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Anomaly detection techniques can extract a wealth of information about unusual events. Unfortunately, 
these methods yield an abundance of findings that are not of interest, obscuring relevant anomalies. In 
this work, we improve upon traditional anomaly detection methods by introducing Isudra, an Indirectly-
Supervised Detector of Relevant Anomalies from time series data. Isudra employs Bayesian optimization 
to select time scales, features, base detector algorithms, and algorithm hyperparameters that increase true 
positive and decrease false positive detection. This optimization is driven by a small amount of example 
anomalies, driving an indirectly-supervised approach to anomaly detection. Additionally, we enhance the 
approach by introducing a warm start method that reduces optimization time between similar problems. 
We validate the feasibility of Isudra to detect clinically-relevant behavior anomalies from over 2 million 
sensor readings collected in 5 smart homes, reflecting 26 health events. Results indicate that indirectly-
supervised anomaly detection outperforms both supervised and unsupervised algorithms at detecting 
instances of health-related anomalies such as falls, nocturia, depression, and weakness.  
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 INTRODUCTION 
Anomaly detection techniques are used to identify unexpected or abnormal data 
patterns. One timely application of anomaly detection is to detect behavioral 
anomalies from sensor data that might indicate a critical health event. The world’s 
population is aging, and 80% of these older adults are diagnosed with at least one 
chronic health condition (Lock et al. 2017). Chronic conditions are frequently 
accompanied by health events that have a sudden onset and last for a brief time. 
Traditionally, detection and diagnosis of these anomalies rely heavily on self-report. 
Automated detection of health-related behavior anomalies can result in more 
accurate diagnosis and timely treatment. At the same time, acceptance of the 
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methods depends on their ability to highlight relevant anomalies without detecting 
irrelevant events that only increase the analysis burden. 
 Finding anomalies that are valuable for a domain expert is equated with “finding a 
needle in a farm full of haystacks” (Almatrafi, Johri, and Rangwala 2018; Fridman et 
al. 2017). While many detection algorithms have been introduced, their efficacy 
depends on numerous data feature and algorithm hyperparameter choices. One way 
to improve on current methods is to let a small number of known relevant anomalies 
inform these choices. In this paper, we introduce Isudra, an algorithm that offers a 
new approach for anomaly detection by introducing indirect supervision. Using this 
approach, known anomalies indirectly inform an otherwise-unsupervised process. 
Isudra invokes Bayesian optimization to make choices that improve detection of 
application-relevant anomalies. We hypothesize that this strategy will reduce 
anomaly detection false positive rates while increasing true positive rates. 
Furthermore, we postulate that we can learn from past cases of indirectly-supervised 
anomaly detection to reduce the number of required Bayesian optimization 
evaluations for future cases, known as warm-starting the Bayesian optimization. 

We validate these hypotheses by analyzing sensor data collected in smart homes 
housing older adults and labeled by nurse-clinicians with detected health events. We 
compare our proposed approaches to baseline techniques using both real and 
synthetically-generated sensor data. 

 RELATED WORK 
Anomaly detection (and the related problem of outlier detection) consists of 
identifying abnormal instances in data. In anomaly detection, two assumptions are 
typically made, namely that anomalous instances are rare and that anomalies differ 
from typical instances with respect to their features.  While unsupervised detection is 
the most common approach to anomaly detection and is popular for fraud detection 
and monitoring of patients, systems, and security (Ahmed, Mahmood, and Islam 2016; 
Jha, Raghunathan, and Zhang 2018; Mirsky et al. 2017; Muralidhar et al. 2018), 
supervised and semi-supervised methods can be employed when large amounts of 
training data are available for the target anomaly. Unfortunately, this constraint is 
not realistic for many applications due to the rarity assumption of anomalous 
instances and the resources involved in obtaining labeled data (Goldstein and Uchida 
2017). Furthermore, with this approach a separate classifier must be trained for each 
anomaly class of interest. 

Most anomaly detection techniques are unsupervised and therefore flag all 
abnormalities that  are present in the data, whether or not they are relevant to a 
particular goal (Haley et al. 2009). They give analysts a “fire hose” approach, offering 
much more information than they actually need. Thus for each target type of 
anomaly, there is substantial effort in selecting the most effective features, time 
frames, and algorithm hyperparameters for each unsupervised detector to be 
sensitive to that anomaly class. One way to address this problem is to use expert 
guidance that can transform a purely unsupervised algorithm into one that is guided 
by indirect input from an expert.   

Although it has not been explored for anomaly detection, indirect supervision has 
been investigated for reinforcement learning in which unintentional strategies yield 
serendipitous results (Guu et al. 2017). Researchers investigating structured 
prediction have also used indirect supervision to estimate probabilistic models in 
cases where the supervised variables are only partially accessible (Raghunathan et al. 
2016).   Others have used indirect supervision by receiving supervised training of a 
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problem that is a companion to the problem of interest and can, therefore, guide 
learning of the target challenge (Chang et al. 2010). While not directly related to 
these earlier works, our proposed indirect supervision approach to anomaly detection 
does share marked similarities. Specifically, we do not use supervised training to 
learn a target anomaly class from labeled examples. However, we make use of such 
labeled examples to guide refinement of a related problem, namely fine-tuning the 
representational and hyperparameter choices of a broader unsupervised learning 
algorithm. With indirect supervision, the supervisor provides examples of a category 
of unsupervised patterns (in this case, anomalies) that should ideally be discovered, 
and the unsupervised algorithm is adjusted to encompass the new category by 
increasing the likelihood of finding these highlighted cases. 

