADL-C with LATE FUSION and joint prediction, a correlation of r = 0.601 was 
achieved. Overall, we identified configurations for five assessments (RBANS, DFT, PRMQ, GDS, SWLS) that 
yielded strong prediction correlations (r > 0.810; Bonferroni-corrected significant correlations p < 0.001). For 
example, our machine learning configuration for the GDS yielded r = 0.861 (p = 0.000077) using DEMO, SHBM, 
and USAGE behavior markers with a decision tree regressor and joint prediction. Given that a depressed state 
can significantly impact activity level and interests, it may not be surprising that app usage and SHBM behavior 
markers were able to predict this mood state more easily than a questionnaire that more holistic captures quality 
of life and includes questions about marriage and financial situation. We also identified the experiment 
configurations for the other five assessments (WTAR, FAS, IADL-C, QoL-AD, CSE) that produced moderate 
prediction correlations (r > 0.601).  

In general, EARLY FUSION was the most accurate experiment setup with four of the numerically highest 
overall results utilizing EARLY FUSION (RBANS, GDS, CSE, and SWLS), plus an additional four numerically 
highest results that employed autoencoders (WTAR, DFT, PRMQ, and QoL-AD). RBANS, DFT, PRMQ, GDS, 
and SWLS are the assessments that were most accurately predicted (0.810 ≤ r ≤ 0.871), while WTAR, FAS, 
IADL-C, QoL-AD, and CSE were less accurately predicted (0.601 ≤ r ≤ 0.762). These correlations are stronger 
than previous work using smart home features to predict RBANS (r = 0.40), PRMQ (r = 0.31), and GDS (r = 
0.21) [8]. They are also similar to previous work using a fusion of smart home and smartwatch behavior markers 
with a larger SHiB sample size of N = 21 (RBANS r = 0.962, WTAR r = 0.879, FAS r = 0.806) [5]. Of the different 
behavior marker sets, TASK appeared to be the marker set with greatest potential for predicting these 
assessments, with 26 result occurrences in Tables 4-7, followed by SHBM markers (23 result occurrences), 
followed by USAGE markers (20 result occurrences). NOTE and DEMO sets were the least informative behavior 
markers, with 13 and 12 result occurrences, respectively. The DEMO set is likely not as informative because 
the four objective laboratory measures are scaled using age-correction. In support of this statement, 9 of the 12 
instances in which DEMO was an informative marker are among the self-report measures. The behavior 
markers in the NOTE set are probably less prevalent in Tables 4-7 compared to TASK because the EMMA note 
section was taught in the last two weeks of the intervention and was less widely used by the MCI study 
participants. 

Regarding using joint features to improve prediction results, joint prediction did not consistently improve 
every assessment result, though it did improve results over independent prediction for about half of the 
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assessments (6/10 NO FUSION, 6/10 EARLY FUSION, 6/10 auto encoded EARLY FUSION, and 4/10 LATE 
FUSION). Of the overall numerically highest correlation results for each assessment, all ten used joint prediction 
(see Tables 4-7). These improvements suggest there appears to be predictive utility in using joint features for 
mapping sensor data to clinical assessment scores, though it is dependent on the target assessment and the 
predictive assessments that are employed. As for the importance of the algorithm used (decision tree regressor, 
random forest regressor, or gradient-boosted regressor), decision tree regressor was the most frequent 
algorithm in Tables 4-7 (35 occurrences), followed by gradient-boosted regressor (26 occurrences), then 
random forest regressor (9 occurrences). Though these occurrences do not suggest a clear best algorithm for 
all experiments, decision tree regressor and gradient-boosted regressor seem well suited for EARLY FUSION 
experiments (5/8 and 3/8 of the overall numerically highest results use decision tree regressor and gradient-
boosted regressor in Tables 5 and 6, respectively) and random forest regressor seems well suited for LATE 
FUSION experiments (both the overall numerically highest FAS and IADL-C experiments use random forest 
regressor in Table 7). These findings indicate that the choice of algorithm for each configuration is also important 
and should be selected individually for each assessment. Future work will be needed to identify whether a 
standard algorithm configuration can be identified that may be best for different types of assessment (e.g., self-
report, memory testing, etc.). 

