
Construction of All Rectilinear Steiner Minimum Trees on the
Hanan Grid∗

Sheng-En David Lin
Washington State University

Pullman, Washington
slin3@eecs.wsu.edu

Dae Hyun Kim
Washington State University

Pullman, Washington
daehyun@eecs.wsu.edu

ABSTRACT
Given a set of pins, a Rectilinear Steiner Minimum Tree (RSMT)
connects the pins using only rectilinear edges with the minimum
wirelength. RSMT construction is heavily used at various design
steps such as floorplanning, placement, routing, and interconnect
estimation and optimization, so fast algorithms to construct RSMTs
have been developed for many years. However, RSMT construction
is an NP-hard problem, so even a fast RSMT construction algo-
rithm such as GeoSteiner [7] is too slow to use in electronic design
automation (EDA) tools. FLUTE, a lookup-table-based RSMT con-
struction algorithm, builds and uses a routing topology database to
quickly construct RSMTs [5]. However, FLUTE outputs only one
RSMT for a given set of pin locations. In this paper, we develop an
algorithm to build a database of all RSMTs on the Hanan grid for
up to nine pins. The database will be able to help minimize routing
congestion and maximize the routability in the design of modern
very-large-scale integration layouts.

CCS CONCEPTS
• Hardware → Wire routing;

KEYWORDS
Rectilinear Steiner Minimum Tree, RSMT, Routing, Wirelength,
Congestion
ACM Reference Format:
Sheng-En David Lin and Dae Hyun Kim. 2018. Construction of All Recti-
linear Steiner Minimum Trees on the Hanan Grid. In ISPD ’18: 2018 Inter-
national Symposium on Physical Design, March 25–28, 2018, Monterey, CA,
USA.. ACM, New York, NY, USA, Article 4, 8 pages. https://doi.org/10.1145/
3177540.3178240

1 INTRODUCTION
The Rectilinear Steiner Minimum Tree (RSMT) construction prob-
lem is finding an Rectilinear Steiner Tree (RST) having theminimum
length. Since there could be infinitely many RSMTs for a given set of
pin locations, the RSMT construction problem is generally limited
to finding an RSMT on the Hanan grid [9]. RSMT construction is
∗Produces the permission block, and copyright information

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ISPD’18, March 25–28, 2018, Monterey, CA, USA.
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5626-8/18/03. . . $15.00
https://doi.org/10.1145/3177540.3178240

heavily used in many very-large-scale integration (VLSI) computer-
aided design (CAD) tools at various steps such as floorplanning,
placement, routing, and interconnect estimation and optimization.
Thus, several fast algorithms have been proposed in the literature
to construct an RSMT for a given set of pin locations [5, 7]. How-
ever, the RSMT construction problem is NP-hard [6], so several
papers proposed Rectilinear Minimum Spanning Tree (RMST) or
RST construction algorithms for practical use [1, 7, 8, 10–12, 17].

FLUTE builds a database of potentially optimal wirelength vec-
tors (POWVs) and potentially optimal Steiner trees (POSTs) and
constructs an RSMT in no time for a given set of pin locations
using the database for up to nine pins. FLUTE achieves the shortest
wirelength on average for all the 18 IBM benchmarks among five
RSMT and one RMST construction algorithms in [5]. In addition,
its runtime is 5.56× to 64.92× shorter than the runtimes of all the
other RSMT algorithms compared in [5].

One of the applications heavily using RSMT construction in VLSI
CAD tools is global routing, in which RSMTs are used for routing
topologies. For example, BoxRouter [4], DpRouter [2], Archer [14],
MaizeRouter [13], FastRoute [16], GRIP [15], and NTHU-Route [3]
use FLUTE for routing topology generation. If there are multiple
POWVs having the same minimum wirelength for given pin loca-
tions, FLUTE can also construct multiple RSMTs. However, FLUTE
constructs only one POST for each POWV, so there is no guarantee
that the multiple RSMTs constructed by FLUTE look quite different.

In this paper, we propose an efficient algorithm constructing all
RSMTs on the Hanan grid for given pin locations. The algorithm
builds a database of all POSTs on the Hanan grid for each POWV
for up to nine pins so that applications can use the database to
quickly obtain all RSMTs. For more than nine pins, we use the
proposed algorithm with a wirelength vector found by FLUTE to
construct all RSTs in a reasonable amount of time. Various appli-
cations such as global routing and congestion estimation can use
the proposed algorithm to quickly generate meaningfully different
routing topologies.

2 THE ALGORITHM OF FLUTE
Our all RSMT construction algorithm is based on FLUTE, so we
briefly review the idea of FLUTE in this section.

