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Transfer learning aims to improve performance on a target task by utilizing previous knowledge learned
from source tasks. In this paper we introduce a novel heterogeneous transfer learning technique, Feature-
Space Remapping (FSR), which transfers knowledge between domains with different feature spaces. This is
accomplished without requiring typical feature-feature, feature instance, or instance-instance co-occurrence
data. Instead we relate features in different feature-spaces through the construction of metafeatures. We
show how these techniques can utilize multiple source datasets to construct an ensemble learner which
further improves performance. We apply FSR to an activity recognition problem and a document classification
problem. The ensemble technique is able to outperform all other baselines and even performs better than a
classifier trained using a large amount of labeled data in the target domain. These problems are especially
difficult because, in addition to having different feature-spaces, the marginal probability distributions and
the class labels are also different. This work extends the state of the art in transfer learning by considering
large transfer across dramatically different spaces.
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1. INTRODUCTION

Traditional supervised machine learning techniques rely on the assumptions that the
training data and test data are drawn from the same probability distributions and
that the classification task is the same for both datasets. However, in practice, it is
often convenient to relax these assumptions and allow the test data to be drawn from a
different probability distribution or to allow the classification task to change. In these
cases, traditional machine learning techniques often fail to correctly classify the test
data.

As an example, consider the problem of activity recognition in a smart home. Based
on motion sensor data of a particular resident in a particular home, a model can be
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trained to predict the current activity occurring in the home. However, the model may
then be tested with a different resident, in a different home, or with different activity
labels. If the model is not adapted to the new situations, the prediction accuracy will
typically drop significantly.

Transfer learning techniques have been proposed to specifically handle these types
of situations. Transfer learning algorithms seek to apply knowledge learned from a
previous task to a new but related task. The intuition behind transfer learning stems
from the ability of humans to extend what has been learned in one context to a new
context. In the field of machine learning, the benefits of transfer learning are numerous;
less time is spent learning new tasks, less information is required of experts (usually
human), and more situations can be handled effectively, making the learned model
more robust. These potential benefits have led researchers to apply transfer learning
techniques to many domains with varying degrees of success.

Most transfer learning techniques focus on situations where the difference between
the source and target domains stems mainly from differences in the marginal proba-
bility distributions of the domains or different task labels [Cook et al. 2012; Pan and
Yang 2010]. In this article, we propose a novel heterogeneous transfer learning tech-
nique, Feature-Space Remapping (FSR), which is capable of handling different feature
spaces without the use of a translation oracle or instance-instance co-occurrence data.
We term the technique a “remapping” because the original raw data is already mapped
onto a feature space and FSR remaps the data to a different feature space. The tech-
nique can be used in either the informed or uninformed transfer learning setting and
we provide details for both cases. FSR uses only a small amount of labeled data in
the target domain to infer relations to the source domain and can optionally operate
without any labeled data in the target domain or other linkage data. For simplicity,
we present FSR here assuming the feature-space is a vector of real-valued numbers.
However, it is straightforward to extend the FSR approach to handle categorical or
discrete values as well.

In addition to presenting FSR for transferring knowledge from a single source do-
main to a target domain, we also show how FSR can effectively combine the information
from multiple source domains by using an ensemble learner to increase the classifica-
tion accuracy in the target domain. We illustrate our techniques using examples from
activity recognition and document classification.

2. BACKGROUND

Many of the ideas and principles of machine learning have originated from comparisons
and analogies to human learning. The same is true with transfer learning. The ability
to identify deep, subtle connections, what we term transfer learning, is the hallmark
of human intelligence. Byrnes [1996] defines transfer learning as the ability to ex-
tend what has been learned in one context to new contexts. Thorndike and Woodworth
[1901] first coined this term as they explored how individuals transfer learned con-
cepts between contexts that share common features. Barnett and Ceci [2002] provide
a taxonomy of features that influence transfer learning in humans.

In the field of machine learning, transfer learning is studied under a variety of names
including learning to learn, lifelong learning, knowledge transfer, inductive transfer,
context-sensitive learning, and metalearning [Arnold et al. 2007; Elkan 2001; Thrun
1996; Thrun and Pratt 1998; Vilalta and Drissi 2002]. It is also closely related to self-
taught learning, multitask learning, domain adaptation, and covariate shift. Because
of this broad variance in the terminology used to describe transfer learning it is helpful
to provide a formal definition of the terms we will use throughout the rest of this
article.
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2.1. Definitions
Definitions for domain and task have been provided by Pan and Yang [2010]:

Definition 2.1 (Domain). A domain D is a two-tuple (x, P(X)). x is the feature space
of D and P(X) is the marginal distribution where X = {x1, ..., x,} € x.

Definition 2.2 (Task). A task T is a two-tuple (Y, f()) for some given domain D. Y is
the label space of D and f() is an objective predictive function for D. f() is sometimes
written as a conditional probability distribution P(y|x). f() is not given, but can be
learned from the training data.

Using these terms, we can now define transfer learning. In this article, we use the
definition given by Cook et al. [2012], which is similar to that presented by Pan and
Yang [2010] but allows for transfer learning from multiple source domains.

Definition 2.3 (Transfer Learning). Given a set of source domains DS = D, , ..., D;,
where n > 0, a target domain, D;, a set of source tasks T'S = T, ... Ts, where T, € T'S
corresponds with D, € DS, and a target task 7; that corresponds to D;, transfer
learning helps improve the learning of the target predictive function f;() in D, where
D, ¢ DSand T, ¢ TS.

This definition of transfer learning is broad and encompasses a large number of
different transfer learning scenarios. The source tasks can differ from the target task
by having a different label space, a different predictive function for labels in that label
space, or both. The source data can differ from the target data by having a different
domain, a different task, or both. The FSR algorithm focuses on the challenge of the
source and target domain coming from different feature spaces. This is commonly
referred to as heterogeneous transfer learning in the literature and is formally defined
in the following text.

Definition 2.4 (Heterogeneous Transfer Learning). Given a set of source domains
DS = Dy, ..., D, wheren > 0, atarget domain, D;, aset of source tasks 7S = T,, ... T,
where T, € T'S corresponds with D, € DS, and a target task 7} that corresponds to D,
transfer learning helps improve the learning of the target predictive function f£;() in D,
where x; N (x5, U... xs5,) = 9.

Although FSR focuses on different feature spaces, it does not rely on the other dimen-
sions of the transfer learning problem remaining constant. Indeed, the datasets we use
in the experimental section have differences in the marginal probability distributions
as well as in the label space. As with all transfer learning problems, we do rely on the
basic assumption that there exists some relationship between the source and target ar-
eas, which allows for the successful transfer of knowledge from the source to the target.

When the feature spaces of the domains are different, we assume that they can
be different both in terms of the number of dimensions and in the organization of
the dimensions. To illustrate this point, consider two different domains, one consist-
ing of two dimensional data and the other consisting of three dimensional data. It
could be the case that the first two dimensions are the same in both domains (see
Figure 1(a)); however, it could also be the case that the first two dimensions of the
target domain correspond with the last two dimensions of the source domain (see
Figure 1(b)), or perhaps only the first dimension of the target domain corresponds
with the last dimension of the source domain. It may even be the case that the di-
mensions are entirely different, but a mapping between dimensions could still allow
the knowledge gained in one domain to be used effectively in the other domain (see
Figure 1(c)). FSR learns a mapping from the target feature space to the source feature
space regardless of the exact differences between dimensions.
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Fig. 1. Example mappings from target T (two-dimensional data) to source S (three-dimensional data).

