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Design Space Exploration of 3D Network-on-Chip:
A Sensitivity-based Optimization Approach
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High-performance and energy-efficient Network-on-Chip (NoC) architecture is one of the crucial com-

ponents of the manycore processing platforms. A very promising NoC architecture recently proposed in

the literature is the three-dimensional small-world NoC (3D SWNoC). Due to short vertical links in 3D

integration and the robustness of small-world networks, the 3D SWNoC architecture outperforms its other

3D counterparts. However, the performance of 3D SWNoC is highly dependent on the placement of the

links and associated routers. In this article, we propose a sensitivity-based link placement algorithm (SEN)

to optimize the performance of 3D SWNoC. The sensitivity of a link in a NoC measures the importance of

the link. The SEN algorithm optimizes the performance of 3D SWNoC by calculating the sensitivities of all

the links in the NoC and removing the least important link repeatedly. We compare the performance of SEN

algorithm with simulated annealing- (SA) and recently proposed machine-learning-based (ML) optimization

algorithm. The optimized 3D SWNoC obtained by the proposed SEN algorithm achieves, on average,

11.5% and 13.6% lower latency and 18.4% and 21.7% lower energy-delay product than those optimized by

the SA and ML algorithms respectively. In addition, the SEN algorithm is 26 to 33 times faster than the

SA algorithm for the optimization of 64-, 128-, and 256-core 3D SWNoC designs. The performance gain

provided by the SEN-, SA-, and ML-based methods also depend on the characteristics of the benchmarks

under consideration. If the traffic pattern generated by a benchmark does not have enough variation, then

the ML-based method does not have adequate opportunity to optimize the network. However, we find that

ML-based methodology has faster convergence time than SEN and SA for bigger systems. The ML-based op-

timization algorithm is almost 4 and 97 times faster than the SEN- and SA-based algorithm for a system with

256 cores.
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1 INTRODUCTION

A three-dimensional integrated circuit (3D IC) enables integration of multiple layers with smaller
footprint, reduced form factor, and overall high packing density, which improves the performance
of chip drastically compared to its 2D counterparts. Hence, 3D integration opens the possibility
for designing highly integrated manycore chips (Pavlidis and Friedman 2009; Topol et al. 2006;
Xie et al. 2006). The performance of any manycore chip largely depends on the network-on-Chip
(NoC), which is the communication backbone for inter-core data exchange (Benini and Micheli
2002; Kumar et al. 2002). In this respect, 3D NoC is an emerging paradigm that achieves better per-
formance, network latency, and lower energy dissipation compared to its 2D counterparts (Pavlidis
and Friedman 2009; Feero and Pande 2008; Matsutani et al. 2008). The performance of the 3D NoC
architecture also depends on the overall network connectivity and the placement of the network
elements (Teuscher 2007). In this context, a small-world (SW) network-enabled 3D NoC architec-
ture (3D SWNoC) achieves lower latency and energy compared to other state-of-the-art 3D NoCs
(Das et al. 2015 and 2017). In the 3D SWNoC architecture, the vertical links act as the long-range
shortcuts to induce “small-worldness” resulting in reduction of average hop count, lowering the
latency and energy dissipation (Das et al. 2017).

The achievable performance benefit of a 3D SWNoC depends on the placement of both the
planar and vertical links. Traditionally, simulated annealing (SA)-based optimization technique is
used in various domains of VLSI and electronic design automation (EDA), including floorplan-
ning, routing, partitioning, power-ground placement, clock-tree optimization, NoC link place-
ments, and so on (Healy et al. 2007; Liu and Chang 2007). However, the main bottleneck of SA-
based optimization methodology is that depending on the system size and type of the problem,
SA may require a long time to converge to the final solution. Recently, machine-learning (ML)-
based optimization algorithms have also been exploited to enable the design of low-power and
high-performance 3D NoC architectures (Das et al. 2015). From the 3D NoC design perspective,
the ML technique intelligently searches the design space to optimize the placement of both planar
and vertical links, and converges to the same quality solution in significantly lower time when
compared to the SA. Complementing the traditional SA-based and the emerging ML-inspired de-
sign optimization methodologies, in this article, we propose a sensitivity-based optimization al-
gorithm to solve the link placement problem for 3D NoC architectures. To do this, we define
the sensitivity parameter, which represents the effectiveness of each link in the 3D NoC design
space. The key idea behind our algorithm is to iteratively compute a sensitivity value of each
link (cost varies when the link is removed) and remove the least important link. Although the
sensitivity-based algorithm is exploited only for the link placements in 3D SWNoC architecture,
the algorithm is generic and is equally applicable for any other 2D or 3D NoC configurations as
well.

In this article, our aim is to undertake a comparative performance evaluation for the sensitivity-
based NoC link optimization with respect to the SA- and the ML-based methodologies. We consider
the 3D SWNoC as the testbed for this performance evaluation. However, the outlined algorithm
can be exploited for any other NoC architectures as well.