Also related to our indirect supervision of unsupervised learning algorithms is 
weakly-supervised learning. Common types of weak supervision found in the 
literature are incomplete supervision, inexact supervision, and inaccurate 
supervision (Zhou 2017). In the case of incomplete supervision, a small amount of 
labeled data is available together with a large amount of unlabeled data. To address 
the need for additional training, active learning and semi-supervised approaches can 
be employed to obtain more labels for the unlabeled data (Li, Zhu, and Zhang 2018; 
Pohl, Bouchachia, and Hellwagner 2018). In the case of inexact supervision, labeled 
data is available but is not detailed enough to yield strong predictive performance. 
This case often arises in image processing and audio processing (Wang et al. 2018). 
Finally, in the case of inaccurate supervision, labeled data is available but many of 
the labels are known to be inaccurate. For example, Zhao et. al. (Zhao, Chu, and 
Martinez 2018) introduced a weakly supervised clustering algorithm to make use of 
freely available, but often inaccurate, annotations to analyze images of faces. 

Researchers have also explored using weakly labeled data to improve performance 
without directly attempting to provide labels for unlabeled data. In these approaches, 
the data is used to help inform an indirect step that is then used to improve 
performance without acting on the data directly. For example, Gornitz et. al. (Gornitz 
et al. 2013) proposed a supervised approach to unsupervised anomaly detection using 
what they called “semi-supervised” anomaly detection. Here, unsupervised support 
vector data descriptions are augmented by incorporating known labels into the model 
that distinguishes normal from abnormal.  

While we use anomaly detection to discover health events, there is a growing body 
of research to improve and augment manual detection of health events and health 
status. These approaches represent a technological replication of manual assessment 
techniques for sleep apnea, cardiac defibrillation, atrial fibrillation, chronic 
obstructive pulmonary disease, emotional and mental diseases, and post-op pain 
(Alvarez-Estevez and Moret-Bonillo 2015; Halcox et al. 2017; Just et al. 2017; Ross et 
al. 2017; Swaminathan et al. 2017). In contrast to these methods, we propose that 
data mining methods work alongside clinicians to analyze large amounts of data for 
monitoring of health events related to ongoing chronic conditions.  

Due to the complexity of human behavior data, researchers propose the 
application of anomaly detection techniques for health event detection. Anomaly 
detection can help inform and automate the analysis of large datasets that may be 
difficult and time consuming for human analysts to examine without support. 
Anomaly detection has been used in various studies related to detecting unusual 
behavior and health events (Aran et al. 2016). In some cases, these methods can 
identify changes and anomalies in behavior data, though these methods fall prey to 
the possibility of finding all anomalies, not just those that are due to a health 
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condition of concern (Bakar et al. 2015; Hela, Amel, and Badran 2018). In other cases, 
detection is constrained to a particular type of anomaly correlated with a specific 
health concern. Of particular interest in this area of research is fall detection in home 
environments. Falls represent a significant cause of mortality in older adults (Evans 
et al. 2015). A great deal of effort therefore focuses on this case, although some of 
these methods use more intrusive forms of wearable sensors rather than ambient 
sensors that are embedded in a residence (Cola et al. 2015; Han et al. 2014; Khan 
and Hoey 2017).  

Many design choices have to be made when addressing the problem of detecting 
anomalies of interest. Changing any component can dramatically affect the types of 
anomalies that are highlighted. In this work we explore how different combinations 
of time scale, feature representation, base detector, and algorithm parameters affect 
the ability to detect health events. One way to help tune these choices is to 
exhaustively search the hyperparameter and data representation space, run multiple 
experiments, and obtain clinical feedback to select the ideal set of choices. This grid 
search method is very time consuming and resource intensive. Random search can 
improve upon exhaustive grid search by randomly sampling the space of choices 
(Bergstra and Bengio 2012). Yet another alternative which we employ in this work is 
Bayesian optimization, which has been shown to be more efficient than both grid and 
random search at selecting an optimal set of choices given expert guidance (Feurer 
and Hutter 2019). 

 

 CLINICAL HEALTH EVENTS IN SMART HOME DATA 
We define our indirectly-supervised anomaly detection algorithm, Isudra, in the 
context of detecting clinically-meaningful health events from smart home data. 
Additionally, we use data from this problem domain, with ground truth provided by 
nurse-clinicians, to evaluate our methods. Smart home technologies can empower 
individuals in managing their own chronic health conditions by automating behavior 
monitoring, health assessment, and evaluation of health interventions (Cook et al. 
2018).  

Fig. 1. The clinician-in-the-loop smart home collects ambient sensor data in the homes of adults with 
chronic health conditions. Isudra reports times when the data contains anomalous behavior, based on 
indirect clinician supervision. The clinician can then intervene in response to a detected health event. 
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As shown in Figure 1, behavior-driven sensor data can be collected from ambient 
sensors embedded in homes and other buildings. These data are collected while 
residents perform their daily routines, with no scripted tasks and no required 
deviations from their natural behavior. Health events are spotted by indirectly-
supervised anomaly detectors. An event detection can trigger a response to call a care 
provider, and respond quickly with a treatment plan. While current research focuses 
primarily on a single class of health condition, we focus on detecting a variety 
behavioral aberrations, or anomalies, that are a consequence of one or more chronic 
health conditions. Being able to reliably detect diverse health events in one’s home 
environment helps health care professionals better understand and respond to 
health-critical situations. 

 
 Smart Home Sensor Data 

In smart homes, data is collected from ambient sensors continuously while residents 
perform their daily routines. For our experiments, we analyze data collected in 
CASAS smart homes (Cook, Crandall, et al. 2013). These homes are filled with 
passive infrared (PIR) motion sensors and magnetic door sensors (an average of 25 
sensors in each home). Sensors generate readings when there is a change in state 
(rather than at a constant sampling rate). The smart home middleware collects 
readings from around the home, adds timestamps and sensor identifiers, and stores 
the data in a password-protected database. A floorplan for one of the equipped homes 
is shown in Figure 2 together with the locations of the installed sensors. 
 