5.1 NO FUSION Experiments 
NO FUSION trains machine learning algorithms for each behavior marker set individually to determine the most 
relevant set of behavior markers for each assessment. To account for possible overfitting due to the small SHiB 
sample, we used leave-one-out cross validation to maximize the amount of training data available. When 
evaluating DEMO markers’ predictive abilities for the self-report measures that were not age-corrected and 
captured mood, behavior and everyday function, the digital memory notebook and smart home modalities 
outperformed traditional demographic features. This is because demographic markers do not capture behavior 
patterns like sensor-based behavior markers can over time. Comparing the digital memory notebook modality 
to the smart home modality, we observed that three of the ten clinical measures made use of SHBM as the 
most predictive marker set with NO FUSION (IADL-C, QoL-AD, and SLWS). Of interest, one of the measures 
best captured by the SHBM (i.e., IADL-C) assesses ability to complete complex activities of daily living (e.g., 
managing medications, cooking), which the smart home sensors would be in the best position to assess. The 
remaining self-report and clinical assessments were best predicted using EMMA markers, suggesting that the 
digital memory notebook markers may provide more predictive power than smart home markers. These 
observed results may be due to the EMMA app serving as a tool to assist with organization and completion of 
everyday task and requiring active engagement by the user, as opposed to the smart home modality which is 
more passive by design. 

5.2 EARLY FUSION and LATE FUSION Experiments 
In contrast to NO FUSION, we explored two different types of fusion approaches, EARLY FUSION (see Tables 
5 and 6 for results) and LATE FUSION (see Table 7 for results), to combine behavior markers from different 
modalities. For all assessments, fusion improved prediction accuracy; however, RBANS is a unique case 
because the most predictive EARLY FUSION marker set combination turns out to be TASK markers alone, 
yielding the same prediction accuracy as gradient-boosted joint prediction with NO FUSION (r = 0.810). This is 
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a strong correlation (p = 0.000451), implying the tasks and how they are written in EMMA by MCI participants 
are quite indicative of their current cognitive status (RBANS) as opposed to their premorbid ability (WTAR). In 
general, EARLY FUSION appeared more appropriate for predicting the assessments utilized in this study 
because the overall numerically highest correlation result was achieved with EARLY FUSION and EARLY 
FUSION with autoencoding for eight of the ten assessments (see Tables 5 and 6 and Figure 5). All assessments 
except RBANS and WTAR benefitted from a fusion of at least two marker sets. Most assessments had the best 
results utilizing a fusion of two to three marker sets, while QoL-AD and SWLS were the only assessments to 
utilize all five available marker sets. Assessments trying to capture constructs such as quality of life that 
measure behavior more holistically, may require more dimensions to accurately assess. Once again, it 
appeared that EMMA sets are providing the most predictive value, being used in all numerically highest EARLY 
fusions. SHBM markers appeared in six assessments’ numerically highest EARLY FUSION results. Consistent 
with the NO FUSION results, DEMO and NOTE markers provided the least predictive utility. This suggests that, 
for the current data with MCI participants, computational complexity can be reduced by eliminating processing 
of NOTE text.  

The application of autoencoders as a feature reduction technique improved results for four of the 
assessments. This is helpful in overcoming the discrepancy between the number of behavior markers and the 
number of participants; however, upon investigating the number of reduced features (m) that produces the 
improved results, m is still quite large. For six assessments, m was in the range of 125 to 175 (see Table 6). 
Only WTAR had a value close to the number of samples (m = 25). Since autoencoders aim to compress a large 
feature space, it seems the multimodal feature space is valuable in its many dimensions because larger values 
of m produced the strongest results for some assessments. 

