
Block-level 3D IC Design with Through-Silicon-Via Planning

Dae Hyun Kim1, Rasit Onur Topaloglu2, and Sung Kyu Lim1

1Department of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332
2GLOBALFOUNDRIES

Email: daehyun@gatech.edu, rasit.topaloglu@globalfoundries.com, limsk@ece.gatech.edu

Abstract— Since re-designing and re-optimizing existing logic, memory,
and IP blocks in a 3D fashion significantly increases design cost, near-
term three-dimensional integrated circuit (3D IC) design will focus on
reusing existing 2D blocks. One way to reuse 2D blocks in the 3D IC
design is to first perform 3D floorplanning, insert signal through-silicon
vias (TSVs) for 3D inter-block connections, and then route the blocks. In
this paper, we propose algorithms (finding signal TSV locations, assigning
TSVs to whitespace blocks, and manipulating whitespace blocks) for
post-floorplanning signal TSV planning in the block-level 3D IC design.
Experimental results show that our signal TSV planner outperforms
the state-of-the-art TSV-aware 3D floorplanner by 7% to 38% with
respect to wirelength. In addition, our multiple TSV insertion algorithm
outperforms a single TSV insertion algorithm by 27% to 37%.

I. INTRODUCTION

As 2D ICs are designed at various design levels such as block
level and gate level, 3D ICs can also be designed at various design
levels. In the core-level 3D IC design, we put existing 2D IC layouts
together, insert signal, power/ground, thermal, and dummy TSVs,
fabricate each die, and stack and bond the dies. The primary merit
of the core-level design is that we can fully utilize 2D CAD tools to
design each die and reuse highly-optimized 2D IC layouts.

In the block-level 3D IC design, we perform 3D floorplanning with
existing 2D blocks, insert TSVs into whitespace, fabricate each die,
and stack and bond the dies. The primary merit of the block-level
design is that we can reuse existing highly-optimized blocks without
major modification. Since re-designing and re-optimizing each block
in a 3D fashion is very costly, using existing well-designed blocks is
inevitable in the 3D IC design.

In the gate-level 3D IC design, we flatten the whole design, place
gates and TSVs in 3D, fabricate each die, and stack and bond the
dies. Since the gate-level 3D IC design provides the highest degree
of freedom on gate and TSV locations, previous works focus on the
gate-level 3D IC design. However, re-designing a whole circuit in
the gate-level 3D IC design significantly increases design cost. In
addition, pre-bond testing is also becoming a serious overhead in
this design level [1].

One of the most important issues in the 3D IC design is that
locations of signal TSVs have a huge impact on the design quality.
Ill-placed signal TSVs cause long detours, so the performance of 3D
ICs having poorly-placed TSVs could be worse than that of 2D ICs.
Therefore, we should take signal TSV locations into account in the
3D IC design. While many papers address signal TSV insertion in
the core-level and the gate-level 3D ICs [2]–[5], few work inserts
signal TSVs physically in the block-level 3D IC design [6]–[8]. In
addition, some of these block-level 3D IC design works do not use
realistic wirelength metrics, so they significantly underestimate total
wirelength. Furthermore, they do not consider multiple signal TSV
insertion, which is essential for wirelength minimization.

In this paper, we propose algorithms for signal TSV planning in
the block-level 3D IC design. Our contributions are as follows:

This material is based upon the work supported by the National Science
Foundation under Grant No. CCF-0917000, Semiconductor Research Corpo-
ration (SRC ICSS), and the Interconnect Focus Center (IFC).

w1
h1

w2
h2

d

(a) HPWL-2DBB = Σ(hi+wi)+2d

BB1

BB3
BB2

(b) HPWL-3D = 2d+ΣHPWL(BBi)

TSV landing pad (MTOP)Block TSV landing pad (M1)

Fig. 1. Wirelength metrics for a 3D net. (a) HPWL based on 2D bounding
boxes. (b) HPWL based on subnet construction. d is the vertical length of a
TSV.

• We propose a more accurate wirelength metric for use in the
block-level 3D IC design.

• We propose a post-floorplanning signal TSV insertion method
for the block-level 3D IC design.

• We develop an effective algorithm for 3D rectilinear Steiner tree
construction to find 3D routing topologies.

• We develop a multiple signal TSV insertion algorithm for
wirelength minimization.

To the best of our knowledge, this is the first work on block-level
signal TSV planning that uses a more realistic wirelength metric and
incorporates multiple signal TSV insertion.

II. 3D WIRELENGTH METRICS

In this section, we review 3D wirelength metrics and propose a
more accurate wirelength metric for use in the multiple TSV insertion.
The following terminologies distinguish two signal TSV insertion
methods.

• Single TSV insertion: To connect blocks placed in two adjacent
dies, we use only one TSV.

• Multiple TSV insertion: To connect blocks placed in two
adjacent dies, we use multiple TSVs if inserting multiple TSVs
reduces the total wirelength further.