2.1 Position Sequence (Pin Group)
Let P = {p1,p2, ...,pn } be a set of n pins and assume that all the
pins have distinct x- and y- coordinates. In other words, if the
location of pi is (xpi ,ypi ), xpi , xpj and ypi , ypj for any i and
j (i , j). Then, the Hanan grid constructed for the n pins has n
horizontal lines and n vertical lines. Let xi be the x-coordinate of
the i-th vertical line from the left and yi be the y-coordinate of the

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

18

https://doi.org/10.1145/3177540.3178240
https://doi.org/10.1145/3177540.3178240
https://doi.org/10.1145/3177540.3178240


x

y

Pin

x1 x2 x3 x4

y1

y2

y3

y4

s1=3

s2=1

s3=4

s4=2

Horizontal

edge
Vertical

edge

h1 h2 h3

v1

v2

v3

Figure 1: Four pins on the Hanan grid, their position se-
quence (3142), and an RSMT constructed on the Hanan grid.

i-th horizontal line from the bottom on the Hanan grid as shown
in Figure 1. If the n pins are placed on the Hanan grid, we can
characterize the distribution of the pins on the Hanan grid using a
position sequence (pin group) as follows. Suppose the x-coordinate
of the pin whose y-coordinate is yi is xsi . Then, the distribution
of the pins on the Hanan grid has a position sequence (s1s2...sn ).
Figure 1 shows four pins, the Hanan grid constructed for them,
and its position sequence (3142). Notice that the position sequence
is based on not the actual x- and y-coordinates, but the relative
locations of the pins. Thus, any set of pin locations can be mapped
into one of the n! position sequences for n pins.

2.2 Potentially Optimal Wirelength Vector
The Hanan grid constructed for a position sequence can be de-
composed into horizontal and vertical edges as shown in Figure 1.
A horizontal edge is a horizontal segment ([xi ,xi+1],yj ) and a
vertical edge is a vertical segment (xk , [ym ,ym+1]). The length of
the horizontal edge whose end points are (xi ,yj ) and (xi+1,yj ) is
hi = xi+1 − xi . Similarly, the length of the vertical edge whose
end points are (xk ,ym ) and (xk ,ym+1) is vm = ym+1 − ym . Then,
any RST constructed on the Hanan grid can be decomposed into
horizontal and vertical edges. For example, the RSMT shown in
Figure 1 uses one h1, one h2, one h3, one v1, two v2, and one v3
edges on the Hanan grid. The wirelength of the RSMT is

L = 1 · h1 + 1 · h2 + 1 · h3 + 1 · v1 + 2 · v2 + 1 · v3, (1)

which can also be expressed as a dot product between (1, 1, 1, 1, 2, 1)
and (h1,h2,h3,v1,v2,v3). We call (h1,h2,h3,v1,v2,v3) the edge
length vector of the given set of pin locations. The edge length vector
is dependent on the actual pin locations, but the coefficient vector
(1, 1, 1, 1, 2, 1) is dependent only on the RSMT topology. When two
coefficient vectors A = (a1, ...,an ) and B = (b1, ...,bn ) are given, if
ai < bi holds for at least one i = 1, ...,n and aj ≤ bj holds for all
the other j = 1, ...,n, the dot product A •H between A and an edge
length vector H is always less than B • H . We denote this relation
by A < B. However, if ai < bi holds for some i and aj > bj holds
for some j (j , i), A • H is greater or less than B • H depending
on H . We denote this relation by A ↔ B. FLUTE finds the set of
all coefficient vectors C for each position sequence such that any
two coefficient vectors ci and c j in C are in the ci ↔ c j relation
and there is no ck in C such that ck < ci or ck < c j . Each element

Input: Pin locations

Position sequence

POWVs and POSTs (DB)

Wirelength computation

An RSMT

(1,2), (3,4), (5,1), (8,3)

(3142)

a: (121111), b: (111121)

a: (1,2,1,1,1,1)·(2,2,3,1,1,1) = 12

b: (1,1,1,1,2,1)·(2,2,3,1,1,1) = 11

a b

Figure 2: Four pins located on the Hanan grid and its posi-
tion sequence.

in C is called a potentially optimal wirelength vector (POWV)
because it can be a candidate for an RSMT.

FLUTE builds a database of all POWVs for each position se-
quence. Then, when the locations of n pins are given, FLUTE finds
the position sequence of the pins and obtains all the POWVs from
the database. Since the actual wirelength is the dot product between
a POWV and the edge length vector for the given pins, FLUTE com-
putes the wirelength for each POWV by computing the dot product
between the POWV and the edge length vector and finds a POWV
having the shortest wirelength.

2.3 Potentially Optimal Steiner Tree
Since FLUTE returns an RSMT for a given set of pin locations,
FLUTE has to construct an actual RSMT. Thus, FLUTE also stores
a topology corresponding to each POWV in the FLUTE database.
A topology stored for each POWV is called a potentially optimal
Steiner tree (POST). Figure 2 shows an example. For given four
pins located at (1, 2), (3, 4), (5, 1), and (8, 3), FLUTE extracts the
position sequence (3142) and obtains two POWVs (1, 2, 1, 1, 1, 1)
and (1, 1, 1, 1, 2, 1) from the database. The POSTs corresponding to
the POWVs are also shown in the figure. Then, FLUTE computes
the wirelength of each POWV and returns the POST corresponding
to a POWV having the minimumwirelength. We refer readers to [5]
for the details of the FLUTE database construction.

3 CONSTRUCTION OF ALL RSMTS
A POST becomes an RSMT if the POWV of the POST has the
minimum wirelength for given pin locations. Thus, constructing
all RSMTs on the Hanan grid means constructing all POSTs for all
POWVs so that we can return all POSTs of all POWVs having the
minimum wirelength for the given pin locations. In this section,
we explain our algorithm to construct all POSTs on the Hanan grid
for a given set of pin locations.