For the LATE FUSION results in Table 7, FAS and IADL-C were the only assessments exhibiting slightly 
better correlations with LATE FUSION than with EARLY FUSION, with a 11.688% and 4.522% improvement, 
respectively. On the other hand, some assessments, like RBANS and QoL-AD performed particularly poor 
under LATE FUSION, perhaps because of the inconsistent accuracy a single marker set-trained algorithm 
produces. As noted earlier, quality of life assessments (i.e., QoL-AD and SLWS) were the only assessments 
using all five marker sets in their numerically highest fusion result. Coupling this with QoL-AD’s poor LATE 
FUSION performance, it appears multiple dimensions of behavior and routine from different modalities were 
necessary to accurately capture similar information contained within a holistic assessment score like QoL-AD. 

6 CONCLUSION 

In this paper, we explored multimodal fusion and joint prediction of behavior markers for predicting objective 
(RBANS, WTAR, FAS, DFT) and self-report (PRMQ, IADL-C, GDS, QoL-AD, CSE, and SWLS) clinical scores, 
for participants with mild cognitive impairment. The modalities we used included smart home environments, a 
compensatory digital memory notebook iPad app called EMMA, and traditional demographic information. Our 
smart home system continuously and unobtrusively collected data that was sent to activity recognition 
algorithms to help model a resident’s everyday routine. Furthermore, the smart home system was integrated 
with the EMMA digital memory notebook app, providing context-aware prompts to help residents navigate their 
daily routine and remember important information. From these modalities, we extracted behavior markers and 
explored different fusion techniques to map the markers into clinical assessment scores. Using decision tree, 
random forest, and gradient boosting regression algorithms, we achieved at least moderate correlations (r ≥ 



25 

0.601) between actual assessment scores and predicted scores. For two of the four objective measures 
(RBANS and DFT) and three of the six self-report assessments (PRMQ, GDS, and SLWS), we achieved strong 
correlations (r ≥ 0.810). Prediction results using joint prediction and multimodal fusion offered improvements 
over baseline independent predictions for all assessments. Of the behavior marker sets, EMMA task-based 
markers and smart home-based markers appeared the most informative, suggesting a fusion of multiple 
modalities, including participant-authored text, may offer the most promising prediction results. 

The small sample size (N = 14 participants with both EMMA and smart home data) and the inconsistent use 
of EMMA for some participants are two limitations of the study. For the former, we anticipate prediction 
performance would improve with more participants and longer smart home and EMMA data collection periods. 
For the latter, while participants were trained and encouraged to use the memory app multiple times per day, 
not all participants used the note and task features enough to provide a large corpus of text for analysis. Future 
work aims to collect a larger corpus of note and task text from the aging population along a continuum from 
healthy to mild dementia, explore additional feature selection and reduction techniques for each assessment’s 
overall numerically highest experiment configuration, and utilize EMMA text-based behavior markers for further 
integration with smartwatch and smart home environments. The latter offers an opportunity for health care 
providers and caregivers to automatically be notified if a behavior change occurs that may be indicative of health 
status change. 

ACKNOWLEDGMENTS 
The authors would like to thank Justin Frow and Sarah Norman and members of the WSU Neuropsychology 
and Aging Laboratory for their work recruiting study participants, delivering the intervention, and collecting and 
scoring the clinical data. The authors would also like to thank Jessamyn Dahmen, Eric Chen, Brian Thomas, 
Aaron Crandall, and members of the WSU CASAS lab for their assistance with designing and implementing the 
smart home and digital memory notebook app tools. 

REFERENCES 
[1] S. T. Farias, D. Mungas, B. R. Reed, D. Harvey, D. Cahn-Weiner, and C. Decarli, “MCI is associated with deficits in everyday functioning,” Alzheimer 

Dis. Assoc. Disord., vol. 20, no. 4, pp. 217–223, Dec. 2006, doi: 10.1097/01.wad.0000213849.51495.d9. 

[2] N. Raghunath, J. Dahmen, K. Brown, D. Cook, and M. Schmitter-Edgecombe, “Creating a digital memory notebook application for individuals with 

mild cognitive impairment to support everyday functioning,” Disabil. Rehabil. Assist. Technol., vol. 15, no. 4, pp. 421–431, May 2020, doi: 

10.1080/17483107.2019.1587017. 