A. 3D Half-Perimeter Wirelength Based on Bounding Boxes

One simple way to compute the wirelength of a 3D net is to
construct a 3D bounding box containing blocks and TSVs in the 3D
net and sum the width, the height, and the vertical length of the 3D
bounding box. We call this wirelength metric HPWL-3DBB (HPWL
based on a 3D bounding box). [6], [7] use this wirelength metric.
However, HPWL-3DBB significantly underestimates the wirelength.

Another way to compute the wirelength of a 3D net is to construct
2D bounding boxes containing blocks and TSVs in each die in the
3D net. After 2D bounding box construction in each die, we sum
the HPWL of each 2D bounding box and the vertical length of a
TSV multiplied by the number of TSVs. We call this wirelength
metric HWPL-2DBB (HPWL based on 2D bounding boxes). Fig. 1(a)
shows an example of HPWL-2DBB. If we use the single TSV
insertion, HPWL-2DBB produces the most accurate HWPL-based
3D wirelength.

978-1-4673-0772-7/12/$31.00 ©2012 IEEE

4B-1

335

A given 3D floorplan

Estimate TSV locations

Assign TSVs to existing whitespace blocks

(global TSV assignment)

Assign TSVs to empty TSV slots in each
whitespace block (local TSV assignment)

Feasible?
noInsert or expand

a whitespace block
yes

yes

no

Best solution

no

yes

Final floorplan, TSV locations, and subnets

Best?

Stop?

Fig. 2. Our signal TSV planning flow.

TSV

die 0

die 1

M2

M1

Substrate

Bonding layer

M1

MTOP

MTOP-1

Fig. 3. A 3D IC with via-first TSV and face-to-back die stacking.

B. Subnet-based 3D Half-Perimeter Wirelength

If we use the multiple TSV insertion, HPWL-2DBB computes
the wirelength of a 3D net inaccurately. In fact, the multiple TSV
insertion splits a 3D net into multiple subnets as shown in Fig. 1(b). In
this case, each subnet has its own bounding box, so we can compute
the total wirelength of a 3D net Hi more accurately as follows:

HPWL-3D(Hi) = d ·NTSV,i +
∑

HPWL(BBi,j) , (1)

where d is the vertical length of a TSV, NTSV,i is the total number
of TSVs used for net Hi, and HPWL(BBi,j) is the HPWL of the
2D bounding box of the j-th subnet of Hi. HPWL-3D also computes
the wirelength of the single TSV insertion accurately.

III. SIGNAL TSV PLANNING

Fig. 2 shows our signal TSV planning flow for the block-level 3D
IC design. Since we focus on post-floorplanning steps, we assume
that 3D floorplans are given to us. For a given 3D floorplan, we
first find TSV locations minimizing wirelength regardless of locations
of available whitespace. To find TSV locations, we construct a 3D
rectilinear Steiner tree (RST) for each 3D net, apply a bottom-up
breadth-first search to the 3D RST to find a die span (defined in
Section IV) of each Steiner point, and determine TSV locations.
We show our algorithms for the construction of a 3D RST and the
determination of TSV locations in Section IV.

In general, floorplanners generate compact floorplans, so TSV
locations found by algorithms ignoring available whitespace locations
are likely to be located on functional blocks. Since we cannot insert

TSVs into functional blocks, we should find available whitespace
close to estimated TSV locations. We solve this problem by TSV
assignment, which we explain in Section V.

If we fail to assign TSVs to whitespace due to lack of enough
whitespace, we insert a new whitespace block, expand an exist-
ing whitespace block, or redistribute whitespace blocks. Since this
whitespace manipulation changes the given floorplan, if we change
the current floorplan, we go back to the step for estimation of TSV
locations as shown in Fig. 2. We present our whitespace manipulation
algorithm in Section VI.

In this work, we assume that we use via-first TSVs and face-to-
back die stacking as illustrated in Fig. 3.

IV. ESTIMATION OF TSV LOCATIONS

2D rectilinear Steiner minimum tree (RSMT) construction algo-
rithms are frequently used to find optimal routing topologies for 2D
nets. Similarly, since we can replace a planar (x- or y-directional)
edge by a metal wire and a vertical (z-directional) edge by a TSV,
we can use 3D RSMT construction algorithms to find optimal routing
topologies for 3D nets. However, there is no published work on 3D
RSMT construction. In this section, therefore, we develop a 3D RST
construction algorithm using a 2D RSMT construction algorithm to
find TSV locations as well as 3D routing topologies. Fig. 4 briefly
illustrates our 3D RST construction algorithm. In Fig. 4(a), a 3D net
has six pins to be connected. In Fig. 4(b), we project these points onto
a 2D plane. In Fig. 4(c), we construct a 2D RSMT for the projected
points. To construct a 2D RSMT, we use FLUTE [9]. In Fig. 4(d), we
expand the 2D RSMT to a 3D RST. When we expand a 2D RSMT
to a 3D RST, some of the Steiner points in the 2D RSMT should
connect multiple dies as shown in Fig. 4(d). Therefore, we compute
a die span of each Steiner point during the 2D to 3D expansion. Here
we define a die span as follows:

Definition 1: A die span of a point is the range of dies that the
point connects.
For example, in Fig. 4(c) and Fig. 4(d), Steiner point s1 is supposed
to connect p0 in die 0 and p2 in die 2, so the die span of s1 is [0, 2].1

After 3D RST construction, we insert TSVs into and between
Steiner points in the 3D RST and construct subnets. These TSV
locations are used for estimated TSV locations in our signal TSV
planning flow.