3.1 Terminologies and Notations
Figure 3 shows the Hanan grid constructed for n pins. There exist
n(n−1) horizontal edges, n(n−1) vertical edges, and n2 vertices. If a
vertex is a pin, we call the vertex a pin vertex. A vertex is connected
to two, three, or four edges. We call these edges the neighboring
edges of the vertex and denote the set of all the neighboring edges
of vertex d by NE(d). An edge connects two vertices. If edge ei

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

19



x1

...

..
.

x2 x3 x4 xn

y1

y2

y3

y4

yn

Pin (Pin vertex)

Non-pin vertex

d

e1

e2
e3

e4

e5

e6

e7

eh(0,0)

eh(0,1)

eh(0,2)

eh(1,0) eh(2,0) eh(n-2,0)

ev(0,0)

ev(0,1)

ev(0,2)

ev(0,n-2)

ev(1,0) ev(n-1,0)e8

e9

Figure 3: The Hanan Grid for n pins.

e1

e2

O X

e3 e3

e2

e3 e3

O X O X

e
1

e
2

e
3

...

G B

O

Figure 4: A rectilinear graph G constructed on the Hanan
grid and a binary tree B corresponding to G. The red path
shows a decision sequence. e2 is removed in G because the
red path traverses through the right arrow of e2. O and X
mean the edge is used or removed in G, respectively.

connects vertices dj and dk , we call NE(dj ) ∪ NE(dk ) − {ei } the
set of the neighboring edges of edge ei and denote it by NE(ei ). In
Figure 3, NE(d) is {e1, e2, e3, e4} and NE(e1) is {e2, e3, e4, e5, e6, e7}.

A horizontal edge connects two vertices, one on the left and
the other on the right. We denote the left and right vertices of
horizontal edge ei by VL(ei ) and VR (ei ), respectively. Similarly, we
denote the top and the bottom vertices of vertical edge ei byVT (ei )
andVB (ei ), respectively. Thus, for example, NE(VL(ei )) is the set of
all the neighboring edges connected to the left vertex of horizontal
edge ei . We denote each horizontal edge by eh (i, j) where i and j
are the indices to locate the edge and each vertical edge by ev (i, j).
The indices are shown in Figure 3.

If a vertex of an edge is not a pin vertex and is not connected to
any other edges, the edge is dangling. For example, if NE(VL(e)) −
{e} is the empty set and VL(e) is not a pin vertex for edge e , e is
dangling. If an edge is dangling, it cannot be a part of a POST.

An edge on the Hanan grid can be available, used, or removed.
An available edge is an edge that is not used nor removed, but we
will decide to use or remove it to construct a POST. e1 and e2 in
Figure 3 are available edges. A used (or removed) edge is an edge
that we have decided to use (or remove) to construct a POST. e8
is a used edge and e9 is a removed edge in Figure 3. powv(e) for
given edge e is the POWV element corresponding to e . If a POWV is
(q1,q2, ..., r1, r2, ...)whereqk is for the horizontal edges and rk is for
the vertical edges, powv(eh (i, j)) is qi+1 and powv(ev (i, j)) is r j+1.
We also denote the set of all edges whose POWV element is k by
PE(k). For example, PE(powv(eh (0, 0))) is {eh (0, 0), ..., eh (0,n − 1)}.

e1

e2

e5

e4

e3

e6

e7

Figure 5: Must-use and must-remove edges.

3.2 Binary Tree-Based POST Construction
We construct a rectilinear graphG on the Hanan grid using a binary
tree B to find all POSTs for a given position sequence and a POWV
as follows. An internal node in B corresponds to an edge in the
Hanan grid. The left and right arrows of an internal node means
that we decide to use or remove the edge inG , respectively. Figure 4
shows an example. When we traverse B starting from the root node
e1, we decide to use or remove e1 in G . When we reach a leaf node,
we evaluate the graph G, i.e., we check whether all the pins in G
are connected through the used edges. We use the breadth-first
search (BFS) algorithm to evaluate a graph.

An exhaustive POST construction algorithm using B uses the in-
order traversal to traverse B and evaluates each graphG constructed
by B whenever it reaches a leaf node because each leaf node corre-
sponds to a decision sequence (eh (0, 0) = O, eh (0, 1) = X , ...)where
O and X denote that the edge is used and removed, respectively.
However, the exhaustive POST construction algorithm is too slow.
The Hanan grid constructed for n pins has 2n(n − 1) edges, so the
total number of leaf nodes in the complete binary tree constructed
for n pins has 22n(n−1) leaf nodes. Since we use the BFS algorithm
for evaluation ofG and there are 2n(n − 1) edges, the complexity to
check whether all pins are connected isO(n2). Thus, the complexity
of the exhaustive POST construction algorithm is O(n222n(n−1)).

When we construct all POSTs, however, we use the binary tree
with various pruning criteria to reduce the search space. Although
the runtime of the algorithm still seems to increase exponentially,
it can find all POSTs for up to nine pins in a reasonable amount of
time.

3.2.1 Pruning by Zero POWV Elements. When element q in a
POWV becomes zero, we can remove all the available edges in
PE(q) from graph G. For example, if the position sequence for
four pins is (3142) as shown in Figure 1 and a given POWV is
(1, 2, 1, 1, 1, 1), taking the left arrow of node eh (0, 0) in B uses the
edge in G and decreases the first element of the POWV by 1, so
the POWV becomes (0, 2, 1, 1, 1, 1). Since the first element of the
POWV is zero, eh (0, 1), eh (0, 2), and eh (0, 3) in Figure 1 should be
removed from G, which also means we remove the left arrows of
all the nodes corresponding to these three edges in B.