In traditional machine learning, there are three basic types of techniques that are
utilized based on the availability of labeled data: supervised, unsupervised, and semisu-
pervised. In transfer learning, the availability of labeled data can be different in the
source and target domains, thus four general classes of techniques arise, informed su-
pervised, informed unsupervised, uninformed supervised, uninformed unsupervised.
We follow the definitions of Cook et al. [2012], where informed or uninformed refers to
the presence or absence, respectively, of labeled data in the target domain, and super-
vised or unsupervised refers to the presence or absence of labeled data in the source
domain. We propose both uninformed and informed variations of FSR.

2.2. Related Work

Domain adaptation is a specific branch of transfer learning that targets the case when
the source and target data are not from the same domain. However, most of those works
assume the difference is in the marginal probability distribution of the domains.

Daumé and Marcu [2006] model the probability distribution using a mixture model.
They assume that the source data comes from a mixture of a source probability distri-
bution and a general probability distribution and that the target data similarly comes
from a mixture of a target probability distribution and a general probability distribu-
tion. They then learn the parameters of these distributions from the data and use the
source data to bolster the estimation of the the target data.

Several researchers apply feature-space transformations to overcome differences in
the marginal probability distributions. Blitzer et al. [2006, 2007] propose Structural
Correspondence Learning (SCL) to use the correlation between certain pivot features
(which have the same semantic meaning in both domains) and other features to create
a common feature representation. Pan et al. [2010] construct a bipartite graph with
connections between pivot features and nonpivot features that contain co-occurring
feature values. They then apply spectral clustering to align the features and create a
common feature-space representation.

Daumé [2007] transform the source and target feature spaces into a higher dimen-
sional representation with source, target and common components. They then extend
this to use unlabeled data by introducing co-regularization to force the source and tar-
get components to predict the same label on the unlabeled data [Daumé et al. 2010].
Zhong et al. [2009] use kernel mapping to map features in the source and target do-
mains to a new feature space where the conditional and marginal probabilities are
more closely aligned. They prove that a classifier trained in the new feature space has
a bounded error.
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Using a different approach, Pan et al. [2011] perform domain adaptation via dimen-
sionality reduction. Using Transfer Component Analysis (TCA) [Pan et al. 2008], they
reduce the distance between domains by projecting the features onto a shared sub-
space. As in the previous approaches, the technique focuses on the differences in the
distribution of the data and assumes the feature space is the same.

Chattopadhyay et al. [2011] use domain adaptation on multiple source domains to
detect fatigue using SEMG signal data. Their algorithm combines the output from
multiple source classifiers to predict a label for unlabeled data in the target domain.
These data instances are then combined with labeled data in the target domain and
a final classifier is built. The label predictions from the multiple source domains are
combined using a weighted voting schemed where the weights are based upon the
similarity between the source and target domain at a per-class level.

Heterogeneous transfer learning focuses on transfer learning problems where the
source and target domains are different because they have different feature spaces.
Dai et al. [2008] attempt solving the heterogeneous transfer learning problem by ex-
tending the risk minimization framework [Lafferty and Zhai 2001] and developing
a translator between feature spaces based upon co-occurrence data (feature-feature,
feature-instance, instance-feature, or instance-instance) between the source and tar-
get datasets [Dai et al. 2008]. Prettenhofer and Stein [2011] extend SCL to the het-
erogeneous transfer learning case by use a translation oracle (i.e., a domain expert or
bilingual dictionary) to enumerate several pivot features. These pivot features are then
correlated to the other features in both domains and a cross-lingual classifier is trained.

Shi and Yu [2012] apply dimensionality reduction to heterogeneous feature spaces.
In order to project the features from different feature spaces onto a single unified
subspace, they require that the data instances be linked as in multiview learning. The
ith data instance in the jth feature space is also the itk data instance in the kth feature
space. Yang et al. [2009] extend the Probabilistic Latent Semantic Analysis (PLSA)
[Hofmann 1999] to improve image clustering results. Image features are clustered to
latent variables while annotations from social media are simultaneously clustered to
the same latent variables. By clustering both the annotations and the image features,
the overall clustering results are improved.

Manual mapping strategies have also been used to overcome differences in the fea-
ture spaces. For example, van Kasteren et al. [2008, 2010] group sensors by their
location/function. Sensors in the source domain are then mapped to similar sensors
in the target domain. Rashidi and Cook [2010, 2011] also map sensors based on lo-
cation/function but apply additional transfer learning techniques to better align the
source and target datasets. Our approach eliminates the need to manually map the
feature spaces, as this is handled by the algorithm. Additional domain adaptation ap-
proaches can then be applied to further improve the knowledge transfer. FSR requires
the manual specification of metafeatures, but this specification only occurs once and
can be applied to map multiple source and target domains. The techniques of both
Rashidi and Van Kasteren require a mapping to be defined for each source and target
pair. Additionally, the manual mapping strategies are domain dependent, while FSR
is applicable to a variety of different problems.

Each of the above mentioned heterogeneous techniques require some form of linkage
(co-occurrence data, dictionaries, or domain experts) between the source and target
dataset. FSR uses only a small amount of labeled data in the target domain to infer
relations to the source domain and can optionally operate without any labeled data in
the target domain or other linkage data. Similar to our approach, Duan et al. [2012]
do not require any co-occurrence data linking the two feature spaces. Like Duamé
[2007], they also transform the feature space into a higher-dimensional representation
with source, target, and common components. However, the common components are
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obtained by projecting the source and target features onto a common subspace. Their
approach only handles the informed transfer learning problem, as it requires some
labeled data in the target domain.

2.3. lllustrative Example

Before describing FSR, we put forward an example transfer learning scenario to illus-
trate the concepts introduced throughout the discussion. To that end, let us consider
the transfer learning problem for activity recognition in a smart environment using
ambient sensors.

Ambient sensors are typically embedded in an individual’s environment. Examples
of ambient sensors may include motion detectors, door sensors, object sensors, pressure
sensors, and temperature sensors. As the name indicates, these sensors are designed to
disappear into the environment while collecting a variety of activity related information
such as human movements in the environment induced by activities, interactions with
objects during the performance of an activity, and changes to illumination, pressure,
and temperature in the environment due to activities.

Suppose there are two homes (a source home and a target home) equipped with these
ambient sensors. The source home already has an activity recognition model trained
for that home. The target home does not yet have an activity recognition model trained.
To use the model from the source home to recognize activities in the target home, they
must use a common feature-space.

A common approach to activity recognition using ambient sensors is to formulate the
problem as a bag of sensors approach over some sliding window of time or sensor events.
This means that the sensors from one home must be mapped onto the sensors from
the other home. Specifically, the features of one domain must map onto the features (or
dimensions) of the other domain. This could be accomplished by mapping the sensors
in the target home to the sensors in the source home, mapping the sensors in the source
home to sensors in the target home, or mapping both the source and target sensors to a
common set of generic labels (e.g., location-based mapping such as kitchen, bedroom).

This mapping is just the initial step in the transfer learning. Once a shared feature-
space is achieved, additional transfer learning may be necessary to resolve differences
in the marginal probabilities (the residents in one home may spend half the day sleep-
ing, whereas the residents in the other home only sleep 6 hours a day) or differences in
the classification task (the set of activities recognized may be different). FSR focuses
on achieving this initial transformation of the feature-space.