A. Computation of a Die Span of a Steiner Point

The set of points of a 2D RSMT consists of fixed points (i.e.,
input points) and Steiner points inserted by a 2D RSMT construction
algorithm. In Fig. 4(c), for example, p0 to p5 are fixed points and s1
to s4 are Steiner points. When we expand a 2D RSMT to a 3D RST,
we construct a 3D RST by inserting vertical edges at Steiner points
as shown in Fig. 4(d). However, when we insert vertical edges into
Steiner points, we should determine which dies each Steiner point
connects. We solve this problem by computing a die span of each
Steiner point.

To compute a die span of each Steiner point in a given 2D
RSMT, we apply the bottom-up breath-first search algorithm to the
2D RSMT. In Fig. 4(c), for example, we first visit depth-0 points (p0
to p5), then depth-1 points (s1, s2, s3), and then depth-2 points (s4).2

The reason that we apply the bottom-up breath-first search algorithm
is because the computation of die spans of higher-depth Steiner
points (e.g., depth-1 points) needs determined die spans of lower-
depth points (e.g., depth-0 points) adjacent to them.

1Notice that the die number of the topmost die (die 0) is 0 while that of
the bottommost die (die d-1) is d-1 where d is the number of dies.

2The depth of a point is defined as the minimum depth from the root point
set (the set of fixed points).

4B-1

336

(a) (b) (c) (d)

die0

die1

die2

die3

die4

p0

p1

p2

p3

p4 p5

p0
p1

p2

p3

p4
p5

p0

p2

p1

p3

p4
p5

s1:(0-2)

s3:(4)

s2:(1-3)

s4:(0-2,1-3,4)

n1

n2

n3

n4

n5

n6

n7

p0

p1

p2

p3

p4 p5

die0

die1

die2

die3

die4

T1

T2 T3

T4 T5

T6

Fig. 4. Construction of a 3D RST. (a) Points to be connected. (b) Fixed points projected onto a 2D xy plane. (c) A 2D RSMT. (d) A 3D RST constructed
from (c).

Algorithm 1: Our 3D RST construction algorithm.

Input: A set F = {p | p ∈ Z
3} of fixed 3D points.

Output: TSV locations and subnets.

1 E ← Construct 2D RSMT (F);
2 Q ← {}; // a queue.
3 for each p ∈ F do
4 p.visited ← true;
5 p.top ← p.die; p.bot ← p.die;
6 Q.enqueue (p);
7 end
8 while !Q.empty() do
9 p1 ← Q.dequeue();

10 for each unvisited point p2 adjacent to p1 do
11 tTop ← ∞; tBot ← −∞;
12 for each visited point p3 adjacent to p2 do
13 tTop ← MIN (p3.bot, tTop);
14 tBot ← MAX (p3.top, tBot);
15 end
16 if tTop > tBot then
17 tTop ← IRand (tBot, tTop);
18 tBot ← tTop;
19 end
20 p2.top ← tTop; p2.bot ← tBot;
21 p2.visited ← true;
22 for each unvisited point p3 adjacent to p2 s.t. p3 /∈ Q do
23 Q.enqueue (p3);
24 end
25 end
26 end

Algorithm 1 shows our algorithm for the computation of a die span
at each Steiner point during the 2D RSMT to 3D RST expansion. We
first create an empty queue, Q (Line 2). Then, for each fixed point p
in F , we set its visited variable to true (Line 4), which denotes that
this point is visited and this point has a fixed die span. We also set
its top and bot variables to its die number (Line 5). For example, if
a point p is located in die1 (p.die=1), its top and bot become 1. The
top and bot variables denote the topmost die and the bottommost die
that the point connects, respectively. We then insert these points into
Q (Line 6) for the breath-first search.