[3] J. Dahmen, B. Minor, D. Cook, T. Vo, and M. S. Edgecombe, “Smart home-driven digital memory notebook support of activity self-management for 

older adults,” Gerontechnology, vol. 17, no. 2, pp. 113–125, Aug. 2018, doi: 10.4017/gt.2018.17.2.005.00. 

[4] G. Sprint, D. J. Cook, R. Fritz, and M. Schmitter-Edgecombe, “Using smart homes to detect and analyze health events,” Computer, vol. 49, no. 11, 

pp. 29–37, Nov. 2016, doi: 10.1109/MC.2016.338. 

[5] D. J. Cook and M. Schmitter-Edgecombe, “Fusing ambient and mobile sensor features into a behaviorome for predicting clinical health scores,” IEEE 

Access, vol. 9, pp. 65033–65043, 2021, doi: 10.1109/ACCESS.2021.3076362. 

[6] P. N. Dawadi, D. J. Cook, and M. Schmitter-Edgecombe, “Automated cognitive health assessment from smart home-based behavior data,” IEEE J. 

Biomed. Health Inform., vol. 20, no. 4, pp. 1188–1194, Jul. 2016, doi: 10.1109/JBHI.2015.2445754. 

[7] A. Akl, J. Snoek, and A. Mihailidis, “Unobtrusive detection of mild cognitive impairment in older adults through home monitoring,” IEEE J. Biomed. 

Health Inform., vol. 21, no. 2, pp. 339–348, Mar. 2017, doi: 10.1109/JBHI.2015.2512273. 

[8] A. Alberdi et al., “Smart home-based prediction of multidomain symptoms related to alzheimer’s disease,” IEEE J. Biomed. Health Inform., vol. 22, 



26 

no. 6, pp. 1720–1731, Nov. 2018, doi: 10.1109/JBHI.2018.2798062. 

[9] K. C. Fraser, K. Lundholm Fors, M. Eckerström, F. Öhman, and D. Kokkinakis, “Predicting MCI status from multimodal language data using cascaded 

classifiers,” Front. Aging Neurosci., vol. 11, 2019, doi: 10.3389/fnagi.2019.00205. 

[10] M. Schmitter-Edgecombe et al., “Partnering a compensatory application with activity-aware prompting to improve use in individuals with amnestic 

mild cognitive impairment: a randomized controlled pilot clinical trial,” J. Alzheimers Dis., vol. 85, no. 1, pp. 73–90, Jan. 2022, doi: 10.3233/JAD-

215022. 

[11] S. Aminikhanghahi and D. J. Cook, “Enhancing activity recognition using CPD-based activity segmentation,” Pervasive Mob. Comput., vol. 53, pp. 

75–89, Feb. 2019, doi: 10.1016/j.pmcj.2019.01.004. 

[12] B. Minor, J. R. Doppa, and D. J. Cook, “Data-driven activity prediction: algorithms, evaluation methodology, and applications,” in Proceedings of the 

21st ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 2015, pp. 805–814. doi: 

10.1145/2783258.2783408. 

[13] P. N. Dawadi, D. J. Cook, and M. Schmitter-Edgecombe, “Modeling patterns of activities using activity curves,” Pervasive Mob. Comput., vol. 28, pp. 

51–68, Jun. 2016, doi: 10.1016/j.pmcj.2015.09.007. 

[14] G. Sprint, D. J. Cook, and R. Fritz, “Behavioral differences between subject groups identified using smart homes and change point detection,” IEEE 

J. Biomed. Health Inform., vol. 25, no. 2, pp. 559–567, Feb. 2021, doi: 10.1109/JBHI.2020.2999607. 

[15] A. R. Javed et al., “Automated cognitive health assessment in smart homes using machine learning,” Sustain. Cities Soc., vol. 65, p. 102572, Feb. 

2021, doi: 10.1016/j.scs.2020.102572. 

[16] J. Austin, H. H. Dodge, T. Riley, P. G. Jacobs, S. Thielke, and J. Kaye, “A smart-home system to unobtrusively and continuously assess loneliness 

in older adults,” IEEE J. Transl. Eng. Health Med., vol. 4, pp. 1–11, 2016, doi: 10.1109/JTEHM.2016.2579638. 