3. FEATURE-SPACE REMAPPING

Traditionally, domain adaptation problems have focused on the case when D, # D,
usually because P(X;) # P(X;). For example, in document classification, the frequency
of a particular word may vary for different domains. When domain adaptation has been
applied to problems where xs; # x:, there is usually a trivial transformation between
feature spaces. An example of this is found in document classification, where the do-
main dimensions are typically word counts in each document. To compare documents
with different words, a user can set the word counts for the unseen words to zero. This
allows the user to easily define a common feature space between documents. Additional
transfer learning techniques may still be necessary because P(X;) # P(X;), but the ini-
tial feature-space transformation is trivial. This trivial transformation works because
the semantic meaning of the dimensions is assumed to be known. For document classi-
fication, the known semantics of the dimensions makes it straightforward to determine
the frequency for each word.

FSR, on the other hand, is a heterogeneous transfer learning algorithm and trans-
forms feature spaces in a nontrivial manner. The semantic meaning of the dimensions
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Source
Data

Output

Target Data

Fig. 2. Flowchart of the FSR mapping process.

is assumed to be either unknown or incompatible between the source and target do-
mains. In the document classification example, this would be equivalent to having a
list of word frequencies in the document but not knowing which frequency is associ-
ated with which word or having the documents come from different languages without
having any translation information. In the activity recognition domain, it is equiva-
lent to having sensor values but not knowing from which sensor (type or location) it
originated. Unlike many other heterogeneous transfer learning techniques, FSR does
not rely on co-occurrence data such as dictionaries, social annotations of images, or
multiview data. Additionally, we do not assume that P(Y,|X,) = P(Y;|X;) or even that
Y, =Y;, but we do assume that they must still be related.

In this article, we specifically consider the case when both the source and target
domains can be represented by a bag-of-features and related features have similar
value distributions. This does not account for features that may be related through a
linear or nonlinear transformation, such as x = 10y + 3. Differences in linear scaling
can be removed through the application of normalization techniques, but this may
cause the FSR technique to incorrectly map features that would otherwise be clearly
unrelated.

To achieve the desired feature-space transformation, we view the problem as a new
machine learning task to learn a mapping from each dimension in the target fea-
ture space to a corresponding dimension in the source feature space. More formally,
this can be written as follows: Given source data X;, target data X;, and a hypoth-
esis H : x; — Y, find a mapping 0(x;, xs) such that errory(Hy) is minimized where
errory(H;) represents the empirical error on the target domain by using H; on the
mapped target data. Notice the distinction between this problem definition and other
approaches typically applied to heterogeneous transfer learning. Traditional heteroge-
neous transfer learning approaches usually map source features to target features or
source and target features to a common feature space and then learn a hypothesis on
this common feature space. In our approach, however, we map the target features to
source features, and we use an already learned hypothesis to avoid the duplication of
work. This also leads to the ability to combine multiple data sources through ensemble
learning, which will be discussed in Section 4. It is possible to relearn a new hypothesis
after performing the mapping. It is also possible to apply additional transfer learn-
ing approaches after first obtaining a unified feature-space. The full FSR process is
depicted in Figure 2.

The number of possible mappings between source and target feature spaces grows
exponentially as the number of features increases. Even for lower-dimensional data,
searching through all possible mappings quickly becomes computationally infeasible.
Using feature-feature, feature-instance, or instance-instance co-occurrence data could
be used to guide the search but FSR operates under the assumption that this type of
data is not available. When labeled data is available in the target domain, the empirical
error of a classifier tested on the mapped data could provide a quantitative method for
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evaluating candidate mappings. It may even be possible to learn a mapping function
directly. However, the search techniques would still be computationally expensive.
Instead, FSR computes metafeatures as means to relate source and target features.
Essentially, the metafeatures are used to select features in the source space that are
most similar to features in the target space. These metafeatures can be defined and
computed multiple ways, which will be discussed in Sections 3.1 and 3.2, but to simplify
the presentation of the FSR algorithm, let us assume that metafeatures have already
been calculated for the source and target features.

Next, FSR computes a similarity matrix S between source features and target fea-
tures. This is done by computing a similarity score for each feature-feature pair based
on the metafeatures computed for the given features. The similarity score is computed
as the average similarity between the source and target metafeature values. Formally,
this score is given by Equations (1) and (2).

1 X
Sy == ) Q(m,m,), (1)

N 4

i=1
where x is the xth source feature, y is the yth target feature, N is the number of
metafeatures, and Q is the normalized similarity between two metafeatures n, and
mg, the ith meta-feature of feature x and y, respectively. We calculate the normalized
similarity between two metafeatures as the absolute value of the difference between
metafeature values divided by the maximum possible difference between the metafea-
tures to obtain a normalized value between 0 and 1. This is shown in Equation (2).

. — |

Q(mi,m)=1- (2)

max (m, mi Vx € DVy € D;) — min (mi,, m,Vx € D\Vy € D)

If the metafeature values are all positive, which is the case for the experiments we
show here, the normalized similarity equation can be simplified to:

s — |

Qml,m)=1- 3

max (ml,, mVx € DNy € D;)’

Then, FSR computes a mapping L : ¥ — x by selecting source feature x with maximal
similarity to target feature y, as given by the similarity matrix S.

L(y) = argmax S,, (4)
xeDy

FSR generates a many-to-one mapping. This is because multiple dimensions (fea-
tures) in the target space can be mapped to a single feature in the source space, but
one feature in the target domain will never map to multiple features in the source
domain. FSR could alternatively be run in the opposite direction. This would result
in a many-to-one mapping in the alternative direction. One of the benefits to running
FSR from target to source, as will be discussed later, is the ability to easily combine
multiple source domains.

Finally, FSR applies the computed mapping to the target data to be classified using
the hypothesis learned on the source data. Because FSR produces a many-to-one map-
ping, the procedure for combining the multiple dimensions must also be defined. For
dimensions with numerical values, one could use an aggregate value such as minimum,
maximum, total, or average. For categorical values, one could use a voting protocol. For
each instance in the target data, the features are mapped to the source features. When
multiple features in the target data are mapped to single feature in the source data, the
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feature values are combined using the specified aggregation protocol. In this work, we
use the summed value for activity recognition and the maximum value for document
classification. We also include some experimental results when different aggregation
protocols are used.

If we assume the metafeature computation is linear, FSR has a running time of
O(d; * d; + n + m), where d; and d; is the dimensionality of the source and target data,
respectively, and n and m are the number of source and target instances, respectively.
This runtime is explained by the following observations. First, each dimension in the
target domain is compared to each dimension in the source domain, resulting in the d; *
d; term. Second, assuming the metafeature computation is linear in the number of data
instances, then computing the metafeatures requires O(n + m) time. Finally, applying
the mapping requires a single pass through the target data or O(m) time. Despite the
d? running time component, in our experiments, FSR finishes in a reasonable amount
of time even on the high-dimensional text data.

As mentioned earlier, the defining and calculating of metafeatures can be done in
multiple ways. If some labeled target data is available, it can be used to calculate
domain-independent metafeatures (i.e., metafeatures that can be applied to any het-
erogeneous transfer learning problem). We refer to this as Informed Feature-Space
Remapping because it requires the labeled target data. If no labeled target data is
available then domain-dependent metafeatures must be defined. We refer to this as
Uninformed Feature Space Remapping (UFSR) because it does not require the label
target data.