Between Line 8 and Line 26, we apply the breath-first search
algorithm. First, we dequeue a point p1, which is a point whose die
span is already computed, from Q (Line 9). Then, we compute a die

(a) (b) (c)

die0

die1

die2

die3

die4
p1 p2 s

die0

die1

die2

die3

die4

die0

die1

die2

die3

die4

top

bot

Fig. 5. Die span diagrams. Solid dots are top variables and empty dots are
bot variables. Red spans show tTop and tBot when we determine the die span
of s. (a) tTop (=2) < tBot (=3). (b) tTop (=2) = tBot (=2). (c) tTop (=2) >
tBot (=1).

span of each unvisited point p2 adjacent to p1.3 For this, we prepare
two temporary variables, tTop and tBot, and initialize them (Line 11).
Then, for each visited point p34 adjacent to p2, we set tTop to the
smaller number of p3.bot and tTop (Line 14) and set tBot to the
larger number of p3.top and tBot (Line 15). This computation finds
the minimal die span, which connects all the visited points adjacent
to p2, of p2. For example, in Fig. 4(c), we first visit p0. Since s1 is
an unvisited point adjacent to p0, we compute a die span of s1 by
visiting all visited points (p0 and p2) adjacent to s1. Then, the die
span of s1 becomes [0, 2] by the computation in Line 12 to Line 15
in Algorithm 1.

When we compute the die span at Steiner point p2, three relations
between tTop and tBot can exist as illustrated in Fig. 5. If tTop is
smaller than tBot, we need edge(s) connecting from tTop-th die to
tBot-th die (Fig. 5(a)). If tTop equals tBot, we do not need vertical
edges because we can use planar edges to connect visited points
adjacent to s (Fig. 5(b)). If tTop is greater than tBot as shown in
Fig. 5(c), there are overlaps among die spans of visited points adjacent
to s, so we do not need to insert vertical edges. In this case, we just
choose a die in [tBot, tTop] to connect s and visited points adjacent
to s in 2D (Line 16 to Line 19). The IRand(a,b) function in Line 17
returns an integer number in [a, b].

Then, we set the die span of p2 (Line 20), mark p2 as a visited
point (Line 21), and enqueue all unvisited points adjacent to p2 into
Q (Line 23) for the breath-first search.

B. Insertion of TSVs into and between Steiner Points

After we expand a 2D RSMT to a 3D RST, we insert TSVs into
and between Steiner points as follows. If top of a Steiner point is

3Unvisited points are always Steiner points.
4A visited point always has a determined die span.

4B-1

337

Source Sink

s t

T
1

T
2

T
3

T
n

W
1

W
2

W
3

W
b

(Flow: n)

1/0

1/0

1/0

1/0

C.W
1
/0

C.W
b
/0

1/C.T
11

1/C.T
nb

Fig. 6. Global assignment of TSVs to whitespace blocks. Ti is the i-th TSV
and Wj is the j-th whitespace block. f/c in each edge denotes that f is the
maximum flow capacity, and c is the cost. C.Tij is the wirelength when TSV
Ti is assigned to whitespace block Wj . C.Wi is the maximum number of
available TSV slots in whitespace block Wi.

smaller than its bot,5 we insert TSVs from the (top)-th die to the
(bot-1)-th die.6 This is an insertion of TSVs into a Steiner point.

If the die spans of two adjacent Steiner points do not overlap, we
also insert TSVs between the two Steiner points. For example, if the
die span of a Steiner point s1 is [1, 2] and the die span of a Steiner
point s2 adjacent to s1 is [4, 5], we need to insert a TSV in die 2
and a TSV in die 3 between these two Steiner points. In this case,
we insert TSV(s) in the middle of the two points.

C. Construction of Subnets

After we find TSV locations for a 3D net, we construct subnets
for the net. For instance, the net in Fig. 4(d) consists of the following
subnets: n1 connecting p0 and the metal 1 landing pad of TSV T1,
n2 connecting the bottom landing pad of TSV T1 and the metal 1
landing pad of TSV T2, n3 connecting p2, the bottom landing pads
of TSV T2 and T3, and the metal 1 landing pads of TSV T4 and T5,
and so on.

Our subnet construction algorithm is based on iterative search. For
a point p in a 3D RST, we create an empty set S, insert p into S,
and traverse adjacent points from p. If an adjacent point j is in the
same die with p, we insert j into S. If j is in a different die, we
stop traversing through j. In this case, j is in the upper die, so we
add the bottom landing pad of j into S. After we finish traversing,
we find a non-empty set S, which becomes a subnet. We repeat this
process until we traverse all the points in the 3D RST.

V. TSV ASSIGNMENT

Since TSVs cannot be inserted into functional blocks, we should
assign estimated TSV locations to nearby whitespace blocks, as
illustrated in Fig. 2. To assign TSVs to whitespace blocks, we use a
minimum-cost flow formulation.

A. Global TSV Assignment

Fig. 6 shows the formulation for the global TSV assignment.
In the figure, Ti is the node for the i-th TSV to be assigned to
whitespace and Wj is the node for the j-th whitespace block. Since
we should assign all TSVs to whitespace blocks, the total amount
of flow outgoing from the source equals the number of TSVs and
the maximum flow capacity of each edge from the source to Ti is
1. Since edge s → Ti has no physical meaning, we set the cost of
the edge to zero. Similarly, edge Wj → t has zero cost. However,
the maximum flow capacity from Wj to the sink equals the number

5Notice that top is always less than or equal to bot after the die span
computation.