The rest of article is organized as follows. Section 2 discusses the previous works done in the
field of network optimization and NoC performance improvements. The details of the design space
and the NoC optimization problem with the small-world network and manycore chip design are
elaborated in Section 3. In addition, the NoC optimization algorithms and their associated imple-
mentation details are discussed in the rest of Section 3. We perform an exhaustive performance
evaluation in Section 4. Finally, Section 5 summarizes everything and outlines the directions for
future work.
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2 RELATED WORK

In this section, we discuss the details of previous works on the design and optimization of NoC
architectures enabled by 3D integration.

To improve the performance of manycore chips, various 3D NoC architectures have been pro-
posed in the literature. Among all of them, the MESH-based designs are the most popular and
widely used (Kim et al. 2007; Loi et al. 2011; Marcon et al. 2014). A 3D MESH NoC is an extended
version of the conventional 2D MESH architecture, where the cores and routers are placed in a
regular grid pattern. A 3D NoC has much higher connectivity and reduced wire length when com-
pared to its 2D counterparts. However, MESH-based NoCs suffer from high latency and energy
dissipation due to their inherent multi-hop communications. To take advantage of the availability
of reduced vertical distance inherent in 3D integration, a 3D Dimensionally Decomposed (DimDe)
NoC router architecture (Kim et al. 2007) was developed that reduces the total energy dissipation,
but latency was not minimized. A hybrid NoC-bus-based architecture was proposed in Li et al.
(2006) by using central bus arbiter and Dynamic Time Division Multiple Access (dTDMA) tech-
nique for bus access in the vertical dimension to reduce the network latency. However, bus-based
designs suffer from long latency in the presence of higher traffic injection applications and also dis-
sipate higher energy due to relatively higher capacitance values when compared to MESH-based
architectures (Feero and Pande 2008).

In this context, NoCs incorporating small-world connectivity can perform significantly better
than locally interconnected MESH-like networks (Ogras et al. 2006), yet they require far fewer
resources than a fully connected system. Hence, in this work, we consider small-world-based 3D
NoC (3D SWNoC) as the testbed for performing the link placement optimization (Das et al. 2015).

To exploit the advantages of 3D integration, several works have addressed the synthesis of
application-specific NoC architectures (Seiculescu et al. 2009; Zhou et al. 2012). The Sunfloor 3D
was proposed for developing application-specific 3D NoCs (Seiculescu et al. 2009). The design and
synthesis of application-specific 3D NoC architectures were also investigated in Wang and Dong
(2009). Later, a more general-purpose 3D NoC was proposed in Xu et al. (2009) using an ILP-based
algorithm to insert long-range links to develop low diameter and low radix architecture. However,
the reduction in energy dissipation was found to be limited.

Recently, two irregular 3D NoC architectures, viz., mrrm and rrrr, have been proposed in the
literature (Matsutani et al. 2014). In mrrm, there are two layers of MESH-based interconnection and
two layers of random connectivity. In rrrr, all four layers follow random connection. In this case,
both mrrm and rrrr architectures were developed following a random link placement algorithm.
It was found that both architectures can outperform 3D MESH in terms of network latency and
energy dissipation. We can expect that by adopting an efficient link placement algorithm along
with more promising NoC architectural design space will further improve the performance of 3D
NoCs when compared to existing architectures.

In this work, we focus on designing an optimized link placement strategy applicable for any kind
of NoC design. As a case study, we consider the NoC design space of 3D SWNoC for achieving bet-
ter performance from the architectural perspective. We propose a sensitivity-based link placement
algorithm to enhance the performance of 3D SWNoC and the convergence time of the algorithm.
In addition, we compare the performance of 3D SWNoCs optimized by the sensitivity-based, the
simulated annealing-based, and the machine-learning-based algorithms.

3 DESIGN SPACE AND LINK PLACEMENT OPTIMIZATION OF 3D SWNOC

A small-world (SW) network lies in between the regularly connected MESH and completely ran-
dom networks. The SW network consists of a large number of short-range links facilitating the
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Fig. 1. Conceptual view of small-world (SW) connection-based 3D SWNoC architecture. The horizontal

plane (each die) has SW-based connectivity where the regular TSVs enable long-range short-cuts.

local communications while a few long-range shortcuts establishing direct links between distant
nodes helps in improving the long-distance communication. The diameter of a SW network is
bounded logarithmically with its network size, i.e., diameter ∝ log (N), where N is the number of
nodes in the network (Nguyen and Martel 2005). In addition, a SW network is also particularly
resilient against any kind of link failure (Teuscher 2007). Both of these properties of the SW net-
work make it attractive to be employed for designing efficient and robust on-chip communication
backbone.