3.1. Informed Feature-Space Remapping

Searching through all possible mappings to find the mapping that minimizes the error
of the hypothesis on the target data is computationally expensive. However, because the
hypothesis has been learned using the source training data, one would expect the error
to be minimized by selecting mappings for which the feature-label co-occurrence data is
similar in the source and target datasets. This leads to our first heuristic for mapping
source and target features. IFSR computes the feature-label co-occurrence data for
each feature in the source and target space by calculating the expected value of the
feature given the label using the labeled training data. More formally, if Y = Y; U Y3,
then the feature-label co-occurrence data for each feature and label is computed as:

1 n
E(x|c) = n—chl (5)

where x is the feature, c is the label such that ¢ € Y, n, is the number of data instances
with label ¢, and x; is the value of feature x on the i¢th data instance with a label of ¢. This
assumes a real-valued number space. One could easily extend this to categorical values
by using the count of occurrences of each category as an estimation of the probability
that the given feature will have the given categorical value.

Each feature-label co-occurrence value now becomes a metafeature for the given
feature. Thus, E(x|c) is a metafeature for feature x and x will have z = |Y | such meta-
features, one for each label c. Using feature-label co-occurrence data as a metafeature
keeps the FSR asymptotic runtime within the previously stated bound of O(d; * d; +
n + m). This is because the metafeature calculation is linear in the number of instances.
We compute E(x|c) for each label ¢ € Y. This can be done in a single pass through the
datasets and thus requires O(n+ m+ y) time. Typically, n > y and m > y, so this term
can be simplified to just O(n + m).

Additionally, using feature-label co-occurrence data for the metafeatures provides
domain-independent metafeatures so that meta-features for the specific problem do
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not need to be specified by a domain expert. Thus, any domain for which labeled
data exists can apply this feature mapping technique without setting any parameters,
defining any relations, or defining any additional metafeatures.

To understand why using the the feature-label co-occurrence data as a heuristic
to find an approximation to the optimal mapping works, we go back to the original
problem definition. Given source data X;, target data X;, and a hypothesis H; : x; — Y5,
find a mapping 6(x;, xs) such that errory(H;) is minimized. This error is minimized
by maximizing the number of agreements between Hg(f(q)) and f;(g), as shown in
Equation (6), where g is a data instance in X; and 6(q) is the mapped data in the source
domain space.

0, if Hy(0(q) # fi(q). (6)

A naive Bayes classifier can learn a hypothesis by estimating P(c) and P(g;|c) based
on their observed frequencies and applying Bayes rule to estimate the posterior prob-
ability P(c|q). The class ¢ with the highest posterior probability is select as the class
label for g [Mitchell 1997]. Thus, if the hypothesis is expressed as a naive Bayes clas-
sifier and if we approximate the true predictive function f;() also using a naive Bayes
formulation, then Equation (6) can be expressed as shown in Equation (7).

1, if Hy(0(q)) = f(q).
max ZX {
qeEA;

max Z 1, ifargmax.cy P(c) ]_[;.it=1 P(6(g;)|c) = argmax.y P(c) ]_[;it:1 P(qg;le).
0 0, ifargmax.y P(c) ]_[?‘:1 P(6(g;)|c) # argmax..y P(c) ]_[fl;l P(g;lc).

Under this representation, selecting the mapping for each feature that has the most
similar feature-label co-occurrence value can be seen as a greedy approximation to
minimize the empirical error on the mapped target data. Indeed, when the feature
values are restricted to either 0 or 1, the feature-label co-occurrence value E(x|c) is
equivalent to the estimation of the probability that the feature has a value of 1 given
the class label, P(x = 1|c).

3.2. Uninformed Feature-Space Remapping

When labeled data is unavailable in the target domain, we still need some way to
link correlated source and target features. In this case, we define metafeatures that
can be used as a heuristic to guide the mapping process. Metafeatures should have
the following attributes: (1) The metafeatures should not depend on any relationship
between different features, and (2) features with similar metafeature values should
also have similar conditional probability distributions. The first stipulation allows
meta-features to be applied, calculated, and compared between different feature spaces.

To clarify this concept, consider the following examples. In activity recognition using
motion sensors, the time of day when motion sensor A fires would be an acceptable
metafeature. On the other hand, the amount of time between sensor A firing and sensor
B firing would not be an acceptable metafeature because it depends on the relationship
between sensor A and sensor B. However, the amount of time between sensor A firing
and any unspecified sensor firing is acceptable because it again depends only upon
sensor A.

The second stipulation is important because it provides a basis for using the metafea-
tures as a heuristic to select a mapping between features. The metafeatures provide
some indication that the features have similar conditional probability distributions,
and if the conditional probability distributions of two features are similar, then the
mapping process will be more likely to select that pair for mapping.

Defining metafeatures and creating the feature dataset is a domain-specific task.
The metafeatures used for activity recognition may not be applicable to the document
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Table I. Metafeatures Defined for Activity Recognition

Metafeature Description Metafeature Mo021 MA020 MO018
03:00 3 1 0
04:00 2 0 0
average sensor event frequency over 1-hour time 05:00 2 0 0
periods (x24) 06:00 4 0 0
07:00 0 0 0
08:00 14 14 2
average sensor event frequency over 3-hour time 03:00 7 1 0
periods (x8) 06:00 18 14 2
average sensor event frequency over 8-hour time 00:00 11 1 0
periods (x3) 08:00 14 14 2
average sensor event frequency over 24-hour time 00:00 25 15 2
periods (x1)
average and standard deviation of the time of day of | avg. 26,015.36 | 30,356.40 | 31,594.5
this sensor event (seconds) std. dev. 6,831.72 | 4,555.85 2.50
average and standard deviation of the time between | avg. 760.79 1.34 131
this sensor event and the previous sensor event std. dev. 1,862.31 1.02 0.52
(seconds)
average and standard deviation of the time between | avg. 722.94 13.66 5.85
this sensor event and the next sensor event std. dev. 1,833.35 44.59 2.11
(seconds)
average and standard deviation of the time between | avg. 761.41 1,305.67 4.53
this event and the next event from this sensor std. dev. 1,862.06 4,699.58 0.0
(seconds)
probability the next sensor event is from the same prob. 0.76 0.72 0.0
sensor

classification domain. In Table I, we describe the metafeatures we use for the activity
recognition problem, and using the example data shown in Table II, we show the
metafeature values for some of the sensors. These metafeatures have been chosen to
be consistent with the previously discussed metafeature stipulations.

All of these metafeatures can be computed in linear time; therefore, the asymptotic
runtime of O(d; * d; + n + m) is still achieved.

As an extension, if labeled target data is available, one could easily combine the
domain-dependent metafeatures with the feature-label co-occurrence metafeatures to
provide additional information when selecting a feature-space mapping. One could also
compute the features on a per-class basis. For example, the frequency of a sensor event
could instead be computed as the frequency of a sensor event given the activity label.
However, in order to avoid overfitting the data, this may require more labeled data
than is typically available in transfer learning scenarios.

4. COMBINING MULTIPLE DATA SOURCES

One of the major benefits of the FSR mapping approach is that it can be used to combine
data from multiple source domains in a straightforward manner. An ensemble classifier
can be built by mapping the target domain to each source domain and training a
separate base classifier for each source domain. The output from these source classifiers
can then be combined by the ensemble metaclassifier to make the final prediction. We
refer to this as Ensemble Learning via Feature-Space Remapping (ELFSR).

Ensemble methods have been used in a variety of situations with great success.
According to Hansen and Salamon [1990], a necessary and sufficient condition for en-
semble classifiers to be more accurate than any of the individual classifiers are for the

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 1, Article 3, Publication date: March 2015.



