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Abstract
In this paper, we investigate methods of performing
automated cognitive health assessment from smart home
sensor data. Specifically, we introduce an algorithm to
quantify and track changes in activities of daily living and
in the mobility of a smart home resident over time using
longitudinal smart home sensor data. We use an
automated activity recognition algorithm to recognize a
smart home resident’s activities of daily living from the
generated sensor data, and introduce a Compare and
Count (2C) algorithm to quantify the changes in everyday
behavior. We test our approach using a longitudinal
sensor dataset that we collected from 18 single-resident
smart homes for nearly two years and study the
relationship between observed changes in the sensor-based
everyday functioning parameters and changes in standard
clinical health assessment scores. The results suggest that
we may be able to develop sensor-based change
algorithms that can predict specific components of
cognitive and physical health.
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Introduction
Smart home technologies can be beneficial for monitoring
health changes and for providing interventions to sustain
or improve human health. The goal of this project is to
develop functional assessment algorithms based on smart
home technologies to assess the cognitive and functional
health of a resident based on automatically-detected
activities of daily living (ADL) parameters using
longitudinal smart home data. Activities of daily living
(ADL) such as sleeping, grooming, and eating are
essential everyday functions that are required to maintain
independence and quality of life. Decline in the ability to
independently perform ADLs has been associated with a
host of negative outcomes, including placement in
long-term care facilities, shorter time to conversion to
dementia, and poorer quality of life for both the
functionally impaired individuals and their
caregivers [9–11].

In this work, we develop functional assessment algorithms
for unconstrained environments. Our algorithm does not
require changes in the environment or in a residents
routine. As a result, it offers an ecologically valid method
to assess the cognitive and physical health of an
individual [2, 8].

Smart Home Test bed
We test our ideas in 18 actual smart home test beds. The
smart home test beds are single-resident apartments, each
with at least one bedroom, a kitchen, a dining area, and
at least one bathroom. The sizes and layouts of these
apartments vary from one apartment to another. The
apartments are equipped with motion sensors on the
ceiling and door sensors on cabinets and doors. Figure 1

shows a sample layout and sensor placement for one of
the smart home test beds.

The residents complete their daily activities in their
(smart) apartments. While residents carry out their daily
routines, smart home sensors continuously monitor their
behavior. The CASAS middleware collects the sensor
events and stores the data on a database server. Figure 2
provides a sample of the raw sensor events that are
collected and stored. Each sensor event is represented by
four fields: date, time, sensor identier, and sensor
message.

Figure 1: CASAS Longitudinal smart home floor plan and
sensor layout.

Figure 2: Sample raw and activity annotated sensor data.
Sensors IDs starting with M are motion sensors and IDs
starting with D are door sensors.



Related Work
The relationship between in-home sensor-based
measurements of everyday abilities and corresponding
clinical measurements has been explored using statistical
tools and visualization techniques. For example,
Paavilainen et al. [12] monitored the circadian rhythm of
activities for older adults living in nursing homes using the
IST Vivago WristCare system. They compared the
changes in activity rhythms with clinical observations of
the health status of subjects. In a separate study, these
researchers [13] monitored changes in the sleep pattern of
demented and non-demented individuals over a 10-day
period.

Other researchers have, like this study, considered the
relationship between sensor based activity performance
and cognitive and physical health assessment derived
using standard clinical scores. For example, Robben et
al. [16, 17] studied the relationship between different
high-level features representing the location and transition
patterns of an individuals indoor mobility behavior,
namely the frequency, duration and times of selected
mobility patterns, with the Assessment of Motor and
Process Skills (AMPS) scores [5]. Similarly, Suzuki and
Murase [20] compared indoor activities and outings with
Mini-mental State Examination (MMSE) scores [6].
However, none of these groups considered parameters
reflecting the performance of activities of daily living.

In our earlier work, we established a correlation between
smart home sensor-based performance measures of simple
and complex ADLs and validated performance measures
derived from direct observation of participants completing
the ADLs in a smart home [3, 4]. However, those
performance measures were derived using sensor data
collected from cross-sectional studies conducted in a

smart home laboratory setting. We extend this prior work
by investigating the relationship between continuous
longitudinal sensor data collected from 18 single-resident
smart homes and their clinical assessment scores obtained
by performing standard clinical assessments biannually
with the smart home residents.