[17] F. S. Aronsson, M. Kuhlmann, V. Jelic, and P. Östberg, “Is cognitive impairment associated with reduced syntactic complexity in writing? Evidence 

from automated text analysis,” Aphasiology, vol. 0, no. 0, pp. 1–14, Apr. 2020, doi: 10.1080/02687038.2020.1742282. 

[18] M. M. Tadesse, H. Lin, B. Xu, and L. Yang, “Detection of depression-related posts in reddit social media forum,” IEEE Access, vol. 7, pp. 44883–

44893, 2019, doi: 10.1109/ACCESS.2019.2909180. 

[19] A. H. Alkenani, Y. Li, Y. Xu, and Q. Zhang, “Predicting Alzheimer’s disease from spoken and written language using fusion-based stacked 

generalization,” J. Biomed. Inform., vol. 118, p. 103803, Jun. 2021, doi: 10.1016/j.jbi.2021.103803. 

[20] L. K. Dickerson et al., “Language impairment in adults with end-stage liver disease: application of natural language processing towards patient-

generated health records,” Npj Digit. Med., vol. 2, no. 1, Art. no. 1, Nov. 2019, doi: 10.1038/s41746-019-0179-9. 

[21] J. Bullard, C. Ovesdotter Alm, X. Liu, Q. Yu, and R. Proaño, “Towards early dementia detection: fusing linguistic and non-linguistic clinical data,” in 

Proceedings of the Third Workshop on Computational Linguistics and Clinical Psychology, San Diego, CA, USA, Jun. 2016, pp. 12–22. doi: 

10.18653/v1/W16-0302. 

[22] Q. He, B. P. Veldkamp, C. A. W. Glas, and S. M. van den Berg, “Combining text mining of long constructed responses and item-based measures: a 

hybrid test design to screen for posttraumatic stress disorder (PTSD),” Front. Psychol., vol. 10, 2019, doi: 10.3389/fpsyg.2019.02358. 

[23] F. Ö. Sönmez and Y. Maleh, “Prediction of satisfaction with life scale using linguistic features from Facebook status updates: smart life,” in Machine 

Intelligence and Data Analytics for Sustainable Future Smart Cities, U. Ghosh, Y. Maleh, M. Alazab, and A.-S. K. Pathan, Eds. Cham: Springer 

International Publishing, 2021, pp. 119–144. doi: 10.1007/978-3-030-72065-0_8. 

[24] L. Calzà, G. Gagliardi, R. Rossini Favretti, and F. Tamburini, “Linguistic features and automatic classifiers for identifying mild cognitive impairment 

and dementia,” Comput. Speech Lang., vol. 65, p. 101113, Jan. 2021, doi: 10.1016/j.csl.2020.101113. 

[25] F. Bertini, D. Allevi, G. Lutero, D. Montesi, and L. Calzà, “Automatic speech classifier for mild cognitive impairment and early dementia,” ACM Trans. 

Comput. Healthc., vol. 3, no. 1, p. 8:1-8:11, Oct. 2021, doi: 10.1145/3469089. 

[26] M. Rodrigues Makiuchi, T. Warnita, K. Uto, and K. Shinoda, “Multimodal fusion of BERT-CNN and gated CNN representations for depression 

detection,” in Proceedings of the 9th International on Audio/Visual Emotion Challenge and Workshop, New York, NY, USA, Oct. 2019, pp. 55–63. 

doi: 10.1145/3347320.3357694. 

[27] R. Ostrand and J. Gunstad, “Using automatic assessment of speech production to predict current and future cognitive function in older adults,” J. 



27 

Geriatr. Psychiatry Neurol., p. 0891988720933358, Jul. 2020, doi: 10.1177/0891988720933358. 

[28] M. Martinc and S. Pollak, “Tackling the adress challenge: a multimodal approach to the automated recognition of Alzheimer’s dementia,” in 

Interspeech 2020, Oct. 2020, pp. 2157–2161. doi: 10.21437/Interspeech.2020-2202. 