6Since we assume that face-to-back stacking is used, if we connect a block
in die1 and another block in die3, we insert TSVs in die1 and die2 only.

of available TSV slots in whitespace block Wj . The maximum flow
capacity from Ti to Wj is 1, which denotes that a TSV is assigned
to only one whitespace block. The cost of the edge Ti → Wj is
computed by the Manhattan distance from Ti to Wj . We solve this
minimum-cost flow problem for each die.

If the total amount of flows from whitespace blocks to the sink is
less than the total number of TSVs, the problem becomes infeasible.
In this case, we manipulate whitespace blocks and go back to the
estimation of TSV locations step as illustrated in Fig. 2.

B. Local TSV Assignment

After we assign TSVs to whitespace blocks (global TSV assign-
ment), we assign TSVs to TSV slots in each whitespace block (local
TSV assignment) in a similar way. In this local TSV assignment
formulation, however, we replace the whitespace blocks (Wj) in
Fig. 6 by available TSV slots (Sj) in each whitespace block and the
maximum capacity of edge Sj → t by 1. The cost of edge Ti → Sj

is computed by the Manhattan distance from Ti to Sj . We solve this
minimum-cost flow problem for each whitespace block.

The reason that we apply global and local assignment separately is
because it dramatically reduces the number of variables. If the number
of variables is small, however, we can perform the TSV assignment
by taking all TSVs and all TSV slots into one assignment formulation.

VI. WHITESPACE MANIPULATION

In our signal TSV planning, we need to manipulate whitespace
in two cases. First, if we fail to assign TSVs to whitespace blocks,
we should insert more whitespace. Second, even if we successfully
assign TSVs to whitespace blocks, we could improve the current
floorplan by manipulating whitespace. In this section, we present
our whitespace manipulation algorithm. Although many papers use
concurrent approaches [10]–[12], we manipulate (insert, expand, or
redistribute) whitespace blocks one by one.

As a preparation step, we first extract whitespace, create four
variables (left, right, bottom, top) for each functional block, and
create one variable (demand) for each whitespace block. Then, for
each TSV location found in Section IV, we compute the Manhattan
distance from the TSV to each boundary (left, right, bottom, top)
of each functional block in the same die and add a demand to the
four boundaries of the block. To compute the demand, we use the
following function:

y =
CMAX − CMIN

DMAX −DMIN

· (x−DMIN) + CMIN (2)

where y is the demand, CMAX is 1.0, CMIN is 0.01, DMAX is
WDIE/6.0, DMIN to WDIE/12.0 where WDIE is the die width,
and x is the distance. We also compute the Manhattan distance from
each TSV location to each whitespace block in the same die and add
a demand to the demand variable of the whitespace block using the
same demand function.

If the most demanding spot is a boundary of a functional block,
we insert a unit whitespace block, which is pre-determined by a user,
to the boundary. If the most demanding spot is a whitespace block,
we expand the whitespace block by inserting a unit whitespace block
to the whitespace block.

VII. EXPERIMENTAL RESULTS

We implement our algorithms using C/C++ and perform all exper-
iments in a 64-bit Linux server with Intel 2.5GHz CPU. To compare
our algorithm with [7], we use MCNC and GSRC benchmarks. We
also use four industry circuits for more realistic simulation. Table I
shows profiles of all the benchmark circuits. Since our algorithms
are used in post-floorplanning steps, we develop an in-house 3D

4B-1

338

TABLE IV
COMPARISON OF SINGLE TSV INSERTION, 3D MST-BASED MULTIPLE TSV INSERTION, AND 3D RST-BASED MULTIPLE TSV INSERTION.

Multiple TSV insertion Multiple TSV insertion
Single TSV insertion (3D MST-based) (3D RST-based)

degree HPWL-3D (×106) # TSVs HPWL-3D (×106) # TSVs HPWL-3D (×106) # TSVs
3 0.209 (1.00) 1, 043 (1.00) 0.168 (0.81) 1, 349 (1.29) 0.156 (0.75) 1, 165 (1.12)
4 0.286 (1.00) 1, 335 (1.00) 0.226 (0.79) 2, 215 (1.66) 0.208 (0.73) 1, 841 (1.38)

n100 5 0.382 (1.00) 1, 415 (1.00) 0.294 (0.77) 2, 779 (1.96) 0.258 (0.68) 2, 258 (1.60)
nets: 576 6 0.408 (1.00) 1, 525 (1.00) 0.329 (0.81) 3, 539 (2.32) 0.293 (0.72) 2, 826 (1.85)

7 0.472 (1.00) 1, 544 (1.00) 0.439 (0.92) 4, 063 (2.63) 0.356 (0.75) 3, 256 (2.11)
8 0.506 (1.00) 1, 633 (1.00) 0.483 (0.95) 4, 987 (3.05) 0.385 (0.76) 4, 004 (2.45)