3:12

Table Il. Sample of Sensor Events

K. D. Feuz and D. J. Cook

Date

2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15
2011-06-15

Time
03:41:50.30088
03:41:50.402649
03:44:50.862962
03:44:51.929508
04:41:28.179357
04:41:29.333803
05:33:44.024833
05:33:45.118382
06:33:30.363675
06:33:31.437863
06:33:33.878588
06:33:35.956492
08:45:45.685723
08:45:46.789252
08:45:47.675812
08:45:49.382375
08:45:50.869002
08:45:53.115439
08:45:55.016408
08:45:56.17543
08:46:00.115612
08:46:00.665277
08:46:01.219705
08:46:01.787696
08:46:03.646237
08:46:03.817155
08:46:08.513192
08:46:08.712314
08:46:09.87972
08:46:12.103082
08:46:13.763861
08:46:14.876471
08:46:17.157816
08:46:18.296485
08:46:21.859339
08:46:22.752142
08:46:23.885996
08:46:25.199775
08:46:26.713111
08:46:27.590115
08:46:29.876241
08:46:30.760636
08:46:32.587806
08:46:36.329587
08:46:37.117772
08:46:45.86861

Sensor
MO021
MAO020
MO021
MoO021
Mo021
Mo021
Mo021
MO021
MO021
Mo021
Mo021
Mo021
Mo021
MO021
MO021
MO021
Mo021
Mo021
MO021
Mo021
MO021
MA020
MoO021
MAO020
Mo021
MAO020
MO021
MA020
MA020
MA020
MAO020
MAO020
MA020
MA020
MAO020
Mo021
MO021
MAO020
MA020
MO019
MAO020
MO019
MO18
MAO013
MO018
MAO013

Value
OFF
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF
ON
OFF

OFF

OFF
OFF
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classifiers to be accurate and diverse. An accurate classifier is one that has a classi-
fication accuracy better than random guessing [Dietterich 2000]. Two classifiers are
diverse if the errors they make are different (and preferably uncorrelated) [Dietterich
2000]. Most ensemble techniques defined to date generate a set of diverse classifiers.
Bagging, for example, generates classifiers by repeatedly subsampling the original data
with replacement [Breiman 1996]. Boosting iteratively reweights samples based on the
accuracy of the previous iteration [Freund and Schapire 1997]. In ELFSR, each classi-
fier is drawn from a different domain, leading to a naturally diverse set of classifiers.

Once the classifiers are generated, the output must be combined to obtain the final
result. Several approaches have been used including majority voting, weighted voting,
summing the probabilities, and training a new learner on the output of the classifiers
or stacking [Wolpert 1992]. Stacking is a supervised technique and thus requires ad-
ditional labeled data to train the ensemble classifier. This means that stacking can be
readily combined with IFSR, which already uses labeled data.

Work on ensemble classifiers for transfer learning has mainly focused on boosting
techniques [Pan et al. 2012; Xian-ming and Shao-zi 2009; Yao and Doretto 2010]. As
there has been very little work on transfer learning using voting or stacking ensemble
classifiers, we compare the results of several different ensemble configurations. Specif-
ically, we consider two voting ensembles (a majority voting ensemble and a summation
voting ensemble) and two stacking ensembles (via naive Bayes and via a decision tree).
The voting ensembles have the advantage of not requiring any labeled data in the
target domain, while the stacking techniques require a small amount of labeled data.

4.1. Voting Ensemble

One of the simplest methods for combining multiple classifiers is through majority
voting. Each classifier votes for the class label it predicts for the given instance and the
label receiving the most votes wins.

The drawback to the majority voting ensemble classifier is that the ensemble throws
away important information by only considering the most likely label as predicted
by each classifier. The summation voting ensemble classifier rectifies this weakness
by summing up the predicted probability of each label for each classifier and then
assigning the label with the highest summed probability.

4.2. Stacking

In stacking, the output of each source classifier is fed into the ensemble classifier, which
then produces the final classification. Here, we consider two different classification
algorithms for the ensemble classifier: naive Bayes and decision trees. One of the
drawbacks to using stacking is the requirement of labeled data to train the ensemble
classifier. Rather than test both FSR and IFSR with the stacking technique, we only
consider the result of using IFSR because IFSR already uses a small amount of labeled
data in the target domain. We use stacking with IFSR without requiring any additional
labeled data in the target domain.

5. EXPERIMENTAL RESULTS

FSR and its proposed extensions can be applied to a variety of different transfer learn-
ing problems. We evaluate the performance of these techniques in both the activity
recognition domain and in the document classification domain.

First, we evaluate the performance of UFSR, IFSR, and ELFSR on 18 datasets from
different smart apartments. Specific statistics for each dataset are found in Table III.
Each apartment is equipped with motion sensors and door sensors. The number of
sensors range from 17 to 39 with an average of 28.7 sensors and a standard devia-
tion of 6.21. Each dataset has been annotated with 37 different activities, shown in
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Table Ill. Summary Statistics of the Activity Recognition Dataset

# UFSR # IFSR

Id | # Features | # Labels | # Instances | Metafeatures | Metafeatures
1 35 29 133,157 1,575 1,295
2 17 26 53,669 765 629

3 37 31 178,137 1,665 1,369
4 29 29 57,918 1,305 1,073
5 39 32 141,181 1,755 1,443
6 26 32 149,391 1,170 962

7 26 30 183,945 1,170 962
8 26 28 98,768 1,170 962
9 34 30 102,466 1,530 1,258
10 24 30 143,145 1,080 888
11 38 30 157,736 1,710 1,406
12 24 29 135,451 1,080 888
13 32 32 116,641 1,440 1,184
14 26 31 195,611 1,170 962
15 23 29 100,255 1,035 851
16 33 32 179,693 1,485 1,221
17 23 29 92,740 1,035 851
18 24 30 117,067 1,080 888

Table IV. List of Activities and the Relative Frequency of Occurrence of Each Activity

Activity Frequency | Activity Frequency
Enter Home 0.0031 Personal Hygiene 0.0545
Eat Lunch 0.0070 Leave Home 0.0026
Cook Dinner 0.0534 Eat Dinner 0.0100
Exercise 0.0002 Cook Lunch 0.0274
Wash Dinner Dishes 0.0127 Relax 0.0191
Read 0.0103 Wash Lunch Dishes 0.0077
Phone 0.0029 Evening Meds 0.0037
Eat Breakfast 0.0101 Watch TV 0.0405
Cook 0.0348 Wash Breakfast Dishes 0.0126
Eat 0.0066 Groom 0.0087
Housekeeping 0.0113 Toilet 0.0434
Wash Dishes 0.0088 Work At Desk 0.0004
Sleep Out Of Bed 0.0034 Work At Table 0.0253
Morning Meds 0.0053 Cook Breakfast 0.0320
Take Medicine 0.0036 Bed Toilet Transition 0.0156
Bathe 0.0175 Work 0.0329
Other Activity 0.2789 Entertain Guests 0.0837
Sleep 0.0407 Work On Computer 0.0498
Dress 0.0194

Table IV, with the total amount of labeled data spanning 1 month of time per dataset.
We consider all possible combinations of source and target datasets, yielding a total of
306 possible pairings.