3.2.2 Pruning by Must-Use and Must-Remove Edges. When an
edge on the Hanan grid is used or removed, there might be edges
that should also be used or removed. We call the edges that should
be used must-use edges and the edges that should be removed
must-remove edges. The reason that there exist must-use and must-
remove edges are as follows.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

20



First, suppose we decide to use edge e1 in Figure 5. If NL(e1)
is not a pin vertex, we should use e2 too, otherwise e1 becomes
a dangling edge. Thus, e2 becomes a must-use edge. Notice that
this does not guarantee that e1 and e2 will be included in a POST.
Rather, we reduce the search space in the binary tree by removing
the right arrows of all the nodes corresponding to e2 in B.

Second, suppose we remove an edge fromG . In this case, some of
the neighboring edges of the removed edge might become dangling,
so we also have to remove them. For example, suppose we remove
e1 in Figure 5, which causes e2 to be dangling, so e2 becomes a
must-remove edge and should be removed. If we remove e2, e3 also
becomes a must-remove edge, so we remove e3 too. We can remove
multiple edges consecutively in this way.

Using or removing an edge can cause some of its neighbor-
ing edges to be must-use or must-remove edges. For example, if
powv(e1) is 1 and we use e1 in Figure 5, e2 becomes a must-use edge
and e6 and e7 become must-remove edges. If we remove e1, e2 be-
comes a must-remove edge. If we remove e4, however, e5 becomes
a must-use edge because e5 is the only edge connecting pin p1.

3.2.3 Conditions for POST Evaluation. Evaluation of G checks
whether G on the Hanan grid connects all the pins. However, eval-
uating graphs too often increases the runtime meaninglessly. Thus,
we evaluate G only when 1) the current POWV becomes a zero
vector or 2) we reach a leaf node in B.

3.2.4 Intermediate Connectivity Check. In many cases, using or
removing edges occurs consecutively as explained above. Using
edges decreases the POWV elements corresponding to them, so
some of the POWV elements might become zero if many edges
become must-use edges during pruning. If some POWV elements
become zero, all the available edges corresponding to the POWV
elements become must-remove edges, so we remove them. If many
edges are removed, G is highly likely to be disconnected. Thus,
we also check whether all the pins are still connected through the
used and available edges in G during the pruning if the number
of used and removed edges at a pruning step is greater than a
pre-determined threshold value1.

3.2.5 Binary Tree Construction and Traversal. We construct a
binary tree for given pin locations and POWV as follows. The root
node (at level 0) is eh (0, 0) and the two child nodes (at level 1)
of the root node are eh (0, 1). In general, the nodes at level k are
eh (⌊k/n⌋,k mod n) if k < n(n − 1) and ev (k mod n, ⌊k/n⌋ − (n − 1))
if k >= n(n − 1). Although we used a binary tree above to explain
the proposed algorithm, we implemented the algorithm using a
recursive function call without explicitly constructing a binary tree
to reduce the memory usage.

3.3 Overall Algorithm
Algorithm 1 shows the overall algorithm for constructing all POSTs
for given pin locations and a POWV. We first prepare an ordered
set (array) E of all the edges (Line 1). The edges are sorted in the
traversal order, so E is (eh (0, 0), eh (0, 1), ..., eh (1, 0), ..., eh (n − 2,n −
1), ev (0, 0), ev (1, 0), ..., ev (n − 1,n − 2)). Array R will contain all the
POSTs for the given pin locations and POWV (Line 2). Then, we call

1We use the number of pins for the threshold.

Input: Pin locations and a POWV (powv).
1: Ordered set E = (eh (0, 0), ..., ev (n − 1, n − 2));
2: R = {};
3: Call recursive_construction (powv, E , R , 0);
4: Return R;

Function: recursive_construction (powv, E , R , index)
5: if powv == 0 or index == E .size then
6: if Current graph G connects all the pins then
7: Insert G into R;
8: end if
9: return;
10: end if
11: e = E[index];
12: if e is a used or removed edge then
13: Call recursive_construction (powv, E , R , index+1);
14: return;
15: end if
16: if powv(e ) > 0 then
17: Call use_or_remove_and_prune (e , NULL, powv);
18: if # must-use and must-remove edges ≥ threshold then
19: if Current graph G connects all the pins then
20: recursive_construction (powv, E , R , index+1);
21: end if
22: else
23: recursive_construction (powv, E , R , index+1);
24: end if
25: Roll back the must-use and must-remove edges.
26: end if
27: Call use_or_remove_and_prune (NULL, e , powv);
28: if # must-use and must-remove edges ≥ threshold then
29: if Current graph G connects all the pins then
30: recursive_construction (powv, E , R , index+1);
31: end if
32: else
33: recursive_construction (powv, E , R , index+1);
34: end if
35: Roll back the must-use and must-remove edges.

Algorithm 1: Construction of all POSTs for given pin locations
and POWV.

function recursive_construction with the current POWV, E, R, and
the edge index 0 (Line 3). Once the recursive function call finishes,
we return R (Line 4).