Geo. mean (1.00) (1.00) (0.87) (2.38) (0.73) (1.69)

3 0.685 (1.00) 2, 918 (1.00) 0.621 (0.91) 3, 906 (1.34) 0.539 (0.79) 3, 274 (1.12)
4 0.964 (1.00) 3, 544 (1.00) 0.692 (0.72) 5, 800 (1.64) 0.609 (0.63) 4, 771 (1.35)

n200 5 1.225 (1.00) 3, 816 (1.00) 0.855 (0.70) 7, 538 (1.98) 0.757 (0.62) 5, 981 (1.57)
nets: 1, 585 6 1.385 (1.00) 4, 241 (1.00) 0.949 (0.69) 9, 825 (2.32) 0.832 (0.60) 7, 950 (1.87)

7 1.544 (1.00) 4, 287 (1.00) 1.085 (0.70) 11, 237 (2.62) 0.946 (0.61) 8, 975 (2.09)
8 1.790 (1.00) 4, 516 (1.00) 1.273 (0.71) 13, 742 (3.04) 1.017 (0.57) 11, 127 (2.46)

Geo. mean (1.00) (1.00) (0.75) (2.39) (0.63) (1.65)

3 1.035 (1.00) 3, 703 (1.00) 0.993 (0.96) 4, 876 (1.32) 0.886 (0.86) 4, 111 (1.11)
4 1.685 (1.00) 4, 609 (1.00) 1.234 (0.73) 7, 538 (1.64) 1.096 (0.65) 6, 202 (1.35)

n300 5 1.671 (1.00) 4, 916 (1.00) 1.172 (0.70) 9, 860 (2.01) 1.027 (0.61) 7, 844 (1.60)
nets: 2, 000 6 1.933 (1.00) 5, 231 (1.00) 1.381 (0.71) 12, 203 (2.33) 1.188 (0.61) 9, 745 (1.86)

7 2.105 (1.00) 5, 430 (1.00) 1.635 (0.78) 14, 449 (2.66) 1.437 (0.68) 11, 536 (2.12)
8 2.362 (1.00) 5, 543 (1.00) 2.132 (0.90) 16, 865 (3.04) 1.633 (0.69) 13, 394 (2.42)

Geo. mean (1.00) (1.00) (0.79) (2.38) (0.68) (1.68)

TABLE I
BENCHMARK CIRCUITS. # GATES IS THE TOTAL NUMBER OF GATES IN THE

BLOCKS, AND # NETS IS THE TOTAL NUMBER OF BLOCK-LEVEL NETS.

Circuit # gates # blocks # nets Avg. net degree

MCNC ami33 - 33 123 4.23
ami49 - 49 408 2.34

GSRC
n100 - 100 885 2.12
n200 - 200 1585 2.27
n300 - 300 1893 2.31
C1 75K 51 6200 2.00

industrial C2 92K 98 1325 4.01
circuits C3 278K 46 1355 2.32

C4 566K 47 2508 2.29

Fig. 7. Full die (top-die) and zoom-in shot of four-die block-level 3D
floorplanning (Cadence Virtuoso)

floorplanner using simulated annealing and 2D sequence pair with
inter-die move as well as intra-die perturbation7 to generate 3D
floorplans. Fig. 7 shows a snapshot of the topmost die of a C2 design
implemented in four dies.

A. 2D Floorplanning vs 3D Floorplanning

Since all existing works on the comparison of 2D and 3D floorplans
use HPWL-3DBB to esimate 3D wirelength, they do not fairly
compare 2D and 3D floorplans because HPWL-3DBB significantly

7Each die has its own sequence pair.

TABLE II
COMPARISON OF 2D AND 3D FLOORPLANNING ON INDUSTRIAL

CIRCUITS. THE WIRELENGTH UNIT IS METER. NUMBERS IN PARENTHESES

SHOW RATIOS BETWEEN 3D AND 2D WIRELENGTHS. THE TSV DIAMETER

IS 2.5μm, THE TSV PITCH IS 4.0μm, AND THE TSV LENGTH IS 20.0μm.

Circuit 2D # dies 3D
HPWL HPWL-3DBB HPWL-3D # TSVs

C1

2 1.042 (0.69) 1.621 (1.07) 3, 080
1.515 3 0.990 (0.65) 1.408 (0.93) 3, 976
(1.00) 4 0.834 (0.55) 1.595 (1.05) 5, 864

5 0.744 (0.49) 1.630 (1.08) 6, 169
Geo. mean (1.00) (0.59) (1.03)

C2

2 0.274 (0.73) 0.366 (0.98) 1, 492
0.375 3 0.221 (0.59) 0.359 (0.96) 2, 463
(1.00) 4 0.198 (0.53) 0.422 (1.13) 3, 837

5 0.174 (0.47) 0.484 (1.29) 4, 446
Geo. mean (1.00) (0.57) (1.08)