Fig. 2. A smart home floor plan. Motion sensors are coupled with ambient light sensors and are placed on 
ceilings to monitor a small focused region 1 meter in diameter or are angled to monitor an entire room 
(“area” sensor). Door sensors are coupled with ambient temperature sensors and are placed on room doors, 
doors to cabinets containing medicine and other key items, and exterior doors. 
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Fig. 3. Activity-labeled smart home time-series sensor data. 

 
Figure 3 provides a sample of collected smart home sensor data. In addition to a 

date, time, sensor locator, and sensor message, each reading is assigned an activity 
label. This activity information together with the sensor readings is analyzed to 
detect behavioral anomalies. The activity labels are provided by AR (Cook, Krishnan, 
and Rashidi 2013), a real-time activity recognition algorithm. AR is trained from 
human-annotated ground truth data to label sensor events using the label set 
A={Cook, Eat, Sleep, Personal hygiene, Take medicine, Work, Leave home, Enter home, 
Bathe, Relax, Bed-toilet transition, Wash dishes, Other activity}. Because the data is 
not pre-segmented, a sliding window of 30 sensor readings is processed at a time. 
Features are extracted from a single window of data and are mapped onto a 
corresponding activity label. Details of the feature extraction and learning process 
are described in the literature (Aminikhanghahi and Cook 2019). 

The activity model we use for our experiments was trained on two months of 
annotated data from 30 smart homes. Based on 3-fold cross validation for the entire 
dataset, AR recognized the activities with an accuracy of 99.3%. Leave-one-home-out 
validation yielded an accuracy of 86.8%. This provides a basis for expected label 
accuracy as we perform anomaly detection evaluation. 
 

Table I. Smart home resident demographic and chronic health condition information. 
Smart 
Home Age Sex Health Conditions Health Events 

1 89 F Hypoxia secondary to thoracic collapse from 
osteoporosis 

Depression, 
Weakness 

2 83 M Parkinson’s disease and Sjogren’s syndrome Nocturia, Falls, 
Weakness 

3 88 F Chronic obstructive pulmonary disease, oxygen 
dependent Depression 

4 75 M Parkinson’s disease Falls 

5 89 F Congestive heart failure, resulting in swelling 
of the lower legs due to water retention Nocturia 

    
 
 Participant Chronic Health Conditions and Related Health Events 

We collected data from 5 smart homes, each housing a single older adult resident. 
Data are collected for a minimum of six months in each home. Each resident was 
experiencing at least one chronic health condition. These conditions are associated 

2019-07-20 20:34:49.052126 LivingRoom Room OFF Relax 
2017-07-20 20:36:05.927267 LivingRoom  Chair ON Relax 
2012-07-20 20:36:07.032472 LivingRoom Chair OFF Relax 
2012-07-20 20:36:07.599722 LivingRoom Chair ON Relax 
2012-07-20 20:36:08.738449 LivingRoom Chair OFF Relax 
2012-07-20 20:38:11.169706 LivingRoom Chair ON Relax 
2012-07-20 20:39:59.548221 LivingRoom Chair OFF Relax 
2012-07-20 20:40:01.184403 LivingRoom Chair ON Relax 
2012-07-20 20:40:05.321364 LivingRoom Chair OFF Relax 
2012-07-20 20:41:48.847038 Bathroom Sink ON Personal hygiene 
2012-07-20 20:41:55.175907 Bathroom Sink OFF Personal hygiene 
2012-07-20 20:41:56.278471 Bathroom Sink ON Personal hygiene 
2012-07-20 20:41:57.409996 Bathroom Sink OFF Personal hygiene 
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with common health events that should be detectable from smart home sensor data. 
In these homes, such health events were detected by clinicians and confirmed by 
smart home residents. Table 1 provides a summary of smart home resident 
demographics, health conditions, and related health events. 

Smart home resident 1 suffers from hypoxia, a reduction in the oxygen level for 
body tissue. Common symptoms include shortness of breath, sweating, anxiety, and 
confusion. Residents in smart homes 2 and 4 were diagnosed with Parkinson’s 
disease (PD), a neurodegenerative disorder. PD is characterized by motor features 
such as rigidity and tremor. Other symptoms may appear, such as cognitive 
impairment, autonomic dysfunction, sleep disorders, depression, and hyposmia. Due 
to changes in posture and difficulty transitioning between lying, sitting, and standing, 
falls are frequent symptoms of PD (Bloem et al. 2004). Additionally, smart home 
resident 2 experiences Sjogren’s syndrome (SS), an autoimmune disorder that results 
in dryness of the mouth and eyes. Likewise, SS can also be associated with symptoms 
of constant thirst, overactive bladder, and nocturia. This resident makes frequent 
trips to the kitchen to get a drink of water in the middle of the night, and he has 
experienced falls during these trips. 

Smart home resident 3 is oxygen-dependent due to chronic obstructive pulmonary 
disease (COPD). COPD is an inflammatory lung disease that is accompanied by 
frequent cough and shortness of breath. The resident also experienced situational 
depression due to loss of a family member. Finally, smart home resident 5 is 
diagnosed with congestive heart failure (CHF), an inability of the heart to sufficiently 
pump blood to metabolizing tissues. CHF can present with fatigue, palpitations, 
shortness of breath, swelling in the feet and ankles, nocturia, and chest pain. This 
resident takes a diuretic to reduce water retention, which causes an increase in 
urination frequency. 