To design the small-world-enabled 3D NoC, we follow the power-law-based connectivity pat-
tern, where the probability of connecting two nodes varies exponentially with distance between
them, i.e.,p (r ) ∝ r−α . Here,p (r ) is the probability of connecting two nodes separated by link length
r, and α is the connectivity parameter that dictates the amount of “small-worldness” introduced in
the network by following this connectivity rule. For the 3D NoC, the additional third dimension
(compared to conventional 2D NoCs) allows us to place the cores and associated routers in the
3D space in such a way that the planar physically long links (of 2D network) are placed along the
vertical dimension, which facilitates the small-world connectivity.

As explained earlier, a small-world-network-inspired 3D NoC was shown to outperform other
existing 3D NoCs in terms of network latency, energy consumption, and reliability improvement
(Das et al. 2017). However, the performance gain of 3D SWNoC depends critically on the place-
ment of both horizontal and vertical links. Hence, we present the salient features of various link
placement strategies investigated in this work. We principally focus on two broad optimization
algorithms, viz., the sensitivity-based and the ML-inspired methodologies. We will compare and
contrast the performance of these two algorithms along with the well-known simulated annealing
algorithm.

3.1 3D SWNoC Architecture

Figure 1 shows an example of 3D SW network enabled NoC (3D SWNoC) architecture with four
planar dies and 16 cores arranged in a grid-pattern on each die. Through-silicon vias (TSVs) en-
able the vertical communication links between the dies and act as long-range shortcuts. In ad-
dition, the interconnection patterns in the 3D SWNoC follow the power-law-based connectivity:
Pr = γ · r−α , where r is the length of the link, α is a parameter to determine the small-worldness,
and γ is a normalization factor (Teuscher 2007; Wettin et al. 2014), and Pr is the number of length-r
links in the network. L is a class (a collection of sets) of the link distributions of all the layers, so
L = {L1,L2, . . . ,Lk }, where Lk is the link distribution in layer k . Lk is {lk,1, lk,2, . . .} where lk,r is
the number of length-r links in layer k . We assume that a vertical link is inserted between two
vertically adjacent routers. lv is the total number of vertical links, which count as length-1. If P1 is
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the number of length-1 links, then P1 =
∑

k lk,1 + lv , and Pr is the number of length-r planar links,
then Pr =

∑
k lk,r (r > 1). The planar links follow this distribution of links:

∑
k Lk = {l1, l2, l3 . . .},

where l (r=1) = (γ · r−α − lv ) and l (r>1) = γ · r−α . For example, the 3D MESH with four layers uses
48 vertical links and 96 planar links, so our 3D SWNoC architectures also use the same num-
ber of vertical and planar links. We assume that all the layers have the same link distribution, so
L1 = L2 = L3 = L4 in our designs. Hence, there are total 96 planar links, so

∑
i Lk,i = 24 for each

layer k and lv is 48. For example, if α is 2.4, then Lk becomes {16, 5, 2, 1} for each die. Depend-
ing on this power-law-based link distribution, we can design 3D SWNoC architecture by follow-
ing the physical NoC design constraints. We refer to any instance of 3D NoC configuration as a
“state,” which is a discrete candidate solution in the NoC design space.

3.2 General Problem Formulation

In this section, we formally define the NoC link placement optimization problem targeted in this
work. We formulate the NoC design as a combinatorial optimization problem over a discrete design
space, where the placement of the cores, routers, and the horizontal and vertical links defines the
overall network configuration.

3.2.1 Objective Function: Communication Path Length (O). To optimize the NoC architecture,
we define a unified objective function, O, that computes the total communication cost based on
the communication path length. It is defined as the product of the hop count, communication
frequency, and physical link length between two nodes summed over all possible source and des-
tination pairs in the network, i.e.,

O =
N∑

i=1

N∑

j=1

(m · hi j + di j ) · fi j , (1)

where N is the system size (total number of cores),m is the number of router (intra-node routing)
stages, and hi j and di j are the hop count and the communication distance between ith and jth
nodes, respectively. fi j is the communication frequency between ith and jth nodes and captures
the characteristics of each application. Optimization of the communication cost O reduces the
average hop count and the communication distance for any possible source-destination pairs. As
a result, the optimized network improves the latency and energy consumption of the NoC for a
given application.

3.2.2 Problem Statement. We consider a NoC design space consisting of a set of nodes, S =
{c1, c2, . . . , cN }, where N is the total number of cores and each core is connected to a nearby
router. The locations of the routers (and associated cores) are denoted by (xi ,yi , zi ), where
(1 ≤ xi ,yi , zi ≤ 4, xi ,yi , zi ∈ N). For any application executed on this manycore chip, the intern-
ode communication frequencies are denoted by the set f = { fi j |1 ≤ i, j ≤ N , i � j}, where fi j is the
communication frequency between ci and c j . The NoC architecture is enabled by a small-world
network following the power-law-based connectivity (Teuscher 2007; Wettin el at. 2014) and a
fixed connectivity parameter α as described in the previous section. As a result, for a particular
value of α , the link length distribution is fixed and the set of target link distributions is denoted by
L = {L1,L2, . . . ,LT }, whereT is the total number of layers in the NoC and Lk is the link distribution
in layer k .