We also test IFSR on the Newsgroups dataset [Lang 1995]. The Newsgroups dataset
is a collection of approximately 20,000 documents across 20 different topics. The topics
are organized in a hierarchical manner. Following the processing steps used by Dai
et al. [2007] and Pan et al. [2011], the source and target datasets are created by first
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Table V. Breakdown of the 20 Newsgroups Dataset for Transfer Learning

Dataset

Ds

Dy

comp Vs. sci

comp.graphics
comp.os.ms.windows.misc
sci.crypt
sci.electronics

comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x
sci.med
sce.space

comp vs. talk

comp.graphics
comp.sys.mac.hardware
comp.windows.x

comp.os.ms.windows.misc
comp.sys.ibm.pc.hardware
talk.politics.guns

talk.politics.mideast talk.politics.misc
talk.religion.misc
rec vs. sci rec.autos rec.motorcycles
rec.sport.baseball rec.sport.hockey
sci.med sci.crypt
sci.space sci.electronics
rec vs. talk rec.autos rec.sport.baseball
rec.motorcycles rec.sport.hockey
talk.politics.guns talk.politics.mideast
talk.politics.misc talk.religion.misc
sci vs. talk sci.electronics sci.crypt
sci.med sci.space

3:15

talk.politics.guns
talk.politics.mideast

talk.politics.misc
talk.religion.misc

Table VI. Summary Statistics of the Newsgroups Datasets

Id # Features | # + Instances | # - Instances | # Meta-Features
Ds(cs) 9,892 1,958 1,972 19,784
Dy(cs) 9,892 2,923 1,977 19,784
Dy(ct) 10,624 2,914 1,568 21,248
Dy(ct) 10,624 1,967 1,685 21,248
Dy(rs) 14,974 1,984 1,977 29,948
D;(rs) 14,974 1,993 1,972 29,948
Dy(rt) 15,253 1,984 1,685 30,506
Dy(rt) 15,253 1,993 1,568 30,506
Dy(st) 15,327 1,971 1,403 30,654
Dy(st) 15,327 1,978 1,850 30,654

selecting two top-level categories as the class labels. The documents are then split by
subcategories to form a source dataset and a target dataset. The resulting datasets are
shown in Table V. We also show basic statistics about the datasets in Table VI.

Each pair of datasets is processed separately so that the alignment and number of
attributes is the same for datasets in the same row but different for datasets in different
rows (i.e., the feature-space of Dy sci. vs. talk is the same as the feature space of D,
sci. vs. talk but the feature-space of D; rec. vs. sci. is not the same as the feature space
of D, sci. vs. talk). Additionally, the source distribution is different from the target
distribution for all datasets because the documents come from different subcategories;
however, they are still related because they come from the same top-level categories.

Asin the work of Dai et al. [2007] and Pan et al. [2011], we train IFSR on D, and then
test IFSR on D; for each row in the table. However, we also take the transfer learning
problem one step further and test each D; on classifiers trained on the D; of the other
rows. This means that, in addition to P(X;) # P(X;), because the source and target
data comes from different subdomains, now yx; # x; because the source and target data
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come from different top-level domains. In this new problem, we no longer know which
words are the same in the different domains (i.e., “bit” may be the i¢h word in the source
domain, but we have no idea which index corresponds to “bit” in the target domain or
even if the word “bit” is found in the target domain, let alone if it has the same semantic
meaning in both domains. This also means that although technically Y; = Y; because
we use (0,1) for the class labels, semantically Y # Y; because the source task may be
to classify documents as either belonging to recreation or science, whereas the target
task may be to classify documents as belonging either to talk or computers.

5.1. Smarthome

We compare UFSR and IFSR against several other baselines. UFSR uses the metafea-
tures described in Table I. IFSR uses the feature-label co-occurrence metafeatures, as
described in Equation (5). The first baseline, Manual, uses the generalized sensor lo-
cations (kitchen, bedroom, etc.) to map sensors from one apartment to another. Lastly,
the None classifier treats all sensor events as coming from a single source. Essentially
this eliminates the sensor dimension and only considers the time of day and day of
week of the activity. The Manual technique is the mapping technique currently used
by most researchers in activity recognition [Cook et al. 2012; Rashidi and Cook 2011;
van Kasteren et al. 2008]. It does not require any labeled data in the target domain,
but it does require the manual definition of sensor locations. On the other hand, None
provides a lower bound on the expected performance. All of the techniques use a naive
Bayes classifier trained on the source domain and tested on the target domain. We also
include IFSR-DT, which uses a decision tree trained on source domain and tested on
the target domain.

Performance is measured using both the accuracy (given by Equation (8)) and the
unweighted average recall (see Equation (9)). In both of these equations, N is the total
number of instances, K is the number of labels, and A is the confusion matrix where
A;; is the number of instances of class i classified as class j.

1 K
K
Recall = KL €)
K i=1 Zj:l Aij

We report both the accuracy and the recall because accuracy scores are biased toward
the majority class. For balanced class distributions, this has little effect on the metric,
but it may not be suitable for unbalanced class distributions. Using the unweighted
average recall eliminates this bias and treats all classes equally [van Kasteren et al.
2008]. Note that accuracy can also be considered as the average recall weighted by the
number of instances in the class. A one-way ANOVA is performed and the resulting
p-value is less than 0.0001. The 95% confidence interval is depicted with the error bars.

As shown in Figure 3, the UFSR algorithm performs well if only the accuracy score
is considered. Its performance nearly matches that of the manual technique. However,
when the recall score is considered, UFSR performance drops significantly. IFSR, on
the other hand, performs well under both metrics. The accuracy is better than that of
the Manual technique, and the recall is just slightly worse than the Manual technique.
Matching the performance of the Manual mapped technique is a positive result, as
it implies that transfer learning can be used to reduce or eliminate the need for a
domain expert to supply a mapping between domains. The IFSR mapping is able to
outperform the Manual mapping technique because the Manual mapping technique is
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Fig. 3. Classification accuracy on the target domain using a single source domain. Manual and None both
provide baseline comparisons. Manual is the mapping specified by a domain expert. None does not apply any
mapping at all. Having UFSR and IFSR come close or surpass the Manual mapping results is excellent.

based solely upon the location of the sensors. This is effective when the resident in the
source dataset performs activities in the same locations as the resident in the target
dataset. For example, both residents are likely to cook in the kitchen. On the other
hand, the Manual mapping technique is likely to fail when the residents perform the
same activity in different locations. For example, the resident in the source dataset
might eat in the living room while the resident in the target dataset might eat in the
kitchen. IFSR overcomes this problem by mapping features based on correlation with
the activity label. The metafeatures used by IFSR are specifically derived to optimize
the mapping when a naive Bayes classifier is used. However, from the performance of
IFSR-DT, we see that the mapping works with other classifiers as well. Exploring other
mapping strategies and heuristics may lead to further improvements for specific types
of classifiers.

The previously discussed results are the average of 306 different mappings. Individ-
ual results show both higher and lower performance. One direction of transfer learning
research focuses on how to select the best source dataset. Assuming this problem is
solved, then we could select the “best” source dataset for each target dataset. We do
not claim that this contributes to avoid negative transfer, only that if negative transfer
can be predicted and avoided, we can improve the results. Figure 4 shows the results
of using the best source dataset with the same mapping techniques discussed earlier.
Under this scenario, the performance of IFSR improves significantly. IFSR still out-
performs the Manual mapping technique by a small margin, although there is a high
degree of overlap between the two confidence intervals. Again, a one-way ANOVA is
performed and the resulting p-value is less than 0.0001. The 95% confidence interval
is depicted with the error bars.