C3

2 0.522 (0.64) 1.380 (0.68) 778
0.819 3 0.369 (0.45) 0.557 (0.68) 1, 261
(1.00) 4 0.404 (0.49) 0.536 (0.65) 1, 337

5 0.332 (0.40) 0.647 (0.79) 2, 518
Geo. mean (1.00) (0.49) (0.70)

C4

2 1.423 (0.68) 1.479 (0.71) 1, 226
2.094 3 1.294 (0.62) 1.496 (0.71) 1, 585
(1.00) 4 1.161 (0.55) 1.491 (0.71) 2, 529

5 0.917 (0.44) 1.320 (0.63) 3, 255
Geo. mean (1.00) (0.56) (0.69)

underestimates 3D wirelength. In addition, some of them even do
not take locations of signal TSVs into account. In this experiment,
therefore, we compare HPWL of 2D floorplans and HPWL-3D of
3D floorplans post-processed by our signal TSV planner. To generate
2D floorplans, we run our floorplanner in a 2D mode. To the best of
our knowledge, this is the first work on the comparison of 2D and
3D floorplans using the most accurate 3D wirelength metric.

Table II shows that the wirelength (HPWL-3D) of 3D floorplans
is slightly longer than that of 2D floorplans by 3% to 8% for
relatively small circuits such as C1 and C2. However, the wirelength
of 3D floorplans is much shorter than that of 2D floorplans by

4B-1

339

TABLE III
COMPARISON OF SIGNAL TSV PLANNERS. WE REPORT RATIOS BETWEEN

OUR RESULTS AND [7] (OURS/ [7]).

dies Circuit WL # TSVs # dies Circuit WL # TSVs

3

ami33 0.91 1.26

4

ami33 0.91 1.96
ami49 0.78 1.26 ami49 0.70 1.34
n100 0.93 1.03 n100 0.91 1.06
n200 0.62 0.80 n200 0.82 1.14
n300 0.75 0.80 n300 0.66 0.82

Geo. mean 0.79 1.01 Geo. mean 0.79 1.21

approximately 30% on average for relatively big circuits such as C3
and C4. The reason that 3D floorplans could have longer wirelength
than 2D floorplans is twofold. If there are many 3D nets in a 3D
floorplan, we need to insert many TSVs, which could significantly
increase the die area. The increased die area leads to longer inter-
block connections. In addition, if inter-block connections in 2D
designs are short, designing this circuit in 3D does not result in
shorter inter-block connections.

One thing to notice is that HPWL-3DBB significantly underes-
timates 3D wirelength. In Table II, HPWL-3DBB is 18% to 47%
shorter than HPWL-3D on average. Therefore, we should use HPWL-
3D as a wirelength metric for the 3D IC design.

B. Comparison of Signal TSV Planners

Table III shows comparison of wirelength and the number of TSVs
between our signal TSV planner and [7]. Since the authors of [7] use
HPWL-3DBB, we use HPWL-3DBB as the wirelength metric for fair
comparison. We also use the same TSV size as [7] uses. The TSV
diameter for MCNC circuits is 20μm and that for GSRC circuits
is 3μm. Since [7] performs signal TSV insertion on fixed-outline
floorplans, we run our 3D floorplanning under same constraints –
fixed-outline floorplanning with the same whitespace area. We also
take I/O pin locations into the wirelength computation.

As Table III shows, our signal TSV planner outperforms [7]
by 21% with respect to wirelength for both three-die and four-die
floorplans. In addition, the difference between the wirelength of ours
and that of [7] increases as the circuit size goes up. For example,
we outperform [7] by 9% for ami33. However, for ami49, which is
much bigger than ami33, the wirelength of our algorithm is 22%
to 30% shorter than that of [7]. We find a similar trend for GSRC
circuits. For n100, the wirelength of ours is 7% to 9% shorter than
that of [7], but for n200 or n300, we outperform [7] by 18% to 38%.
Therefore, we find that our signal TSV planner optimizes wirelength
more effectively than [7] as the circuit size goes up.

Since we use multiple TSV insertion, however, we use more TSVs
than [7] does. As Table III shows, we use 26% to 96% more TSVs
for relatively small circuits such as ami33. However, for large circuits
such as n200 and n300, we use slightly more TSVs, or even less
TSVs. Since 3D floorplanning has a great effect on the number of
TSVs used by signal TSV planners, this result also shows that our
3D floorplanner outperforms the 3D floorplanner used in [7].

C. Single TSV Insertion vs. Multiple TSV Insertion

As mentioned in Section II, multiple TSV insertion can reduce
wirelength further than single TSV insertion. In this experiment,
therefore, we compare single TSV insertion, 3D minimum spanning
tree (MST)-based multiple TSV insertion, and 3D RST-based multiple
TSV insertion. For the single TSV insertion, we implement a single
TSV insertion algorithm similar to [7]. For the multiple TSV inser-
tion, since the 3D MST is frequently used to find TSV locations [2],
we also implement a multiple TSV insertion algorithm using the
3D MST. In this algorithm, we create a 3D MST for each 3D net,

and convert each 3D edge into TSV(s), similarly as shown in [2].
In addition, since multiple TSV insertion improves total wirelength
effectively for high-degree nets, we generate benchmarks having n
nets of degree d. In Table IV, for example, n100 with average net
degree 5 denotes that it has 576 nets, and each net is of degree 5.