At the beginning of function recursive_construction, we check
whether the current POWV is equal to the zero vector or the edge
index has reached the end of E (Line 5). If the condition is true, we
check whether the current graphG connects all the pins by perform-
ing a BFS starting from a pin only through the used edges (Line 6).
If G is connected, it is a POST, so we insert G into R (Line 7) and
finish the current function call because there is no reason to explore
using/removing edges further (if the POWV is zero) or there is no
more edge to process (if the current node is a leaf node).

If the POWV is not equal to the zero vector and there are re-
maining edges to process (Line 11), we keep constructing POSTs as
follows. If the current edge e is a used or removed edge (Line 12),
we move on to the next edge (Line 13), which is the same as immedi-
ately taking the left or the right arrow at the node corresponding to
e in B if it is a used or removed edge, respectively. If e is an available
edge, we check whether powv(e) is greater than zero (Line 16). If it

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

21



is greater than zero, we try using e (which is traversing through
the left arrow of the node corresponding to e in B) and prune ad-
ditional edges (Line 17). Notice that we also try removing e from
G (which is traversing through the right arrow of the node) and
prune additional edges (Line 27). Once the pruning is done, we
perform intermediate connectivity check (Line 18 and 19) when
the number of must-use and must-remove edges is greater or equal
to a threshold number. In this case, if we can reach all the pins
in G through the used and available edges, we call function recur-
sive_construction to continue to construct POSTs. If the number of
must-use and must-remove edges is less than the threshold number,
we just call function recursive_construction to move on to the next
edge. IfG is not connected, we immediately roll back all the changes
by restoringG to its previous state (Line 25). Line 27 to Line 35 tries
removing edge e from G.

Algorithm 2 shows the proposed algorithm for pruning must-
use and must-remove edges after using or removing a given edge.
First, insert given edge u into set U (Line 1) and insert given edge
m into set M (Line 2). Then, we keep repeating processing must-
use edges (from Line 4 to Line 16) and must-remove edges (from
Line 17 to Line 26). For each edge e in U , we check whether e is a
removed edge or powv(e) is zero (Line 6). If e is a removed edge or
powv(e) is zero, we cannot use e in G because it is contradictory,
so the current graph G cannot be a POST. Thus, if any of the two
conditions is true, we stop processing the must-use edge and return
invalid_topology (Line 7). Otherwise, we use e (Line 9) and decrease
powv(e) by 1 (Line 10). If powv(e) becomes zero, we insert all the
available edges in PE(powv(e)) intoM so that we can remove the
edges later (Line 12). Then, we check whether any of the edges in
NE(e) are must-use edges. If any, we insert them into U (Line 14)
so that we can process them later.

Once we process all the must-use edges inU , we move on to the
must-remove edges inM (Line 17). If e inM is a used edge (Line 19),
removing e from G leads to a contradiction. Thus, we stop process-
ing the must-remove edge and return invalid_topology (Line 20).
Otherwise, we remove e from G (Line 22). Then, we insert all dan-
gling edges and must-use edges in NE(e) into M (Line 23) and
U (Line 24), respectively, to process them later.

3.4 Example
Figure 6 shows an example. In Figure 6(a), four pins, their position
sequence (4123), and a POWV (121111) are given. Starting with
edge e1, powv(e1) is 1, so we try using it first by marking it used
and reducing powv(e1) by 1 in Figure 6(b). In this case, e1 will be a
dangling edge if e13 is not used, so e13 becomes a must-use edge.
In addition, e2, e3, and e4 become must-remove edges because the
POWV element corresponding to the edges is zero. In Figure 6(c),
we use e13 inG and decrease powv(e13) by 1, so the POWV becomes
(021011). Since powv(e13) becomes zero, e16, e19, and e22 become
must-remove edges. In Figure 6(d), we remove e2, e3, and e4 in
this order. If we remove e4, e15 becomes a must-remove edge. In
Figure 6(e), powv(e13) is zero, so we remove e16, e19, and e22. Then,
we remove e15 in Figure 6(f), which causes e14 to be dangling, so
we remove e14 too. However, e13 is not dangling when we remove
e14 because the top vertex of e13 is a pin vertex.

Function: Use_or_remove_and_prune (u ,m, powv)
Input: (Edge u to use, Edgem to remove, a POWV (powv)).
1: U = {u };
2: M = {m };
3: while U .size + M .size > 0 do
4: while U .size > 0 do
5: for each e ∈ U do
6: if e is a removed edge or powv(e ) == 0 then
7: return invalid_topology;
8: end if
9: Use e in G ;
10: powv(e ) = powv(e ) - 1;
11: if powv(e ) == 0 then
12: Insert all available edges in PE(powv(e )) into M ;
13: end if
14: Insert all must-use edges in NE(e) into U .
15: end for
16: end while
17: while M .size > 0 do
18: for each e ∈ M do
19: if e is a used edge then
20: return invalid_topology;
21: end if
22: Remove e from G ;
23: Insert all dangling edges in NE(e) into M ;
24: Insert all must-use edges in NE(e) into U ;
25: end for
26: end while
27: end while

Algorithm 2: Use or remove a given edge and process must-
use and must-remove edges.