During the NoC design and optimization process, the communication cost of the network O indi-
cates the quality of the network for a given set of performance metrics. Our goal is to develop a link
placement algorithm that explores the given SWNoC design to find the NoC with minimum com-
munication cost. As mentioned above, we consider three different optimization algorithms, namely
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Fig. 2. Illustration of the overall design flow of the sensitivity-based NoC optimization algorithm. The SEN-

based algorithm starts at the fully connected NoC configuration and defines the sensitivity parameter for

each link of the 3D NoC. To explore the neighborhood NoC states, the SEN-based algorithm removes the

least important link repeatedly. It is possible that during the optimization process, the algorithm may get

stuck at local optimum of the cost function. To solve this local optimum problem, the network refinement

methodology is employed.

the sensitivity-based algorithm, the simulated annealing, and the machine-learning approach for
the placement of horizontal and vertical links in a 3D SWNoC. Our target is to compare and con-
trast their relative performances. The performance of all the optimization algorithms considered
in this work is evaluated from two different perspectives, viz., the quality of the optimized SWNoC
architecture in terms of a given set of performance metrics (network latency, and energy-delay-
product (EDP)) and convergence times of the algorithms. We use the same number of vertical and
horizontal links as the 3D MESH architecture for the optimized 3D SWNoC as given constraints.
In addition, just like the MESH architecture, we evenly assign the same number of planar links to
the four layers, so each layer has equal number of links for the same system sizes across different
NoC configurations.

3.3 Sensitivity-based Link Placement

The sensitivity-based link placement algorithm defines the effectiveness of each link in the NoC
architecture for a given link distribution and employs it to find the best network configuration.
In what follows, we define the sensitivity parameter of a link, discuss the details of exploring the
neighborhood states from a candidate NoC design state, and explain how the final NoC architecture
is selected through a sequential decision-making process. Figure 2 shows the overall design flow
of the proposed sensitivity-based NoC optimization algorithm and outlines the key processes at
each design step.

3.3.1 Definition of Sensitivity Parameter, s (zi j ). The sensitivity parameter, s (zi j ), of a link zi j

connecting two nodes ci and c j is defined as the difference between the communication costs before
and after removing the link. If any link in a 3D NoC architecture is not actively used for inter-
node traffic exchanges (router-to-router communication), then the communication costs before
and after removing the link do not change and, hence, s (zi j ) of that link is zero. If the internode
communication frequency between two nodes, i and j, fi j , is positive (this is a general case), then
the value of sensitivity parameter for the link zi j connecting these two nodes, s (zi j ), is greater than
zero. This is because the link zi j is the only link that directly connects the nodes ci and c j and,
hence, zi j is the only shortest path between these nodes. So, removal of link zi j increases the hop
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count between ci and c j , and thereby increasing the communication cost. The sensitivity s (zi j ) of
link zi j is mathematically expressed as follows:

s (zi j ) = Oi j,a − Oi j,b , (2)

where Oi j,a and Oi j,b are the communication costs after and before removing zi j , respectively. If
the sensitivity of a link is low, then the NoC is less sensitive to the removal of the link, i.e., the
communication cost does not change significantly even if the link is removed. In this case, we can
remove the link without degrading the performance of the NoC. If the sensitivity of a link is high,
however, then the communication cost of the NoC increases significantly if the link is removed,
so the link should not be removed.

3.3.2 Outline of the Sensitivity-based NoC Optimization Algorithm. The sensitivity-based link
placement algorithm consists of three steps, initialization, exploration of neighborhood states, and
identification of the terminal state with an optimized NoC architecture. In the following subsec-
tions, we discuss the details of each step and the overall sensitivity-based optimization algorithm.

3.3.2.1 Initialization: Fully-connected 3D NoC. The sensitivity-based optimization algorithm
starts with a fully connected 3D NoC in which each router in a layer is connected to all the other
routers in the same layer as well as the vertically adjacent routers. Since a fully connected 3D NoC
guarantees the connectivity (there exists at least one path between any pair of routers), we can
compute the cost of the fully connected 3D NoC using Equation (1).

3.3.2.2 Exploration of Neighborhood States. The initialization step generates a fully-connected
NoC architecture, which has the lowest communication cost. After the initialization step, we se-
quentially remove some of the links in the NoC to find an optimal link placement following the
power law. We use the sensitivity values to select the links to be removed. We explain the details
of the link removal process below.