During our data collection, smart home residents experienced several varied 
health events. These include falls, nocturia, weakness-related mobility reduction, and 
behavior changes related to depression. Falls are frequent among older adults – more 
than one-third fall each year (Stevens et al. 2006). Of these falls, 10-20% result in 
severe injury and subsequent decrease of functional independence. However, current 
research is limited in sensor-based fall detection because there is a lack of non-
scripted examples. In our data, falls are sensed as they occur and they were all 
related to PD. A fall health event is evidenced in a smart home by several minutes or 
hours of abnormal behavior (e.g., extended lack of movement in an unusual place at 
an unusual time). Another observed health event is nocturia, voluntary urination 
that occurs after a person goes to sleep. Nocturia impacts sleep quality, which in turn 
impacts other health-related functions (Umlauf et al. 2004). In a smart home, 
nocturia can be sensed by frequent nighttime bathroom trips. 

Weakness, often referring specifically to muscle weakness, is common in older 
adults and can be a consequence of multiple causes, including disease process and 
injury (Moreland et al. 2004). Similarly, depression is a complex health condition 
with numerous causes. As many as 10-15% older adults experience significant 
depression symptoms (Kok and Reynolds 2017). Because depression and weakness 
have many possible manifestations, we focus on a subset of depression and 
weaknesses symptoms. Detected depression health events include less time spent out 
of home (isolation and loss of interest in activities), more time spent in one place 
(fatigue), poor sleep (insomnia and hypersomnia), and slower walking speed (fatigue). 
Weakness is evidenced by fatigue and decreased mobility. In a smart home, these are 
evidenced by slower walking speed and longer time spent sitting in one place. For 
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both weakness and depression, we identify behavior anomalies that are associated 
with the conditions but occur on smaller, time scales lasting several minutes or hours 
at a time. 

To provide ground truth for Isudra, clinicians label sensor data with detected 
health events. These clinicians are trained to interpret the sensor readings and each 
detected event is confirmed by the smart home residents. The clinicians label the 
start and end sensor readings corresponding to each health event and offer possible 
interpretations of the event and their contexts. 

  

 INDIRECTLY-SUPERVISED ANOMALY DETECTION 
The Isudra algorithm offers a way to improve standard unsupervised anomaly 
detection methods. Using indirect supervision, a small amount of labeled anomaly 
instances guides the selection of unsupervised learning parameter choices. Bayesian 
optimization selects these parameters using available labeled data. Here, we focus 
specifically on time series sensor data. We let S denote a time series which is 
comprised of a sequence of ordered events such that S={s1 .. st ..}, where st represents 
a data point that is observed at timestamp t. We decompose the time series into 
sliding windows of fixed size. An anomaly θt is a subsequence of S, of arbitrary length, 
that begins at time t in the time series. 

Using indirect supervision, each window, or subsequence w∈S, is considered 
separately. Descriptive features are extracted from the window and input to an 
objective function f(x). The function outputs a score, y, representing the anomaly 
detection performance using a particular set of parameter choices, x. Our indirectly-
supervised algorithm chooses four types of parameters: the unsupervised anomaly 
detector D, the window size (number of sensor readings) ws, the feature set fs, and 
detector hyperparameters h. The objective function consists of using the choice of 
detector (together with the selected window size, feature set, and hyperparameters) 
to find anomalies within the current window, then comparing the findings with 
ground truth to calculate the score. The process of computing the score for a 
particular set of parameter choices is summarized in Algorithm 1 and illustrated in 
Figure 4. 
 
 

ALGORITHM 1. Indirectly-Supervised Anomaly Detection 
Input:  
 S   # Sensor time series 
 ws   # Window size 
 fs   # Feature set 
 Dh   # Anomaly detector with hyperparameters h 
Output: y    # Score 
y = 0;   d = |S|/ws; 
 
for 1 ≤ i ≤ d:    # Consider all windows 
        w = {si .. si+ws} ⊆ S  # Current window i  
        X = getFeatures(fs, w) # Extract features fs from current window 
        𝑎𝑎𝑖𝑖 = containsAnomaly(w) # True if window contains ≥25% anomalous sensor readings  
        𝑎𝑎�𝑖𝑖 = findAnomaly(D, X) # Use D to detect anomaly in current window 
y = calcGmean(𝑎𝑎, 𝑎𝑎�)  # Calculate gmean for the entire set of windows 
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Fig. 4. Illustration of Isudra’s indirectly-supervised algorithm for clinically-relevant anomaly detection. 

 
Bayesian optimization identifies x*, the most successful combination of parameter 

choices based on performance measure y. Because anomalies are rare occurrences, we 
utilize a gmean score for the performance measure. This measure is popular for 
assessing learning problems on imbalanced data. The gmean score is defined as 
�(𝑻𝑻𝑻𝑻 ∕ 𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭) × (𝑻𝑻𝑻𝑻 ∕ 𝑻𝑻𝑻𝑻 + 𝑭𝑭𝑭𝑭) . Here, positive instances are those windows 
containing ≥25% sensor readings tagged as anomalous by a clinician, and negative 
instances are all other windows. This threshold was determined empirically with 
clinician guidance and can be modified without changing the nature of the algorithm.  

While applying Bayesian optimization to unsupervised anomaly detection is an 
untapped area of research, this technique has been used to tune hyperparameters for 
numerous supervised learning algorithms (Lancaster et al. 2018; Snoek, Larochelle, 
and Adams 2012; Zhang et al. 2015), including some in high-dimensional parameter 
spaces (Li et al. 2017). Bayesian optimization performs n iterations, each of which 
evaluates a particular set of parameter choices. The parameter search space is 
characterized by 𝝌𝝌, a bounded subset in real values ℝ, integer values ℤ, and (in our 
approach) categorical values ℂ. 