Participants
Participants included 18 older adult residents (4 females,
14 males) from a senior living community. All participants
were 73 years of age or older (M = 84.44, SD = 5.06,
range 73− 92), and had a mean level of education of
17.33 years (SD = 2.03, range 12− 20). At baseline,
participants were classified as cognitively healthy, at risk
for cognitive difficulties, or experiencing cognitive
difficulties.

Standard Neuropsychological Tests
Clinical tests were administered every six months to
residents of our smart home test beds. As detailed in
Table 1, these tests included measures of walking speed
(TUG), and a global measure of cognitive status
(RBANS). The administered clinical tests are standardized
and validated measures. Using repeated measurements
obtained from biannual clinical tests, we create a clinical
dataset that contains two different measurement variables
(features).

Modeling Activities of Daily Living Parame-
ters
In this study, we model a subset of automatically-labeled
resident daily activities including sleep, leave home, bed to
toilet, cook, eat, relax, and personal hygiene. We also
capture and model a resident’s total mobility in the home
using smart home sensor data.



The raw sensor data captured from smart home sensors
do not contain activity labels. We use an activity
recognition algorithm to map sensor event sequences to
activity labels. Activities of daily living such as cooking
and eating can be recognized using the sensor data from
environmental sensors such as motion sensors [18].

To model the activities performed by smart home
residents, we calculate how much time a resident spends
(activity duration) while performing each of the activities
and the number of sensor events they generate while
carrying out these activities. Similarly, we model a
resident’s mobility using two features: the number of
sensor events the resident triggers as they move
throughout their home and the total distance that is
covered by their movement. We note that all these
features are aggregated over a day time frame. For
example, we calculate the time spent sleeping and number
of sensors triggered while sleeping in a day. For each
individual, we calculate these features for the entire data
collection period.

Changes in clinical assessment data
The measurements in biannual standard clinical data are
numeric values. We define a change in clinical assessment
data from one time point t1 to another time point t2 as
the difference between the clinical assessment scores at
those given time points. For any time point pair (t1, t2),

clinical assessment change(t1, t2) = abs(CA(t2)−CA(t1))

where CA(t1) and CA(t2) represents clinical assessment
data at time point t1 and t2.

We administer the standard clinical tests every six months
because they are resource intensive. Thus, t1 and t2 are
always six months apart.

Table 1: Variables in standard clinical dataset

Variable name Type Description

TUG Numeric Timed Up and Go [14] . This
test measures basic mobility skills.
Participants are tasked with ris-
ing from a chair, walking 10 feet,
turning around, walking back to
the chair and sitting down. The
TUG measure represents the time
it took participants to complete
the task.

RBANS Numeric Repeatable Battery for the Assess-
ment of Neuropsychological Status
[15].This global measure of cogni-
tive status was developed to iden-
tify and characterize cognitive de-
cline in older adults. The RBANS
measure is the Total Scale score.

Changes in smart home longitudinal data
We divide the longitudinal sensor data into bins of
one-month time slots since features in the longitudinal
smart home sensor data are continuously gathered. We
then use a Hotelling T-test [7] to compare one month (a
single bin) of sensor data with another month (another
bin) of sensor data to detect changes. For any time point
t1, t2,

sensor based change(t1, t2) = Hotelling(EV (t1), EV (t2)).

where EV(t1) represents everyday functioning sensor data
for month 1 and EV(t2) represents everyday functioning
sensor data for month 2.

Compare and Count(2C) Algorithm
The Compare and Count (2C) algorithm is a sliding
window algorithm that accumulates changes observed in a



Table 2: Everyday Functioning Longitudinal Dataset

Group Variable Features

I Mobility Total distance traveled, #Sensor triggered

II Sleep Sleep duration, #Sensor events in sleep
Bed toilet transition Bed toilet transition duration, #Sensor events in bed toilet transition

III

Cook Cook duration, #Sensor events in cook
Eat Eat duration, #Sensor events in eat
Relax Relax duration, #Sensor events in relax
Personal hygiene Personal hygiene duration
Leave Home Leave home duration

window. We initialize a change counter C that maintains
a change score. 2C slides a window of size W over these
bins. We choose a window size of W = 6 months because
clinical tests are administered biannually. The bins that
fall in this window are compared with all other bins.
Depending on the time resolution and type of data, we
compare bins using the notion of change defined in
previous sections. Algorithm 1 explains the algorithm.