ALGORITHM 1: Constraint Function
Input: N = # cores (64, 128, 256),T = #layers (4)

Output: A set of non-removable links (V )
//Gpmax

is a set of links having max. connection

count

1 for i = 1 to N do //Check connectivity

2 for j = 1 to N do

3 if zi j is necessary for connectivity

4 Add zi j to V
5 end if

6 end for

7 end for

8 for r =1 to Max. link length do

9 for k =1 to T do

10 if l ′
k,r
= lk,r //Power-law distribution

11 Add length-r of zi j in layer k to V
12 end if

13 end for

14 end for

15 if pmax > smax //Max. number of links per

router

16 Add all links to V except Gpmax

17 end if

ALGORITHM 2: Link Removal Function
Input: N = # cores (64, 128, 256)

Output: Removing a least-critical link

1 Constraint()a //from Algorithm 1

2 for i = 1 to N do

3 for j = 1 to N do

4 if zi j � V , then

5 Snew = s (zi j )
6 if Snew < Smin , then

7 Smin = Snew

8 imin = i
9 jmin = j
10 end if

11 end if

12 end for

13 end for

14 remove a link zimin, jmin

aThe Constraint() function has same NoC size (N )

and number of layers (T = 4 in this case) as the link

removal function, and hence, these input parameters

are not passed in each function call.
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ALGORITHM 3: Link Insertion Function
(places one link at a time)

Input: N = # cores (64, 128, 256)

Output: Adding a most-critical link

1 for i = 1 to N do

2 for j = 1 to N do

3 if zi j � Z , then

4 Snew = | s (zi j ) |
5 if Snew > Smax , then

6 Smax = Snew

7 imax = i
8 jmax = j
9 end if

10 end if

11 end for

12 end for

13 add a link zimax , jmax

ALGORITHM 4: Sensitivity-based Network
Optimization Algorithm

Input: N = # cores (64, 128, 256),T = # layers (4),

R=3, L = # links (144, 304, 640)

Output: Optimized 3D SWNoC

1 Initialization() //Section 3.3.2.1

2 while Total number of link > L do

3 LinkRemoval() //Algorithm 2

4 if pmax ≤ smax

5 do

6 for 1 to R then

7 LinkInsertion() //Algorithm 3

8 end for

9 for 1 to R then

10 LinkRemoval() //Algorithm 2

11 end for

12 while !(same links inserted and removed)

13 end if

14 end while

Link Constraint: After the network initialization, we introduce the link-constraint step. In this
link-constraint step, we find a set of non-removable links (V) and keep the list of possible removable
links, which do not violate the pre-specified constraints in the next link removal step. There are
three constraints that we should consider when we select a link to be removed from the current
NoC. First, removing a link should not break the network connectivity, i.e., there should exist at
least one path between any pair of routers. If there is a necessary link (zi j ) for overall connectivity,
then we add zi j to a set of non-removable links (V). Second, a final 3D SWNoC architecture should
satisfy the power-law-based link distribution Lk = {lk,1, lk,2, . . .}. Thus, if the number of length-r
links in layer k (l ′k,r ) is equal to a given constraint lk,r , then we add links of length-r (zi j ) in layer
k to V. Third, there is also a restriction on the maximum number of connection smax that each
router can have (Kim et al. 2016). To satisfy this constraint, we introduce the term connection count
d (zi j ) of link zi j . It is defined as the maximum of (d (ci ),d (c j )) where d (ci ) is the number of ports
connected to node ci . When we check the constraint of a link, we first compute the connection
count of each link and group the links into G1,G2, and so on, where Gp is a set of links whose
connection count is p. Let the maximum connection count be pmax . If pmax is greater than smax ,
i.e., some of the remaining links violate the maximum connection count constraint, then we add all
links to V exceptGpmax

for the link removal step. If any of the links inGpmax
is not removable due

to the connectivity or link distribution constraint, then we move on to the next setGpmax−1, check
the constraints, and continue in the same way. However, if pmax is less than or equal to smax , i.e.,
none of the remaining links violates the maximum connection count constraint, then we do not
add links to V. Algorithm 1 shows this link constraint enforcement process.

Link Removal: We compute the sensitivity values of all links, which are not included in a set
of non-removable links (V). We remove a link with the lowest sensitivity value. Since removing
a link increases the communication cost, we select the link having the lowest sensitivity value,
because removal of this particular link causes the least performance degradation. The removal
process essentially explores the neighborhood states of the current NoC configuration to find the
best architecture with one fewer link than the current one. Algorithm 2 presents this link removal
process.
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Updating the Current State: Removing a link changes the sensitivity values of other links in
the NoC. Thus, we should re-compute the sensitivity values of all links whenever we remove a
link. However, re-computing the sensitivities of all the remaining links is expensive, because the
computation of the sensitivity value of a link involves shortest-path computation. Therefore, we
update the sensitivity values of only those links that along with the removed links are part of the
shortest path between any pair of nodes in the network before removing that particular link.