ALGORITHM 2. Bayesian Optimization 
Input:  
 n  # Number of iterations (evaluations) 
 x  # Array of observed parameters in 𝜒𝜒 
 f(x)  # Objective scoring function (Algorithm 1) 
 ℳ = p(y|x) # Probabilistic model serving as surrogate for f(x) 
 α  # Acquisition function 
 Q  # Set of evaluated parameters x and corresponding scores y 
Output: x*   # Most successful set of parameter choices 
ℳ= initModel()  # Evaluate f(x) on random values of x, use to initialize model 
Q = [] 
 
for 1 ≤ i ≤ n: 
        𝑥𝑥� = argmaxx∈𝜒𝜒α(x,ℳ) # Maximize acquisition function to obtain next set of 
    #  candidate parameters  
        𝑦𝑦� = 𝑓𝑓(𝑥𝑥�)    # Calculate score for  𝑥𝑥� using objective function 
        ℳ = update(ℳ,𝑥𝑥�,𝑦𝑦�)  # Update the surrogate model 
        Q = append(Q, 𝑥𝑥�,𝑦𝑦�)  # Extract features fs from current window 
        x = 𝑥𝑥� 
x* = argmax Q 
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Fig. 5. Illustration of Bayesian optimization process. 
 

Figure 5 illustrates the Bayesian optimization procedure that is employed by 
Isudra, and Algorithm 2 illustrates how the Bayesian approach optimizes parameter 
choices based on Algorithm 1’s scoring process. Bayesian optimization computes a 
probability model, 𝓜𝓜 , of the objective function. Model represents a mapping of 
parameter values x to the probability of achieving a corresponding objective function 
score, y. This model acts as a surrogate for the actual objective function in Algorithm 
1 and it is simpler to optimize. Rather than performing grid search or random 
sampling, Bayesian updates the surrogate model based on past information and 
arrives at an optimized result by reasoning about which parameter combinations to 
try next. The algorithm builds the surrogate probability model of the objective 
function, finds the hyperparameters that perform best on the surrogate, applies the 
hyperparameters to the true objective function, and updates the surrogate model.  

As Figure 5 shows, the update procedure is repeated for n iterations. The 
surrogate model is constructed by building a probability model of f(x) using a prior 
belief distribution over f(x). Once the surrogate model is built, an acquisition function 
α guides exploration of the parameter space and choose the next candidate to 
evaluate. Scores of the parameter candidates refine the model. We employ a Tree 
Parzen estimator (TPE) surrogate model (Shahriari et al. 2016; Snoek et al. 2012)1. 
TPEs are well-suited to conditional spaces. They build models by applying Bayes’ 
rule, thus instead of directly representing p(y|x), they employ the formula 
p(x|y)p(y)/p(x). The term p(x|y) represents the probability of hyperparameters x 
given the objective function score y. 

The acquisition function we use in Algorithm 2 is Expected Improvement, which 
can be expressed as 𝑬𝑬𝑰𝑰𝒚𝒚∗(𝒙𝒙) = ∫ (𝒚𝒚∗ − 𝒚𝒚)𝒑𝒑(𝒚𝒚|𝒙𝒙)𝒅𝒅𝒚𝒚𝒚𝒚∗

−∞ . Here, y* is a threshold value of 
the objective function, x is the proposed set of hyperparameters, y is the actual value 
of the objective function using hyperparameters x, and p(y|x) is the surrogate 
probability model expressing the probably of outputting score y given 
hyperparameters x. The goal is to maximize the expected improvement with respect 
to x, or find the best hyperparameters based on the simplified surrogate model. 
Expected improvement assures that parameter combinations are chosen based on 
their anticipated ability to maximize performance. 

 

 
1 Code for the Isudra indirectly-supervised anomaly detection algorithm can be downloaded from 
https://github.com/jb3dahmen/indirectsupervision. 
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 EXPERIMENTAL RESULTS 
 Experimental Conditions 

The goal of indirectly-supervised anomaly detection is to improve the detection of 
true positive anomalies while reducing the detection of false positives. We evaluate 
Isudra’s performance using gmean, which reflects these two measures. For these 
experiments, we focus on smart home time series data. Table 2 summarizes the data 
used for our experiments. For each anomaly, we analyze two weeks of sensor data 
that encompass the event as well as readings occurring before and after the event. 
The actual number of sensor readings vary depending on the amount of activity that 
occurs in the home during the two week period. In each case, nurse-clinicians 
confirmed that the data surrounding the anomaly represent typical baseline behavior 
for the resident. We note that sensor data resulting from complex human behavior 
can contain many irregularities. Because any of these irregularities could be 
considered as an anomaly, gmean scores which indicate the relevance of discovered 
anomalies will likely be low. Our goal is to increase the clinical relevance of 
discovered anomalies over existing methods.  

 
Table II. Summary statistics of data used in experiments. 

Home Event type #Sensor 
events 

#Anomalous 
sensor events 

2 nocturia 86,100 833 (0.97%) 
2 nocturia 94,457 891 (0.94%) 
2 nocturia 99,062 1,956 (1.97%) 
2 nocturia 94,148 1,857 (1.97%) 
5 nocturia 112,449 543 (0.48%) 
5 nocturia 113,533 186 (0.16%) 
2 fall 110,088 110 (0.01%) 
2 fall 135,112 65 (0.05%) 
4 fall 170,482 36 (0.02%) 
4 fall 165,035 96 (0.06%) 
3 Depression (event: not sleeping well) 45,311 114 (0.25%) 
3 Depression (event: not sleeping well) 50,708 41 (0.08%) 
3 Depression (event: less time out of home) 51,926 231 (0.44%) 
3 Depression (event: less time out of home) 51,926 15,895 (30.61%) 
3 Depression (event: less time out of home) 54,004 157 (0.29%) 
3 Depression (event: less time out of home) 220,415 12 (0.01%) 
1 Depression (event: slower walking) 63,980 394 (0.62%) 
1 Depression (event: slower walking) 48,718 264 (0.54%) 
1 Depression (event: more time in chair) 65,196 511 (0.78%) 
1 Depression (event: more time in chair) 47,100 271 (0.58%) 
1 Weakness 72,532 640 (0.88%) 
1 Weakness 57,294 2001 (3.49%) 
1 Weakness 52,129 761 (1.46%) 
2 Weakness 80,284 7,903 (9.84%) 
2 Weakness 79,222 711 (0.90%) 
2 Weakness 66,648 673 (1.01%) 