The next experiment shows the effect of the amount of labeled target data on the
accuracy and recall score of the IFSR algorithm. As in the previous experiments, we
use the 306 possible pairings of the activity recognition datasets. However, this time,
we vary the number of days of labeled target data from 0.25 to 30.00. We also include
a comparison to a baseline classifier, Self, which uses a naive Bayes classifier that has
been trained only on the labeled target data and is tested on the remaining target
data. Figure 5 shows the results. Clearly, adding more labeled target data is initially
beneficial. However, for IFSR, the increase in accuracy begins to level off after approx-
imately 10 days of labeled target data. The increase in recall appears to peek between
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Fig. 4. Classification accuracy on the target domain using the best single source domain. This assumes

that the best dataset to transfer from could be identified a priori. Manual and None both provide baseline
comparisons. Manual is the mapping specified by a domain expert. None does not apply any mapping at all.
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Fig. 5. IFSR and Self accuracy and recall scores as the amount of labeled target data increases. Accuracy
continues to show improvement with the increase of labeled target data while the recall score appears to
peak with between 5 and 10 days of labeled data in the target domain

5 and 10 days of labeled target data, after which point the recall score declines slightly.
This may indicate that having too much labeled data causes IFSR to overfit the data.
Comparing IFSR against the baseline Self, we see that initially IFSR is able to outper-
form the baseline. As the amount of labeled data exceeds 1 day though, Self begins to
outperform IFSR.

Next, we consider different techniques that utilize data from multiple source
datasets. Self uses a naive Bayes classifier that has been trained on the full amount
of labeled target data using threefold cross-validation. Combined combines all of the
source domain data into one big dataset with sensor mappings being manually defined
by location. A naive Bayes classifier is trained on all of the source data and then tested
on the target data. The ensemble techniques each train one naive Bayes classifier per
source dataset and the ensemble is then tested on the target domain. As in the previous
experiments, only 1 day of labeled target data is used by IFSR to make the mapping.
Figure 6 shows the results using the voting ensemble techniques, while Figure 7 shows
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Fig. 6. Classification accuracy on the target domain using multiple source domains with a voting ensemble.
Self and Combined provide baseline comparisons. Self is the result when the source and target dataset are
the same and uses the all the labeled target data, whereas Combined uses the mappings provided by a
domain expert to build a generic classifier. Matching the performance of Combined is a positive result.
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Fig. 7. Classification accuracy on the target domain using multiple source domains with stacking ensemb]es.
Self and Combined provide baseline comparisons. Self is the result when the source and target dataset are
the same and uses the all the labeled target data, whereas Combined uses the mappings provided by a
domain expert to build a generic classifier. The performance of IFSR-Bayes and IFSR-Tree both manage to
beat these baselines representing a considerable gain for the transfer learning techniques.

the results using the stacking ensemble techniques. In neither case do we attempt to
select the best source datasets; we simply use all available source dataset. In the next
experiment, we will consider the effect choosing random subsets of datasets has on the
overall results.

Again we use the accuracy and unweighted average recall for performance metrics.
The performance of the voting ensembles is mixed. UFSR is still unable to compete
with the techniques that use more information (labeled data or manual mappings). The
IFSR voting ensembles perform comparably to the Combined dataset. The tradeoff is
that the Combined dataset requires a manually mapped specification, while the IFSR
voting ensembles require a small amount of labeled data in the target domain.

The performance of the stacking ensembles stand out above the rest. Both stacking
ensembles achieve higher performance in terms of the accuracy and recall scores than
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Fig.8. Learning curve for the ensemble classifiers where the number of source classifiers ranges from 2 to 16.
Each ensemble technique quickly improves with more source classifiers but the performance improvements
then begin to level off.

the Combined dataset or the Self classifier. It does this using only a single day’s worth
of labeled data, and no manual mapping is required. The Self approach uses nearly
30 days of labeled data and is trained and tested on the same dataset (with cross-
validation), whereas the Combined approach uses no labeled data in the target domain
but requires a manual mapping to be specified.

In addition to comparing the performance of IFSR and ELFSR against other tech-
niques, we also consider how the number of source datasets affects the performance
achieved by the techniques.

Figure 8 shows the learning curve for each ensemble technique as the number of
source datasets increases. For UFSR-Summation, [IFSR-Summation, IFSR-Bayes, and
IFSR-Tree, the performance increases with an increasing number of datasets. Most of
the improvement is achieved within the first seven datasets, after which performance
improvement tapers off. For UFSR-Majority and IFSR-Majority, the accuracy perfor-
mance improves with an increasing number of datasets, but the recall performance
remains almost constant regardless of the number of datasets. This illustrates the fact
that important distinguishing information is being discarded by the majority voting
scheme.

5.2. Newsgroups

For the Newsgroups dataset, we compare the IFSR technique using 10% of the labeled
data in D; to perform the mapping against several baselines. Self uses a naive Bayes
classifier that has been trained and tested on the target dataset using 10-fold cross-
validation. None uses a naive Bayes classifier that has been trained on the source
dataset and tested on the target dataset. The source and target feature spaces are
adjusted to have the same number of features by adding zero-valued features as nec-
essary. No attempt is made to adjust for the domain differences. This is similar to
applying a random mapping between the feature spaces. TCA is a domain adaptation
technique that projects both the source and the target domain onto a shared subspace
of reduced dimensionality [Pan et al. 2011]. We compare our results against the unsu-
pervised TCA using a linear kernel with 30 dimensions. We also compare against the
semisupervised TCA (SSTCA) using a linear kernel with 30 dimensions. Since the class
distribution is balanced in these datasets, we report only the accuracy scores. Figure 9
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Fig. 9. Newsgroups dataset results with P(X;) # P(X;). IFSR is not the best choice in this situation but is
usually better than not performing any type of transfer. Self is the result when the source and target dataset
are the same (and uses all the labeled target data).

shows the results. Error bars are shown at the 95% confidence level.

From these results, it is clear the IFSR is not the best technique for transfer learning
when x; = x; and P(X;) # P(X;). This is not surprising because IFSR is designed mainly
to handle different feature spaces. The performance results of IFSR are low on the first
three datasets (cs, ct, and rs), with IFSR only slightly outperforming None on cs and
rs, and actually performing worse than None on ct. TCA and SSTCA also struggles to
improve performance on the cs dataset but do well on the ct and rs datasets. These
results show the importance of further research into detecting and avoiding negative
transfer. IFSR performs much better on the last two datasets (rt and st), improving
the classification accuracy by approximately 10% as compared to None. The accuracy
of IFSR is still lower than TCA, but the gap is much narrower. On two of the datasets
(cs and rt), IFSR even performs better than SSTCA. Note that IFSR is a technique
that has been designed to specifically handle the case when y; # yx;, whereas TCA
is designed to handle the case when P(X;) # P(X;). In this experiment, x; = x; but
P(X;) # P(X;). When viewed in this light, the results of the two algorithms are not
surprising. Of interest is that IFSR is able to show some improvement in many cases
even when y; = x; and P(X;) # P(X)).

The second interesting thing to note is that when IFSR performs well, TCA tends to
do worse (compare ct and rs to rt and st). One possible explanation for this might be that
the differences between P(X;) and P(X;) are greater in rt and st. As the differences
increase, the problem begins to more closely resemble the case when yx; # x;. The
negative correlation between IFSR and TCA is not manifested on the results for the
cs dataset. The reason this occurs is unclear, but it may be related to the fact that
the performance of Self is lowest for the cs dataset, possibly indicating that the dataset
is harder to learn than the other datasets. Further research is needed to investigate
these ideas.