3.3.2.3 Terminal State: Optimized NoC Architecture. Iterating between the link constraint and
removal steps in the NoC design generates a final NoC architecture that satisfies the target link
distribution, max-connection-per-router, and the network connectivity constraints. The final NoC
architecture is formed with the links having high-sensitivity values. Consequently, the communi-
cation cost of this architecture is low, and we find the optimized NoC architecture. A drawback of
this algorithm is that some of the links removed in early constraint/removal steps might be critical
links, which can potentially improve the communication cost if they were re-inserted into the NoC
in later steps. Thus, we complement the above algorithm in the next section to improve the quality
of the final NoC architecture.

3.3.3 Optimized NoC Architecture: Local Optimum Issue. As described earlier, the NoC link
placement problem is an instance of combinatorial optimization. Thus, if the design space is not
explored properly, then it can get stuck in a local minimum. For the proposed sensitivity-based op-
timization, starting from the initial fully-connected NoC, the algorithm repeatedly removes a link
with the lowest sensitivity. However, this does not guarantee finding a global optimal solution, be-
cause the sensitivity computation is based on the current NoC architecture. The lowest-sensitivity
link at a removal step is the least useful link at this step, however, it might become more useful
than other links at a later removal step. Thus, it is necessary to restore some of the links removed
in the earlier steps to find a better NoC architecture as the optimized solution.

3.3.4 Methodology for Solving Local Optimum Problem. To solve the local optima issues of the
NoC optimization methodology, we propose an approach, which is based on the domain knowledge
of NoC architectures and experimental observations. We refer to this approach as the network
refinement procedure.

3.3.4.1 Network Refinement. A potential problem in the link removal step is that there is no
mechanism to restore any removed links in later steps. However, restoring some of the removed
links might improve the quality of the solution. The proposed network refinement approach re-
stores a certain percentage of the links removed in earlier steps and recalculates the effects of all
links in the NoC architecture. This step explores a bigger solution space by recalculating the ef-
fect of network traffic on each link, and subsequently, tries to find better solutions. However, the
computational complexity of network refinement after each link constraint/removal step is high.
Hence, we perform the refinement algorithm by adding only a small portion of the total number
of links.

In the refinement step, we repeat adding R number of removed links, and removing R number of
links again until no more improvement in the communication cost is achieved. To add R numbers
of links, we compute the sensitivity |s (zi j ) | of each non-existing (already removed) link zi j by com-
puting the difference between the costs after and before adding the link into the current network.
As long as fi j is not zero, s (zi j ) is always negative, because zi j is the only shortest path between
the nodes ci and c j , and hence, adding zi j decreases the hop count between them. Once we find the
link with the highest sensitivity value, we add it to the network, recalculate the sensitivity values
of the non-existing links, and repeat this process R times to add R links. Then, we remove R from
the existing links using the link constraint and removal process described in Section 3.3.2.2.
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For the refinement methodology to be effective, we need to determine the appropriate value of
R. Increasing R helps the algorithm in exploring a larger solution space for the best solution, but
spends more time to search for the solution. To determine the value of R, we performed exhaustive
search for various benchmarks and found that R= 3 was the best value in terms of the performance
and the runtime trade-off. Algorithm 4 shows the sensitivity-based algorithm with the refinement.

3.3.4.2 Complexity Analysis of the Refinement Method. The refinement algorithm backtracks
some parts of the solution space by reconnecting some links and exploring best solutions to avoid
the local optima issues. To evaluate the additional cost of running the refinement algorithm for an
improved NoC optimization, we analyze the complexity of the algorithm as follows.

The sensitivity-based algorithm repeats (1) finding removable links, (2) removing the lowest-
sensitivity link, and (3) updating the sensitivity values of all the links existing in the 3D NoC.
The complexity of finding the lowest-sensitivity link is O (k ) if the 3D NoC has k links and the
sensitivity of each link is known. The complexity of removing a link is O (1), because it is just a
pointer manipulation in the source code. Updating the sensitivity values of all the links consists of
(1) finding the set B of all the core pairs affected by the link removal, (2) finding the shortest path
between each core pairb ∈ B, and (3) re-computing the sensitivities of all the links. The complexity
of finding all the core pairs affected by removing a link is theoretically O (k ), because the number
of core pairs is proportional to the number of links, and we have an updated data structure that
stores information of which core pair uses which link. In general, however, only a few core pairs
are affected by removing a link, because many core pairs that are far away from the removed link
do not use that link in their shortest paths. Thus, a constant number of core pairs are affected
by removing a particular link. The complexity of finding the shortest path between two cores
is also O (k ), because we use the Dijkstra algorithm for the shortest path finding. Therefore, the
complexity of finding the shortest paths for all the core pairs in B is O (k ).