Total 2,287,859 373,152 (0.02%) 
 
Numerous choices exist for detector algorithms, time scales, feature sets, and 

algorithm hyperparameters. In these experiments, we select five alternative anomaly 
detection algorithms. These are principal components analysis (PCA) (Lee, Yeh, and 
Wang 2013), isolation forest (iForest) (Liu, Ting, and Zhou 2008), k-nearest neighbors 
(KNN) (Haq et al. 2015), local outlier factor (LOF) (Breunig et al. 2000), and one-
class SVM (SVM) (Amer, Goldstein, and Abdennadher 2013). We consider window 
sizes ranging from 10 to 150 events. This range is defined based on the minimum and 
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maximum duration of the annotated anomalies. Instead of evaluating each possible 
feature individually and in combination, which would dramatically increase 
computational cost, we consider alternative groups of features. These include Sensor, 
Activity, and Baseline methods that have been used for other smart home analysis 
tasks including activity recognition and automated health assessment (Alberdi 
Aramendi et al. 2018; Krishnan and Cook 2014). Additionally, they include Location, 
Bathroom usage, and Social/sleep behavior feature categories that were suggested by 
nurse-clinicians. Details of these feature groups are provided in Table 3. 
Hyperparameters are specific to each detector and are specified by those individual 
algorithms. 

 
Table III. Features, grouped into categories, that are evaluated by Isudra. These features are extracted from 

each window of sensor readings. 
Feature 
category Description Features 

Sensor Basic sensor information, also 
used for activity recognition 

Time (time of day, day of week, elapsed time since most 
recent sensor reading);  
Sensor (most common sensor ID in window, ID of most 
recent sensor reading, location of most recent sensor 
reading, location of most recent motion sensor reading, 
reading counts for each sensor, elapsed time since most 
recent reading for each sensor); 
Window (time duration of window, sequence complexity, 
change in activity level between first and second half of 
sequence, number of transitions between locations in 
window, number of distinct sensors in window) 

Activity Information about activity 
context and frequency 

Time (time of day, day of week, elapsed time since most 
recent sensor reading); 
Activity (number of activities in window, number of 
readings for each activity in window) 

Baseline All non-clinical features Sensor features + Activity features 

Location 
Clinician-indicated features 
representing prolonged 
periods of time in one location 

Time (time of day, day of week, elapsed time since most 
recent sensor reading); 
Location (most recent sensor location, time spent in each 
location within window) 

Bathroom 
usage 

Clinician-indicated features 
representing bathroom use 
frequency and time of day 

Time (time of day, day of week, elapsed time since most 
recent sensor reading); 
Bathroom frequency (number of sensor readings in 
bathroom within window, duration of time in bathroom) 

Social / 
sleep 

Clinician-indicated features 
associated with slowed 
movement, disturbed sleep, 
and changes related to 
increased isolation 

Time (time of day, day of week, elapsed time since most 
recent sensor reading); 
Mobility (walking speed, overall activity level); 
Sleep (amount of sleep time in window, number of sleep 
interruptions in window, amount of sleep movement in 
window); 
Socialization (amount of time with visitor in window, 
amount of time out of home in window) 

 Comparison of Unsupervised, Supervised, and Indirectly-Supervised Anomaly Detection 
Because Isudra utilizes a small amount of labeled data to guide parameter 

selection, we compare its performance with both unsupervised and supervised 
algorithms. For the unsupervised detection algorithm, we select iForest because it 
provided the best overall results on the smart home data. Similarly, we select one-
class SVM as a supervised detector. Table 4 reports the average gmean scores for 
each class of health event. Performance is compared for the unsupervised, supervised, 
and indirectly-supervised methods. For each health event class, scores are averaged 
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over all event occurrences for the two participants who experienced the type of health 
event. Averaging scores over all of these instances analyzes the generalizability of 
each method in detecting the event type. Additionally, Isudra results are averaged 
over 30 runs of Bayesian optimization, each with a different random initialization. 
We report results for n=30 iterations of Bayesian optimization. While performance 
does improve with more evaluations, the computational cost for identifying successful 
parameter combinations also increases. We choose this number because it represents 
a point at which performance plateaued for a majority of the cases. 

The results summarized in Table 4 indicate that indirect supervision yields 
improved detection of clinically-relevant anomalies for the real smart home data. 
Isudra outperforms both unsupervised and supervised anomaly detection for fall, 
nocturia, weakness, and some depression-related events. Furthermore, the 
performance difference for these classes of health events is statistically significant. 
Higher gmean scores indicate higher true positive and true negative detection with 
lower false positive and false negative detection. For example, for nocturia detection 
in home 2, Isudra’s gmean score is 0.1187. with a true positive rate (tpr) of 0.3656 
and a false positive rate (fpr) of 0.9614. For the same case, iForest yields a gmean 
score of 0.0614 with tpr=0.1946 and fpr=0.9806, while the one-class SVM results in a 
gmean score of 0.0324 with tpr=0.1084 and fpr=0.9892. Thus, the proposed method is 
achieving our goal of decreasing false positive rates while increasing true positive 
anomaly detections.  