When we remove e16 in Figure 6(e), e5 becomes a must-use edge
because e1 will be dangling if e5 is not used. Similarly, when we
remove e19 and use e5 after removing e16, e9 becomes a must-use
edge because e5 will be dangling if e9 is not used. Thus, e5 and
e9 become must-use edges. We use these two edges in Figure 6(g)
and decrease powv(e5) and powv(e9) by 1, so the POWV becomes
(010011). Since the third element of the POWV is zero, e10, e11, and
e12 become must-remove edges, so we remove them in Figure 6(h).
Removing the three edges causes e23 and e24 to be dangling as
shown in Figure 6(h), so we remove them in Figure 6(i). Figure 6(j)
shows the result of using e1.

Overall, using e1 leads to using three additional edges (e5, e9,
e13) and removing 13 edges (e2, e3, e4, e10, e11, e12, e14, e15, e16, e19,
e22, e23, e24). Since the total number of must-use and must-remove
edges at this step is 16, which is greater than the total number of
pins (four), we perform the intermediate connectivity check. Since
the pins are disconnected, using e1 will not generate POSTs. Thus,
we roll back all the used and removed edges and try removing e1
from the graph in Figure 6(k). e13 becomes dangling in this case, so
we remove e13 too in Figure 6(l). Then, we move on to e2.

4 SIMULATION RESULTS
In this section, we present various simulation results obtained from
the construction of all POSTs on the Hanan grid. We implemented
the proposed algorithm using C/C++ and ran all simulations in a

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

22



e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(a)

POWV=(121111)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(b)

POWV=(021111)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(c)

POWV=(021011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(d)

POWV=(021011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(e)

POWV=(021011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(f)

POWV=(021011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(g)

POWV=(010011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(h)

POWV=(010011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(i)

POWV=(010011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(j)

POWV=(010011)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(k)

POWV=(121111)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

e1

e2

e3

e4

e5

e6

e7

e8

e13

e14

e15

(l)

POWV=(121111)

e9

e10

e11

e12

e16

e17

e18

e19

e20

e21

e22

e23

e24

Figure 6: An example of edge pruning.

Table 1: Statistics of the construction of all POSTs. “Con. time” is the construction time for all the POSTs for each pin count
and “Con. eff.” is the construction efficiency measured by the number of total POSTs over the construction time (in seconds).

# pins (n) # pin groups (n!) # POWVs in a group # POSTs for a POWV # POSTs Con. time Con. eff. Table sizeMin. Avg. Max. Min. Avg. Max.
2 2 1 1 1 2 2 2 4 0.0 s - 0 MB
3 6 1 1 1 2 2.667 4 16 0.0002 s 80,000 0 MB
4 24 1 1.667 2 2 7.100 12 284 0.0035 s 81,142 0 MB
5 120 1 2.467 3 4 14.392 38 4,260 0.079 s 53,924 0.1 MB
6 720 1 4.433 8 4 37.661 216 120,212 3.72 s 32,315 3.5 MB
7 5,040 1 7.932 15 4 98.080 852 3,920,832 254 s 15,436 141 MB
8 40,320 1 15.251 33 6 289.972 6,558 178,313,916 9.06 hr 5,465 7.7 GB
9 362,880 1 30.039 79 8 929.600 52,010 10,133,050,012 1,700 hr 1,656 525 GB

3.3GHz Intel Core i5-3550 system with 32GB memory. We used
only one core to build the database of all POSTs.

4.1 POWVs and POSTs
Table 1 shows various statistics about the construction of all POSTs
for up to nine pins. The number of pin groups is the number of
position sequences for a given pin count (n). The total number of
POSTs for each pin count and the average number of POSTs per
POWV increase exponentially. The construction time is almost
negligible for up to five pins, but then it increases exponentially,

3.72 seconds for six pins, 254 seconds for seven pins, 9.06 hours for
eight pins, and approximately 1,700 hours for nine pins. We also
show the construction efficiency measured by the total number
POSTs divided by the construction time in seconds. As shown in
the table, the construction efficiency goes down exponentially as
the pin count goes up. However, the proposed algorithm can still
construct 5,465 POSTs per second for eight pins and 1,656 POSTs
per second for nine pins on average.

Since the database has all POWVs and POSTs, we can construct
all RSMTs for given pin locations as follows. First, we obtain all

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

23



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7: Statistics of POSTs for seven pins. The red edges are not used at all in any POSTs. Thicker edges are used in more
POSTs than thinner edges. Green rectangles are pins. Position sequences are as follows. (a) (1XXXXXX), (b) (X1XXXXX),
(c) (XX1XXXX), (d) (XXX1XXX), (e) (X47X16X), (f) (3561724), (g) (2514736), which is one of the position sequences having
the fewest POSTs, (h) (1734652), which is one of the position sequences having the most POSTs. X is a don’t-care.

the POWVs of the position sequence for the pin locations from the
database. Then, we compute a dot product between each POWV and
the edge length vector (h1, ...,v1, ...) and obtain all POWVs having
the minimum wirelength. Then, we return all POSTs belonging to
the POWVs from the database.

4.2 Statistics of POSTs
In this simulation, we investigate howmany times each edge is used
in all POSTs for given pin locations. The simulation methodology
is as follows. We first come up with a position sequence for seven
pins. Each position sequence can be an exact sequence such as
(1234567) or include some don’t-cares (X). For example, position
sequence (12345XX) includes two position sequences (1234567) and
(1234576). Then, we search the database to find all POSTs matching
the position sequence and count how many times each edge is used
in the POSTs. This statistics help estimate whether we can route a
given net through non-congested area. If an edge is used in most
of the POSTs for given pin locations, for example, it would be hard
to route the net without using the edge.