[29] M. Gónzalez Atienza, J. A. González López, and A. M. Peinado, “An automatic system for dementia detection using acoustic and linguistic features,” 

Jan. 2021, Accessed: Jun. 07, 2021. [Online]. Available: https://digibug.ugr.es/handle/10481/66645 

[30] R. Haulcy and J. Glass, “Classifying Alzheimer’s disease using audio and text-based representations of speech,” Front. Psychol., vol. 11, p. 624137, 

Jan. 2021, doi: 10.3389/fpsyg.2020.624137. 

[31] F. T. Giuntini, M. T. Cazzolato, M. de J. D. dos Reis, A. T. Campbell, A. J. M. Traina, and J. Ueyama, “A review on recognizing depression in social 

networks: challenges and opportunities,” J. Ambient Intell. Humaniz. Comput., vol. 11, no. 11, pp. 4713–4729, Nov. 2020, doi: 10.1007/s12652-020-

01726-4. 

[32] S. Luz, F. Haider, S. de la Fuente, D. Fromm, and B. MacWhinney, “Alzheimer’s dementia recognition through spontaneous speech: the ADReSS 

challenge,” ArXiv200406833 Cs Eess Stat, Aug. 2020, Accessed: Feb. 13, 2022. [Online]. Available: http://arxiv.org/abs/2004.06833 

[33] C. Dreisbach, T. A. Koleck, P. E. Bourne, and S. Bakken, “A systematic review of natural language processing and text mining of symptoms from 

electronic patient-authored text data,” Int. J. Med. Inf., vol. 125, pp. 37–46, May 2019, doi: 10.1016/j.ijmedinf.2019.02.008. 

[34] G. Gosztolya, V. Vincze, L. Tóth, M. Pákáski, J. Kálmán, and I. Hoffmann, “Identifying mild cognitive impairment and mild Alzheimer’s disease based 

on spontaneous speech using asr and linguistic features,” Comput. Speech Lang., vol. 53, pp. 181–197, Jan. 2019, doi: 10.1016/j.csl.2018.07.007. 

[35] T. Baltrušaitis, C. Ahuja, and L.-P. Morency, “Multimodal machine learning: a survey and taxonomy,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 41, 

no. 2, pp. 423–443, Feb. 2019, doi: 10.1109/TPAMI.2018.2798607. 

[36] G. L. Sprint, D. J. Cook, and D. L. Weeks, “Patient similarity and joint features for rehabilitation outcome prediction,” Proc. 2016 Workshop Knowl. 

Discov. Healthc. KDH IJCAI, p. 7, 2016. 

[37] L. A. Chudoba, A. S. Church, J. B. Dahmen, K. D. Brown, and M. Schmitter-Edgecombe, “The development of a manual-based digital memory 

notebook intervention with case study illustrations,” Neuropsychol. Rehabil., vol. 30, no. 9, pp. 1829–1851, Oct. 2020, doi: 

10.1080/09602011.2019.1611606. 

[38] D. J. Cook, A. S. Crandall, B. L. Thomas, and N. C. Krishnan, “CASAS: a smart home in a box,” Computer, vol. 46, no. 7, pp. 62–69, Jul. 2013, doi: 

10.1109/MC.2012.328. 

[39] R. C. Petersen et al., “Criteria for mild cognitive impairment due to Alzheimer’s disease in the community,” Ann. Neurol., vol. 74, no. 2, pp. 199–208, 

Aug. 2013, doi: 10.1002/ana.23931. 

[40] C. Randolph, M. C. Tierney, E. Mohr, and T. N. Chase, “The repeatable battery for the assessment of neuropsychological status (RBANS): preliminary 

clinical validity,” J. Clin. Exp. Neuropsychol., vol. 20, no. 3, pp. 310–319, Jun. 1998, doi: 10.1076/jcen.20.3.310.823. 

[41] The Psychological Corporation, “Wechsler test of adult reading,” San Antonio, TX, 2001. 