The improvement over unsupervised detection suggests that taking advantage of 
labeled anomalies is effective because of the number and diversity of parameters that 
govern unsupervised approaches. One possible explanation for the improvement over 
a supervised learner is that the data contains a large amount of diverse normal data 
in comparison with the anomalous data. This situation can be difficult for a classifier 
to model. 

 
Table IV. Gmean scores of indirectly-supervised (Isudra), unsupervised (iForest), and one-class (SVM) anomaly 

detectors for synthetic and real data sets. * = the difference between Isudra and the alternative approach is 
statistically significant (p<0.05). 

Health event Isudra iForest SVM 

fall 0.0468 0.0252* 0.0176* 
nocturia 0.0635 0.0291* 0.0308* 

depression (not 
sleeping well) 0.1146 0.0695* 0.0769* 

depression (less time 
out of home) 0.4120 0.1810* 0.4670* 

depression (slower 
walking speed) 0.0466 0.0162* 0.0344* 

depression (more time 
in chair) 0.1840 0.0900* 0.0742* 

weakness 0.0618 0.0402* 0.0493* 
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In the case of the depression-related “less time out of home” health event, the one-

class SVM generates a higher gmean score than Isudra (although the difference is 
not statistically significant). The SVM may prove to be an ideal choice for this type of 
event. While the gmean scores are fairly low for most health events, as is consistent 
with anomaly detection on complex multivariate data, the gmean scores were high 
for all detectors on this event. The strong performance for this health event suggests 
that the event may be easily detectable by a classifier even with a limited amount of 
labeled data. 

To determine how well Bayesian-optimized decisions generalize to unlabeled data, 
we repeated the experiment by optimizing two weeks of data for each anomaly class 
and testing it on a second two weeks of data from the same home. In this case, the 
gmean performance over all detected anomalies was 0.0876 for Isudra, 0.0489 for 
iForest, and 0.0756 for the one-class SVM. 

Additionally, we tested the ability of traditional binary classifiers to recognize 
each class of anomalies using 3-fold cross validation for each home. For this 
experiment, we selected decision tree (DT) and Gaussian naïve Bayes (GNB) 
classifiers. This is a very difficult classification problem for a standard technique to 
tackle because of the subtle nature of the anomalies and the extreme class imbalance. 
For each of the cases, both DT and GNB are unable to generalize the anomaly 
concept to holdout data and do not detect any true positives. The gmean 
performances of DT and GNB in the homes are thus 0.0000 for each case. 

 
 
 Analysis of Choices Made by Indirect Supervision 

Next, we examine the parameters that were chosen by Isudra. This lets us determine 
the diversity of choices that are made for each type of health event. The results may 
also provide insights on the particular algorithms and other parameter choices that 
are best suited to different classes of events. 

As shown in Table 5, all parameters vary considerably across the different health 
events. In general, larger window sizes are preferred. This observation may support 
further expanding the range of window sizes in future analyses. Additionally, the 
listed feature sets in Table 5 offer insights on the relationship between sensor 
features and detection of alternative health events. For example, features related to 
disturbed sleep may represent stronger indicators of nocturia than features related 
only to bathroom usage. For other health events, more general features describing 
sensor and activity statistics were preferred over clinician-suggested feature 
categories. The large variation in selected parameters provides evidence to support 
our hypothesis that these choices influence the quality of detected anomalies. The 
indirect supervision employed by Isudra offers one strategy to identify successful 
choices for clinical applications. 
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Table V. Indirectly-supervised selection of detector, window size, feature set, and hyperparameter values that 
obtained the gmean scores reported in Table IV. For the hyperparameters, ne = number of iForest estimators, 
ms = iForest maximum number of samples, k = one-class SVM kernel, nu = one-class SVM regularization 
parameter, kn = number of KNN neighbors, and ln = number of LOF neighbors. The PCA implementation did 
not employ tunable hyperparameters. 

Health event Detector Window size Features 
Hyper-

parameter 
values 

fall KNN 65 Activity kn: 12 

nocturia iForest 52 Social/sleep ne: 133 
ms: 51,189 

depression (not 
sleeping well) iForest 57 Activity ne: 91 

ms: 22,429 
depression (less time 

out of home) SVM 49 Activity k: rbf 
nu: 0.690 

depression (slower 
walking speed) SVM 59 Sensor k: polynomial 

nu: 0.480 
depression (more time 

in chair) PCA 23 Social/sleep N/A 

weakness iForest 59 Sensor ne: 111 
ms: 33,359 

 
 

 WARM STARTING INDIRECT SUPERVISION 
The goal of indirectly-supervised anomaly detection is to improve the detection of 
true positive anomalies while reducing the detection of false positives. We evaluate 
Isudra’s performance using gmean, which reflects these two measures. For these 
experimentsEmploying Bayesian optimization for indirectly-supervised anomaly 
detection often means restarting the parameter search process for each new type of 
anomaly. Once parameters are selected, the resulting anomaly detector is no more 
computational expensive than the chosen unsupervised method. However, the initial 
search can be time consuming. While the Bayesian optimization algorithm repeats 
the evaluate-and-update process a user-specified number of iterations, each 
evaluation can itself be costly. For example, the one-class SVM required over 4 
minutes to perform a single evaluation on the smart home data using a 2.5 GHz 
computer with 16GB of RAM. In some cases, there are underlying similarities 
between some anomaly classes that can exploited to speed up the optimization 
process. Because Bayesian optimization relies on Bayesian reasoning and can learn 
from past results, a natural extension is to use a solution from a previous task to 
jumpstart a related optimization task. The result is a reduction in the number of 
evaluations, n, that are needed to find an acceptable solution. 