Figure 7 shows eight examples for seven pins. In the figure, the
thickness of a black edge is proportional to the number of times it is
used. Red edges are not used at all. Green rectangles are pins. First,
Figure 7(a) shows the usage of the edges for (1XXXXXX), i.e., when
a pin is located at (0,0). As the figure shows, the two edges adjacent
to vertex (0,0) are used in almost all POSTs. The edges in the middle
area are also used in many POSTs, which means that it would not be
possible to route through the middle area if the position sequence
of a seven-pin net is (1XXXXXX). Figure 7(b) shows the edge usage
for (X1XXXXX), i.e., when a pin is located at (0,1). In this case,
none of the POSTs uses edges eh (0, 0), ev (0, 0), eh (0, 6), and ev (0, 5)
no matter where the other six pins are located. Similarly, position
sequences (XX1XXXX) and (XXX1XXX) do not use the same four
edges and heavily use the right edge of the pin vertex and the edges
in the middle of the grid as shown in Figure 7(c) and (d). Figure 7(e)
shows the usage for position sequence (X47X16X), which we picked
randomly. For this position sequence, some edges such as eh (1, 3),

Table 2: Effectiveness (runtime in seconds) of the prun-
ing algorithms. All: Enabling all pruning algorithms. The
other four columns are disabling (1) zero POWV elements,
(2) must-use edges, (3) must-remove edges, and (4) interme-
diate connectivity check.

All (1) (2) (3) (4)

6 pins 3.72 13.58 3,850 22.39 9.15
Ratio (1.00) 3.65× 1,035× 6.02× 2.46×

7 pins 254 2,837 ∞ 6,973 964
Ratio (1.00) 11.17× - 27.45× 3.80×

eh (4, 2), and ev (5, 4) around the middle of the grid are used in many
POSTs. Figure 7(f) shows the usage of an exact position sequence
(3561724). Since the pins are distributed around the boundaries of
the grid, the edges in the middle of the grid are used many times.
Figure 7(g) shows the usage for (2514736), which is one of the
position sequences having the fewest POSTs and Figure 7(h) shows
the usage for (1734652), which is one of the position sequences
having the most POSTs.

4.3 Effectiveness of the Pruning Algorithms
We use four pruning algorithms, 1) pruning by zero POWV ele-
ments, 2) pruning by must-use edges, 3) pruning by must-remove
edges, and 4) intermediate connectivity check, to reduce the POST
construction time. Thus, we measured the effectiveness of each
algorithm by disabling each of them while enabling all the other
techniques. Table 2 shows that pruning by must-use edges is the
most effective technique and pruning by must-remove edges is
also effective when the pin count goes up. However, the other two
pruning techniques also help reduce the runtime considerably, espe-
cially when the pin count goes up. For example, if the intermediate
connectivity check is disabled, finding all POSTs for the nine-pin
case would take more than 8,500 hours instead of 1,700 hours.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

24



Figure 8: A POST not using specific edges for position se-
quence (3561724).

4.4 Application – POSTs Using/Not Using
Specific Edges

A representative application of the proposed algorithm is multiple
routing topology generation for global routing. Generating multiple
RSMTs for each net can effectively reduce routing overflows, mini-
mize routing congestion, and reduce the total coupling capacitance.
In this section, we show how to use the database of all POSTs to
avoid non-preferred (such as congested) area and/or preferred (such
as non-congested) area. Suppose a set of pin locations and non-
preferred region are given. Then, we search the POST database to
find all POWVs belonging to the position sequence of the given
pin locations. For each POWV, we compute the wire length by the
dot product between the POWV and the edge length vector. Then,
we find all POWVs having the shortest wire length. For each POST
belonging to the POWVs, we check whether the POST uses any
edges in the non-preferred region. Finally, we return all the POSTs
not using any edges in the non-preferred region. Figure 8 shows
an example for position sequence (3561724) shown in Figure 7(f).
We searched for POSTs not containing the removed edges in Fig-
ure 8. The POST in the figure shows one of the POSTs satisfying
the condition.

The search time consists of 1) finding the position sequence,
2) finding the set P all the POWVs belonging to the position se-
quence and having the shortest wire length, 3) going through all
the POSTs in P and checking whether each POST contains specific
edges. The runtime of the first step is negligible and the complex-
ity of the second step is approximately O(n · 2n ) where n is the
number of pins. The exponential term comes from the total number
of POWVs belonging to a position sequence as shown in Table 1
and the multiplication factor n comes from the total number of
multiplications for the dot product computation. The complexity of
the third step is approximately O(k · 3n ) where n is the number of
pins. The exponential term comes from the total number of POSTs
for a POWV and k is the number of edges in the non-preferred
and/or preferred regions.

Notice that this does not solve the obstacle-avoiding RSMT con-
struction problem that finds RSTs having the minimum wirelength
for given pin locations and obstacles. Rather, we return all POSTs (or
RSMTs if their POWVs have the minimum wirelength) that use
and/or do not use specific edges.