Table IV shows wirelength and the number of TSVs of these three
signal TSV insertion algorithms. As the table shows, 3D MST-based
multiple TSV insertion leads to 13% to 25% shorter wirelength on
average than the single TSV insertion. In addition, 3D RST-based
multiple TSV insertion produces 27% to 37% shorter wirelength on
average than the single TSV insertion.

However, since multiple TSV insertion inserts more TSVs than
single TSV insertion, the 3D MST-based multiple TSV insertion
inserts 2.38× more TSVs on average than the single TSV insertion.
Similarly, the 3D RST-based multiple TSV insertion inserts 1.67×
more TSVs on average than the single TSV insertion. However,
the 3D RST-based multiple TSV insertion uses much less number
of TSVs (30% on average) than the 3D MST-based multiple TSV
insertion. Therefore, using 3D RST to find optimal TSV locations
results in less TSVs and shorter wirelength than using 3D MST.

We also observe in Table IV that wirelength reduction increases as
the average net degree goes up. If all nets are two-pin nets (degree 2),
no difference exists between single TSV insertion and multiple TSV
insertion. However, if all nets are high-degree multi-pin nets (e.g.,
degree 5), using multiple TSVs helps reduce the total wirelength.

VIII. CONCLUSIONS

In this paper, we proposed a signal TSV planning method to
insert signal TSVs effectively. 3D floorplans post-processed by our
signal TSV planner show 7% to 38% shorter wirelength than those
generated by the state-of-the-art 3D floorplanner. In addition, our
3D RST-based multiple TSV insertion reduces total wirelength more
effectively than the single TSV insertion by up to 37%.

REFERENCES

[1] H.-H. S. Lee and K. Chakrabarty, “Test Challenges for 3D Integrated
Circuits,” in IEEE Design & Test of Computers, Sept. 2009, pp. 26–35.

[2] D. H. Kim, K. Athikulwongse, and S. K. Lim, “A Study of Through-
Silicon-Via Impact on the 3D Stacked IC Layout,” in Proc. IEEE Int.
Conf. on Computer-Aided Design, 2009.

[3] T. Thorolfsson, G. Luo, J. Cong, and P. D. Franzon, “Logic-on-Logic
3D Integration and Placement,” in Proc. IEEE Int. Conf. on 3D System
Integration, 2010.

[4] M. B. H. et al., “Design and Analysis of 3D-MAPS: A Many-core
3D Processor with Stacked Memory,” in Proc. IEEE Custom Integrated
Circuits Conf., Oct. 2010.

[5] M. Pathak, Y.-J. Lee, T. Moon, and S. K. Lim, “Through Silicon
Via Management during 3D Physical Design: When to Add and How
Many?” in Proc. IEEE Int. Conf. on Computer-Aided Design, 2010.

[6] X. He, S. Dong, Y. Ma, and X. Hong, “Simultaneous Buffer and
Interlayer Via Planning for 3D Floorplanning,” in Proc. Int. Symp. on
Quality Electronic Design, 2009.

[7] M.-C. Tsai, T.-C. Wang, and T. Hwang, “Through-Silicon Via Planning
in 3-D Floorplanning,” in IEEE Trans. on VLSI Systems, 2010.

[8] J. Knechtel, I. L. Markov, and J. Lienig, “Assembling 2D Blocks into
3D Chips,” in Proc. Int. Symp. on Physical Design, 2011, pp. 81–88.

[9] C. Chu and Y.-C. Wong, “FLUTE: Fast Lookup Table Based Rectilinear
Steiner Minimal Tree Algorithm for VLSI Design,” in IEEE Trans. on
Computer-Aided Design of Integrated Circuits and Systems, vol. 27,
no. 1, Jan. 2008, pp. 70–83.

[10] X. Tang, R. Tian, and M. D. F. Wong, “Optimal Redistribution of White
Space for Wire Length Minimization,” in Proc. Asia and South Pacific
Design Automation Conf., Jan. 2005, pp. 412–417.

[11] E. Wong and S. K. Lim, “Whitespace Redistribution For Thermal Via
Insertion In 3D Stacked ICs,” in Proc. IEEE Int. Conf. on Computer
Design, Oct. 2007, pp. 267–272.

[12] X. Li, Y. Ma, X. Hong, S. Dong, and J. Cong, “LP Based White Space
Redistribution for Thermal Via Planning and Performance Optimization
in 3D ICs,” in Proc. Asia and South Pacific Design Automation Conf.,
Jan. 2008, pp. 209–212.

4B-1

340

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