For the smart home data, we obtain a collection of change
scores by running the 2C algorithm independently on
features that represent different activities of daily living.
Similarly, we run this algorithm on clinical assessment
datasets to obtain change scores in clinical assessment
scores. The change scores in activities and clinical
assessment data comprise our final training dataset. The
change score of an activity and its corresponding change
score in the clinical assessment data represent a data point
in our training set. We formulate the problem of finding
relationships between the change scores in the everyday
behavior and clinical assessment data as a learning
problem, in which we want to correlate changes in clinical

assessment scores with changes in everyday behavior.

Performance of Learning Algorithm
We aggregate changes of all individuals observed at
different time points to build the training set for our
learning algorithm. Using this training set, we learn the
relationship between changes observed in the smart home
behavior and the changes in standard clinical assessment
scores. In our current work, we use a Support Vector
Machine as our learning algorithm [1,19]. We evaluate our
learning algorithm using leave one out cross validation and
evaluate it by calculating the correlation coefficient (r).
The objective of the experiment is to identify the strength
of the relationship between different changes observed in
everyday functioning and the standard clinical assessment
scores. Table 3 summarizes the absolute value of the
correlation coefficients between different feature subsets
and standard clinical assessment scores. These scores were
obtained using SVM and linear kernel. We observe that:

• The global clinical measure of general cognitive
functioning (i.e., RBANS total score) correlated



Table 3: Average correlations between changes in smart home data and clinical change scores based on SVM predictions using linear
kernels(α = 0.005 with Bonferroni correction for n sample groups, ∗ < 0.05)

Sleep Mobility + Leave Home ADL Sleep + Mobility Sleep + ADL Mobility + ADL ALL Features

RBANS 0.11 0.02 0.36 0.07 0.43* 0.20 0.41*
TUG 0.16 0.43* 0.16 0.16 0.01 0.24 0.10

Algorithm 1 2C Algorithm

Input: Clinical Assessment data (CA)
Input: Smart Home Sensor data (SH)

1: W = 6 . Window Size W = 6 months
2: T1 = 1
3: repeat:
4: Place window of size W at T1

5: CH2=0; CH1 = 0; . Change counters
6: for all Ti,Tj ∈W and Ti < Tj do
7: Calculate: CH1 = changeSH (Ti, Tj)
8: Calculate: CH2 = changeCA(Ti, Tj)
9: Store: (Ti, CH1, CH2)

10: end for
11: T1 = T1 +W . Next Time Point
12: until T1 < (Tn −W )
13: Accumulate CH1 and CH2

14: Use learning algorithm to model CH1 and CH2

significantly with the smart home sleep and activity
change scores.

• The correlation between the clinical measure of
mobility (i.e., TUG scores) and the combined
sensor-based mobility + leave home change score
was statistically significant; the TUG also showed
the highest correlations with the change scores that
included mobility.

We note that the correlations between the combined set
of changes in everyday functioning and the changes in the
clinical assessment scores are weak. Rather it appears that
there is some specificity to the change scores that can be
captured by different aspects of the sensor data. More
specifically, the measure of walking speed showed the
strongest relationship with sensor measures of mobility,
while the measure of global cognitive health showed the
strongest relationships with sensor measures of sleep and
everyday activity performance. Our data suggest that we
may be able to develop sensor-based change algorithms
that can be specific to different components of cognitive
and physical health.

These results are promising and they indicate that smart
home technologies have the potential to be used to assess
and predict the cognitive and physical health of patients.
Future research is needed to further explore the strengths



and weaknesses of algorithms for analyzing smart home
data.

In our future work, we will extend our method to extract
information that can provide clinically relevant
information to clinicians. Our main objective is to develop
learning algorithms that can detect early indications of
cognitive and physical health decline by monitoring
everyday behavior of a resident using smart home sensors.

Conclusions
In this paper, we presented an approach to model the
everyday functioning of a smart home resident using
longitudinal sensor data collected from an unconstrained
smart home setting. We introduce a 2C algorithm to
model the changes in the individual’s behavior. To
validate change scores, we correlate them with the
changes in standardized clinical scores. We found a
statistically significant correlation between changes in
sleep and activities of daily living and changes in a clinical
measure of global cognitive health. We also found a
statistically significant relationship between mobility
change scores and changes in the clinical measure of
mobility (i.e., TUG).
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