This problem, known as warm starting Bayesian optimization (Poloczek, Wang, 
and Frazier 2016), has sparked research by the community. However, many of the 
existing methods rely on the availability of a large number of related examples  (Alaa 
and van der Schaar 2018; Kim, Kim, and Choi 2017). Given sufficient use cases, a 
meta-learner can map parameters of the task to Bayesian optimization parameters 
(Feurer, Letham, and Bakshy 2018; Kim et al. 2017). A more complex approach 
proposed by Perrone et al. (Perrone et al. 2017) creates multiple adaptive Bayesian 
linear regression models. The models are offered to a feedforward neural network 
that learns a joint representation. Yet another approach suggested by Swersky 
(Swersky, Snoek, and Adams 2013) reengineers the Bayesian optimization 
framework to incorporate multi-task Gaussian processes. Some proposed methods 
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require a large number of optimization parameters to be evaluated. While the extra 
evaluations incur more computational cost, average performance can be computed 
across different configurations and used to warm start the optimization process 
(Brecque 2018). 

In our proposed approach, a surrogate model is shared across related examples. 
Examples from only one other home are used to guide selection of parameters for a 
new home. This reduces the parameter search space to focus on historically well-
performing parameter combinations. This technique is uniquely beneficial when only 
a small amount of labeled information is available. Specifically, warm-start Isudra 
guides Bayesian more rapidly to optimal regions, even when labeled data is limited. 
Because obtaining direct observations of health events is rare, this enhancement is 
well suited to detection of clinically-relevant anomalies. 

In the warm start method, let 𝓜𝓜* represent a surrogate model that has been 
constructed over several related anomaly examples. 𝓜𝓜* can be used in place of a 
newly-constructed 𝓜𝓜  for each example. This starts the search process closer to 
success parameter combinations than a random initial model. To further reduce the 
complexity for problems that require a large number of expensive evaluations, warm-
start Isudra considered a reduced search space, 𝝌𝝌*, that is limited to parameters 
which performed well on past examples. For example, the range of considered 
window sizes is trimmed based on past optimization experiences. The new range is 
defined by the smallest and largest high-performing window sizes in prior examples. 
As each new optimization example is encountered, 𝝌𝝌* can replace the original full 
space 𝝌𝝌 to perform warm started Bayesian optimization in combination with 𝓜𝓜*. We 
hypothesize that warm starting Bayesian optimization can achieve the same (or 
better) gmean performance as a non-warm started procedure, in fewer iterations. 
Warm-start Isudra’s goal is thus to lower the number of evaluations, n. 

To evaluate our proposed warm start Bayesian optimization method, we compare 
Isudra’s performance with and without warm start using the same data as in the 
previous experiments. In our experiments, we group data by health event type. 
Isudra is used with and without warm start to identify anomalies for one smart home. 
While original Isudra starts the process from scratch for a new home, warm-start 
Isudra jumpstarts the process using learned information from the first home with the 
same health event. Results are averaged over every possible ordering of homes. 

 
Table VI. Gmean performance for cold-start and warm-start Isudra. In each case, the choice of parameters is 
made based on one home and used to warm start search in a second home, then is repeated in the reverse 
direction. * = the difference between the warm start approach and the cold start approach is statistically 
significant (p<0.05). 

Home 
pairs Health event Cold start  (30 

evaluations) 
Warm start 

(15 
evaluations) 

Warm start 
(20 

evaluations) 

Warm start 
(30 

evaluations) 

2 & 4 fall 0.0642 0.0566* 0.0717* 0.0721* 

2 & 5 nocturia 0.0676 0.0664* 0.0761* 0.0793* 

1 & 3 depression (less 
time out of home) 0.1713 0.1501* 0.1519* 0.1576* 

1 & 3 weakness 0.0798 0.0805* 0.0760* 0.0846* 

 
As Table 6 shows, a similar performance can be achieved with 20 iterations of 

warm start optimization as opposed to 30 iterations with cold start. Continuing the 
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search process for a total of 30 iterations actually yields performance that is superior 
to 30 iterations of cold start search. 

 

 CONCLUSIONS 
Anomaly detection algorithms are valuable for alerting users to data that potentially 
represent threats to health, security, or smooth system operation. However, existing 
methods can produce an overwhelming number of irrelevant, or false positive, 
anomalies. In this paper, we introduced Isudra, an approach to anomaly detection 
that is based on indirect supervision. We explored how indirect supervision can be 
applied to unsupervised methods to detect anomalies of greater relevance for a target 
application. As part of a clinician-in-the-loop smart home project, we employed our 
method to detect fall, nocturia, weakness, and depression-related behavior anomalies 
from ambient sensor data with clinician-supplied indirect supervision. Experiments 
using data based on smart home sensor events showed that indirect supervision of 
anomaly detection can outperform both unsupervised anomaly detection and 
supervised learning of clinically-relevant anomalies.  

There are many possibilities to consider in expanding this direction of research. 
For the clinician-in-the-loop smart home, we will explore the use of indirect 
supervision to learn additional health events such as urinary tract infections. We will 
enhance our algorithm to generalize to a wider variety of similar but distinct new 
health event instances. An interesting additional future step would be to examine the 
interaction between multiple overlapping health events. For example, an individual 
with depression may experience a fall. Future versions of Isudra will consider 
detecting such co-occurring health events. Additionally, we will expand the set of 
features for Bayesian optimization to consider, rather than pre-grouping them by 
type. Other parameters can be optimized based on anomaly type as well, including 
the anomaly threshold value. Another possible improvement is to employ ensembles 
of anomaly detectors, including some detection algorithms that are experts in distinct 
classes of anomalies. 
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