The complexity of re-computing the sensitivity of an existing link is O (k ) for the following
reason. To re-compute the sensitivity of a link, we remove the link and compute the total com-
munication cost. For the same reason described above, computing

∑∑
(m · hi j + di j ) · fi j requires

re-computing hi j and di j , which takes O (k ) time, only for the core pairs affected by removing the
link. Thus, the complexity of re-computing the sensitivity of a link is O (k ). In addition, when we
remove a target link, the sensitivities of many other links are not affected by removing the target
link. Thus, re-computing the sensitivities of all the links actually requires re-computing the sensi-
tivities of only a few links. Thus, the complexity of re-computing the sensitivities of all the links
after removing a link is practicallyO (k ). The sensitivity-based optimization algorithm repeats the
link removal process (L − t ) times where L is the total number of links of the fully-connected 3D
NoC for given core locations and t is the number of edges in the 3D NoC architecture (t � L).
Therefore, the overall complexity of the sensitivity-based optimization algorithm is O (L2).

If the refinement step is used, then we add and remove R number of links for the refinement
procedure and repeat it until it reaches a steady state in which the same links are added and
removed. Adding a link requires computing the sensitivity of each non-existing (removed) link, so
the complexity of adding and removing R links is practicallyO (R · L). The number of repetitions of
adding and removing R links is constant in general. Thus, the complexity of each refinement step
is O (R · L). From the implementation perspective, R is significantly smaller than the total number
of links (as mentioned above, we employed R = 3 for our experiments). Thus, the complexity of
the overall sensitivity-based optimization algorithm with refinement is also O (L2).

3.3.5 Runtime Improvement of the Baseline Sensitivity-based Optimization Algorithm. The sensi-
tivity-based NoC optimization algorithm finds removable links and removes a least-critical link,
and updates the sensitivity values of all the remaining links affected by the removal step. At some
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stages of the optimization procedure, however, the changes of the sensitivity values of the links in
the sensitivity update process are negligibly small. This is because the communication frequency
between some pairs of nodes is low (fi j ≈ 0), so the direct links placed between these nodes carry
a very small amount of traffic. Hence, they affect the quality of NoC optimization minimally. This
phenomenon occurs regardless of the NoC system size and application characteristics. Therefore,
we can repeat the link constraint and removal steps several times without updating the sensitivity
values. This approach helps in reducing the optimization runtime significantly with negligible
loss in accuracy. Especially, applying this speed-up technique at the beginning of the optimization
process significantly reduces the runtime and does not degrade the quality of the final solution.
Depending on applications in our simulation results, we were able to remove significant percentage
of the total links at the beginning of the optimization process without updating the sensitivity
values as elaborated later in Section 4.3.1.2. We also adopt the network refinement methodology
in later stages of the search space exploration. As a result of the combined effect of both one-time
removal of a large number of links at the beginning of the optimization procedure and the network
refinement step, we can significantly reduce the runtime to find the same quality NoC architecture
that is found without the speed-up technique.

3.4 Machine-Learning-based Optimization

In this section, we discuss one particular machine-learning approach that has already been adopted
in the field of NoC optimization (Boyan and Moore 2000; Das et al. 2015). This approach adopts an
algorithm called STAGE that was originally proposed to improve the speed of solving combinato-
rial optimization using local search methods (Boyan and Moore 2000).

To employ the STAGE approach for NoC optimization, each candidate NoC design in the design
space is represented with a set of features that relate to the optimization problem. In this work, we
define in total twenty features that essentially represents the average hop count (hi j ), weighted
communication (fi j · hi j ), and clustering co-efficient (Cc ) (Humphries and Gurney 2008) properties
of the network.

The STAGE algorithm has three main components: (i) Base search, (ii) Meta search, and (iii) a
learned Evaluation function. Below, we briefly describe these three components followed by a
high-level description of the STAGE algorithm.

3.4.1 Base Search. The base search is, in general, a local search algorithm, e.g., greedy search or
simulated annealing. The base search tries to optimize the main objective function of the problem
(communication cost, O, in this case) from multiple starting solutions (candidate NoC configura-
tions). However, the performance of local search procedures depends critically on the quality of
starting solutions as the performance of search depends on the starting NoC configurations.

3.4.2 Meta Search. The role of the meta search procedure is to improve the performance of
the base search by selecting “good” starting solutions. The meta search procedure explores the
given NoC design space to find good starting solutions that can potentially lead the base search
to (near-)optimal NoC designs. Meta search procedure is guided by a learned evaluation function
that can predict the quality of the local optima obtained by performing the base search starting
from a given solution.

3.4.3 Learned Evaluation Function. For each search trajectory of the base search procedure from
a starting solution, we can generate many training examples to learn/improve the evaluation func-
tion. For each solution on this search trajectory, we generate one regression example: features of
the NoC design as the input and the objective value of the local optima as the output. These re-
gression examples are given to a regression learning algorithm (e.g., regression trees) to learn the
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Fig. 3. Overall STAGE-based optimization algorithm for 3D SWNoC link placement. Two searches, viz. the

base search and meta search, iterate in between them by seeking guidance from the evaluation function, E,

to reach to the optimized NoC architecture quickly.

evaluation function E (Uther and Veloso 1998). The predictive accuracy of the learned evaluation
function E improves with more training data.