The second experiment we conduct using the Newsgroups dataset involves trans-
ferring knowledge between datasets where yx; # x;. This is a significant step away
from the previous experiment where xs = x; and P(X;) # P(X;). It is also the first
time this type of problem has been considered for document classification when no
translation oracle is available. Because this is the first time such a problem has been
tried, we cannot directly compare against any previous results. We report the results
for each target dataset, averaged over all five source datasets, and the best results for

ACM Transactions on Intelligent Systems and Technology, Vol. 6, No. 1, Article 3, Publication date: March 2015.



3:22 K. D. Feuz and D. J. Cook

0.8 - ]

0.6 None-avg
None-best 50
IFSR-avg
IFSR-best

Accuracy

04 |

0.2 |

rt
Dataset

avg

Fig. 10. Newsgroups dataset results with heterogeneous transfer and no translation oracle. IFSR clearly
outperforms the baseline technique where feature-spaces are not aligned.

each target dataset. In this experiment, the only baseline we have to compare against
is the performance when no transfer is performed (None). The results are shown in
Figure 10. Not surprisingly, the accuracy of None is close to random guessing, ranging
from 50% to 60%. The exciting result is that the accuracy of IFSR is much better,
achieving as high as 73% accuracy when averaged over the source datasets and 76%
accuracy for the best dataset. A two-tailed paired ¢-test gives a p-value of 0.00005 over
all the datasets, and p-values between 0.01 and 0.002 for the individual datasets.

We emphasize that this transfer problem reflects differences along three of the four
possible transfer variables. Specifically, xs # x;, P(X;) # P(X;), and f£;() # f;(). Addi-
tionally, although Y; = Y;, as we are using 0 and 1 for class labels, semantically the 0
and 1 represent different labels in the different datasets. We have successfully trained a
classifier to recognize documents as belonging to the categories of “recreation” or “talk”
and used the learned model to classify documents as belonging to either “computers”
or “science.”

The third experiment we conduct, using the newsgroups dataset, shows the effect
of choosing a particular aggregation method for mapping multiple dimensions in the
target domain to a single dimension in the source domain. Specifically, we compare
IFSR using the following aggregation techniques: Maximum, Minimum (>0), Average,
and Total. The results are shown in Figure 11. Surprisingly, the aggregation method
has little effect on the overall accuracy of the technique as applied to the Newsgroups
datasets. Running an ANOVA on the results yields a p-value of 0.95, indicating that
the results are not statistically significant.

The reason the aggregation technique has little effect on the accuracy results is not
clear. However, we can rule out the explanation that there just is not much aggregation
to be done. A quick look at the generated mappings shows that hundreds of attributes
in the target domain map to tens of attributes in the source domain and many more
attributes in the source domain have two or more attributes mapping to them from
the target domain. Thus, there is indeed a large amount of aggregation occurring. We
can think of a few other possible explanations—the features being aggregating may be
of little importance in defining class boundaries or the features being aggregated may
have similar enough values that any of the aggregation techniques work equally well.
We plan to investigate these ideas in future work.

We also evaluate the performance of the ELFSR techniques on the Newsgroups
datasets. For each Newsgroup target dataset D;, we use all the other Newsgroup
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Fig. 12. Newsgroups dataset results comparing ensemble techniques. No single ensemble technique is
clearly better than any other ensemble technique. However, all of the ensemble techniques perform better
than when only a single source domain is employed.

datasets as source datasets. This gives us a total of nine source datasets for each
target dataset. We consider both voting ensembles and stacking ensembles. The re-
sults are shown in Figure 12. Bayes is a stacking ensemble using naive Bayes as the
ensemble classifier, Tree is a stacking ensemble using a Decision Tree as the ensem-
ble classifier, Maj is a majority voting ensemble, Sum is a sum of probabilities voting
ensemble, and IFSR is the average result without using an ensemble learner. All of
the ensemble techniques evaluated show better results than the basic IFSR technique.
Applying a one-way ANOVA to the results yields a p-value of 0.003, indicating that
the difference in means are statistically significant. Unlike in the activity recognition
domain, here we do not see as much difference between the ensemble techniques them-
selves, as each technique performs similarly to the others. The nadve Bayes stacking
ensemble has the highest accuracy scores, but the other techniques are within a few
percentage points. As can be seen by the confidence intervals, the means for each
technique show significant overlap with each other except for the baseline technique.
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continues to improve.

In addition to comparing the performance of IFSR and ELFSR against other tech-
niques, we also consider how the number of source datasets affects the performance
achieved by the techniques.

We generate learning curves for the Newsgroups dataset, as shown in Figure 13. As
the number of source classifiers increase, so does the overall accuracy. This performance
increase occurs most rapidly with the inclusion of the first few classifiers and then
slowly tapers off as more source classifiers are added. This same pattern is observed
with the activity recognition datasets, but due to space constraints, the results are not
shown here.

One interesting pattern that emerges in majority voting learning curve is the effect
of odd and even number of source datasets. Each time the number of source datasets
increases from odd to even, there is essentially no improvement. However, each time
the number of source datasets increases from even to odd, there is a corresponding jump
in the resulting accuracy. This makes sense intuitively because with an even number
of sources, ties are broken arbitrarily (leading to an average accuracy of 50% for the
tied cases). When a new classifier is added, it acts as the tie-breaking vote. Because
the accuracy of the classifier is greater than 50%, we would expect the performance to
increase, which it does.

6. CONCLUSION

In this article, we present a novel heterogeneous transfer learning technique, Feature-
Space Remapping (FSR), which transfers knowledge between domains with different
feature-spaces without using typical co-occurrence data. The datasets we tested on
also had different marginal probability distributions on the domains, and different
conditional probabilities. This makes the difference between source and target datasets
greater than many previously attempted transfer learning problems. We present both
informed and uniformed variations based on the availability of labeled data in the
target domain. The Informed Feature-Space Remapping uses labeled data in the target
domain to allow the mapping to occur in a domain independent fashion and can be
applied to any heterogeneous transfer learning problem where labeled target data
exists without requiring any additional parameters or user-configurations. The FSR
techniques are compatible with most other transfer learning techniques and could
be applied as a preprocessing step to obtain a common feature space before applying
traditional domain adaptation techniques.

Ensemble Learning via Feature-Space Remapping (ELFSR) is introduced to combine
multiple source datasets and achieve even greater classification accuracy. Using ELFSR
we are able to outperform a classifier trained and tested only in the target domain for
the activity recognition problem. The results of the ELFSR technique in the document
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classification domain are promising and are capable of achieving accuracies of 80% or
more.

We also take the document classification problem and extend it to a new realm by
removing the translation oracle or other co-occurrence data. To our knowledge, this is
the first attempt to solve such a problem. While there is still room for improvement, the
results are promising, achieving accuracy as high as 76% despite the great differences
between source and target datasets. When the ensemble techniques are applied, the
accuracy increases to as high as 82%.

There are still many open research questions to pursue, including avoiding negative
transfer effects and identifying the best sources for transfer. We have shown positive
results for FSR when the dataset is feature-rich. The activity recognition problem has
a large number of classes but relatively few features, while the document classification
problem has a large number of features but only two possible classes. In the future,
we plan to explore additional mapping techniques that work when the data is more
sparse, having both a large number of features and a large number of classes. An addi-
tional future direction involves the combining of multiple dimensions. FSR generates
a many-to-one mapping of target dimensions to source dimensions. We suggest explor-
ing additional ways of combining multiple dimensions as well as exploring enforcing a
one-to-one mapping or running the mapping in the other direction to generate a one-
to-many mapping. While there is still much research to be done, FSR is a promising
new technique to improve the transfer of knowledge between domains, which will in
turn lead to more robust learning systems.
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