[42] D. Delis, E. Kaplan, and J. Kramer, Delis-Kaplan Executive Function System: Examiner’s Manual. The Psychological Corporation. Accessed: Sep. 

10, 2021. [Online]. Available: 

https://www.pearsonclinical.co.uk/Psychology/AdultCognitionNeuropsychologyandLanguage/AdultAttentionExecutiveFunction/Delis-

KaplanExecutiveFunctionSystem(D-KEFS)/Delis-KaplanExecutiveFunctionSystem(D-KEFS).aspx 

[43] G. Smith, S. D. Sala, R. H. Logie, and E. A. Maylor, “Prospective and retrospective memory in normal ageing and dementia: A questionnaire study,” 

Memory, vol. 8, no. 5, pp. 311–321, Sep. 2000, doi: 10.1080/09658210050117735. 

[44] M. Schmitter-Edgecombe, C. Parsey, and R. Lamb, “Development and psychometric properties of the instrumental activities of daily living: 

compensation scale,” Arch. Clin. Neuropsychol., vol. 29, no. 8, pp. 776–792, Dec. 2014, doi: 10.1093/arclin/acu053. 

[45] J. I. Sheikh and J. A. Yesavage, “Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version,” Clin. Gerontol. J. Aging 

Ment. Health, vol. 5, no. 1–2, pp. 165–173, 1986, doi: 10.1300/J018v05n01_09. 

[46] R. G. Logsdon, L. E. Gibbons, S. M. McCurry, and L. Teri, “Quality of life in Alzheimer’s disease: patient and caregiver reports,” J. Ment. Health Aging, 

vol. 5, no. 1, pp. 21–32, 1999. 

[47] M. A. Chesney, T. B. Neilands, D. B. Chambers, J. M. Taylor, and S. Folkman, “A validity and reliability study of the coping self-efficacy scale,” Br. J. 



28 

Health Psychol., vol. 11, no. 3, pp. 421–437, 2006, doi: 10.1348/135910705X53155. 

[48] E. Diener, R. A. Emmons, R. J. Larsen, and S. Griffin, “The satisfaction with life scale,” J. Pers. Assess., vol. 49, no. 1, pp. 71–75, Feb. 1985, doi: 

10.1207/s15327752jpa4901_13. 

[49] J. W. Pennebaker, R. L. Boyd, K. Jordan, and K. Blackburn, “The development and psychometric properties of LIWC2015,” 2015, doi: 

10.15781/T29G6Z. 

[50] B. Shickel, S. Siegel, M. Heesacker, S. Benton, and P. Rashidi, “Automatic detection and classification of cognitive distortions in mental health text,” 

in 2020 IEEE 20th International Conference on Bioinformatics and Bioengineering (BIBE), Oct. 2020, pp. 275–280. doi: 

10.1109/BIBE50027.2020.00052. 

[51] R. Wang et al., “Tracking depression dynamics in college students using mobile phone and wearable sensing,” Proc. ACM Interact. Mob. Wearable 

Ubiquitous Technol., vol. 2, no. 1, p. 43:1-43:26, Mar. 2018, doi: 10.1145/3191775. 

[52] L. Wu, S. L. Oviatt, and P. R. Cohen, “Multimodal integration-a statistical view,” IEEE Trans. Multimed., vol. 1, no. 4, pp. 334–341, Dec. 1999, doi: 

10.1109/6046.807953. 

[53] R. Kohavi and G. H. John, “Wrappers for feature subset selection,” Artif. Intell., vol. 97, no. 1–2, pp. 273–324, 1997, doi: 10.1016/S0004-

3702(97)00043-X. 

[54] Y. Wang, H. Yao, and S. Zhao, “Auto-encoder based dimensionality reduction,” Neurocomputing, vol. 184, pp. 232–242, Apr. 2016, doi: 

10.1016/j.neucom.2015.08.104. 

[55] R. Blagus and L. Lusa, “Gradient boosting for high-dimensional prediction of rare events,” Comput. Stat. Data Anal., vol. 113, pp. 19–37, Sep. 2017, 

doi: 10.1016/j.csda.2016.07.016. 

 