4.5 Multiple RSTs For More Than Nine Pins
Although it might be inefficient or impossible (due to the large
database size) to build and use a database for nets having more than
nine pins, if a set of pin locations is given, we can run FLUTE to
construct an RST, obtain its wirelength vector (WV), and run the

proposed algorithm to obtain multiple RSTs having the same WV.
Notice that the proposed algorithm is not limited to constructing
RSMTs. Rather, if pin locations and a wirelength vector are given,
the proposed algorithm can construct all RSTs satisfying the given
WV. Thus, we tried constructing multiple RSTs using FLUTE for a
few cases. Constructing all Steiner trees (STs) for a 10-pin, a 11-pin,
and a 12-pin cases (each with one WV) found 324, 6,390, and 870
STs in 10.38 seconds, 72.99 seconds, and 7.91 seconds, respectively.
The 12-pin case had a smaller search space than the 10- and 11-pin
cases, so it took only 7.91 seconds.

5 CONCLUSION
In this paper, we proposed an efficient algorithm to construct all
RSMTs for up to nine pins using a lookup table and FLUTE. The
generation time and table size are reasonable for up to nine pins,
but the number of POSTs, the database generation time, and the
database size increase exponentially as the number of pins goes up.
Using the database of all POSTs, we investigated several proper-
ties of the POSTs. The proposed algorithm and the database of all
POSTs will help various VLSI CAD software optimize layouts more
efficiently.

ACKNOWLEDGMENTS
Thisworkwas supported by theDefenseAdvanced Research Projects
Agency Young Faculty Award under Grant D16AP00119 and the
New Faculty Seed Grant (125679-002) funded by the Washington
State University.

REFERENCES
[1] Manjit Borah, Robert Michael Owens, and Mary Jane Irwin. 1994. An Edge-Based

Heuristic for Steiner Routing, Vol. 13. 1563–1568.
[2] Zhen Cao, Tong Jing, Jinjun Xiong, Yu Hu, Lei He, and Xianlong Hong. 2007.

DpRouter: A Fast and Accurate Dynamic-Pattern-Based Global Routing Algo-
rithm. 256–261.

[3] Yen-Jung Chang, Yu-Ting Lee, Jhih-Rong Giao, Pei-Ci Wu, and Ting-Chi Wang.
2010. NTHU-Route 2.0: A Robust Global Router for Modern Designs, Vol. 29.
1931–1944.

[4] Minsik Cho and David Z. Pan. 2007. BoxRouter: A New Global Router Based on
Box Expansion and Progressive ILP, Vol. 26. 2130–2143.

[5] Chris Chu and Yiu-Chung Wong. 2008. FLUTE: Fast Lookup Table Based Recti-
linear Steiner Minimal Tree Algorithm for VLSI Design, Vol. 27. 70–83.

[6] M. R. Garey and D. S. Johnson. 1979. Computers and Intractability: A Guide to the
Theory of NP-Completeness. New York: Freeman.

[7] GeoSteiner. [n. d.]. Software for Computing Steiner Trees.
http://www.geosteiner.com. ([n. d.]).

[8] J. Griffith, G. Robins, J. S. Salowe, and Tongtong Zhang. 1994. Closing the Gap:
Near-Optimal Steiner Trees in Polynomial Time, Vol. 13. 1351–1365.

[9] M. Hanan. 1966. On Steiner’s Problem with Rectilinear Distance. In SIAM Journal
on Applied Mathematics, Vol. 14. 255–265.

[10] F. K. Hwang, D. S. Richards, and P. Winter. 1992. The Steiner Tree Problem.
Elsevier.

[11] Andrew B. Kahng, I. I. Mandoiu, and A. Z. Zelikovsky. 2003. Highly Scalable
Algorithms for Rectilinear and Octilinear Steiner Trees. 827–833.

[12] Ion I. Mandoiu, Vijay V. Vazirani, and Joseph L. Ganley. 2000. A New Heuristic
for Rectilinear Steiner Trees, Vol. 19. 1129–1139.

[13] Michael D. Moffitt. 2008. MaizeRouter: Engineering an Effective Global Router,
Vol. 27. 2017–2026.

[14] Muhammet Mustafa Ozdal and Martin D. F. Wong. 2007. Archer: A History-
Driven Global Routing Algorithm. 488–495.

[15] Tai-Hsuan Wu, Azadeh Davoodi, and Jeffrey T. Linderoth. 2009. GRIP: Scalable
3D Global Routing Using Integer Programming. 320–325.

[16] Yue Xu, Yanheng Zhang, and Chris Chu. 2009. FastRoute 4.0: Global Router with
Efficient Via Minimization. 576–581.

[17] Hai Zhou. 2004. Efficient Steiner Tree Construction Based on Spanning Graphs,
Vol. 23. 704–710.

Finding the Golden Tree in the Forest! ISPD’18, March 25–28, 2018, Monterey, CA, USA

25


	Abstract
	1 Introduction
	2 The Algorithm of FLUTE
	2.1 Position Sequence (Pin Group)
	2.2 Potentially Optimal Wirelength Vector
	2.3 Potentially Optimal Steiner Tree

	3 Construction of All RSMTs
	3.1 Terminologies and Notations
	3.2 Binary Tree-Based POST Construction
	3.3 Overall Algorithm
	3.4 Example

	4 Simulation Results
	4.1 POWVs and POSTs
	4.2 Statistics of POSTs
	4.3 Effectiveness of the Pruning Algorithms
	4.4 Application – POSTs Using/Not Using Specific Edges
	4.5 Multiple RSTs For More Than Nine Pins

	5 Conclusion
	Acknowledgments
	References