3.4.4 Overall Algorithm. The high-level conceptual idea of the STAGE-based algorithm is
shown in Figure 3. The overall STAGE-based algorithm iterates between the base search and the
meta search procedure to improve the accuracy of the evaluation function E to be able to quickly
find (near-) optimal designs through base search. Initially, E makes random predictions. However,
as the iterations progress, we generate more training examples adaptively to correct the errors
made by E. In each iteration, the STAGE algorithm performs the following steps: (1) meta search
guided by the current evaluation function selects a starting solution for base search; (2) base search
guided by the original objective function is performed from the selected starting solution; (3) if the
prediction of evaluation function E is wrong for the selected starting solution, then we generate
regression examples for each solution on the search trajectory to improve E; and (4) the aggre-
gate set of regression examples are given to a regression learning algorithm to learn the improved
evaluation function.

The time complexity of STAGE algorithm is O (P (uTb + uTb + uTb + uTb )), where P is the num-
ber of iterations, u is the number of successors considered at each state, Tb is the length of the
search trajectory, and each O (uTb ) corresponds to meta search, base search, training data gener-
ation, and regression learning respectively. The simplified complexity of STAGE-based NoC opti-
mization is O(4PuTb). In general, the value of P is small (<20) and obtained through experimental
analysis. The value of Tb depends on the system size (N), and total number of links (L) present in
the NoC configuration.

3.5 Simulated Annealing (SA)-based Optimization

In addition to previously mentioned NoC optimization techniques, we also adopt the popular sim-
ulated annealing algorithm (SA) (Kirpatrick et al. 1983). In this section, we briefly describe the SA
approach to optimize the small-world network-enabled NoC architecture.

Algorithm 5 shows the simulated annealing-based network optimization methodology. In step 1,
we first create an initial 3D SWNoC configuration by inserting all the fixed vertical links between
two vertically-adjacent routers and random planar links satisfying the NoC design constraints.
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These constraints include maintaining the link distribution, and the maximum and minimum con-
nectivity per ports as described in the earlier sections. In steps 2-3, a parameter called temperature
(Temp) is used to control the number of iterations. M is the number of moves to attempt at each
temperature. In step 4, we perturb the solution by randomly choosing a planar link (z1), removing
it, and adding a new link (z2) of the same length as the removed link in the same layer. If a solution
perturbation violates any of the constraints, then we restore the original architecture by removing
the new link (z2) and restoring the original link (z1). Then, in steps 5–8, we calculate ΔO and deter-
mine the acceptance of the new architecture by Boltzmann distribution (Prob (ΔO ) = e−ΔO/T emp )
(Kirpatrick et al. 1983). Here, Prob (ΔO ) is the acceptance probability, and ΔO is the difference be-
tween the communication path lengths before and after the link perturbation. The higher values
of temperature cause more such moves to be accepted. Hence, for initial temperature, we use suf-
ficiently large initial temperature (100) to try various SWNoC configurations. In steps 9–12, we
store the current architecture as a best architecture if the communication path length of the new
architecture is less than that of the best architecture. In steps 17 and 18, we reduce the tempera-
ture by θ , which is the cooling rate of the temperature. The parameter β is the decreasing rate of
M (Lundy and Mees 1986). To avoid rapid cooling, we choose large enough values for θ and β to
avoid local optimum. This process continues until the temperature is lower than 1. We consider
the optimized SWNoC configuration to compare with other optimization techniques as described
earlier.

ALGORITHM 5: Simulated Annealing-Based Network Optimization Algorithm

Input: N = # cores (64, 128, 256), T = #layers (4), Temp = 100,
L = # links (144, 304, 640), M = (3 × 103, 1 × 104, 6 × 104), θ = 0.98, β = 0.98
Output: Optimized 3D SWNoC

1 Initialize
2 while (Temp > 1)
3 for m=1 to M do

4 Link perturbation
5 ΔO = Onew −Oold

6 r = random(0, 1)
7 if e−ΔO/T emp ≥ r or ΔO < 0, then

8 Oold = Onew

9 if Onew < Obest

10 Obest = Onew

11 Best arch. = Current arch.
12 end if

13 else

14 Restore
15 end if

16 end for

17 Temp = θ ×Temp
18 M = β ×M
19 end while

4 EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we evaluate the network latency and EDP of the 3D SWNoC designed with the
optimization algorithms discussed above.
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4.1 Experimental Setup

We use a cycle-accurate NoC simulator that can simulate any irregular 3D architecture (Wettin
el at. 2014). We consider three system sizes of 64, 128, and 256 cores divided into a fixed number
of layers, T (=4). Hence, for these system sizes, the cores and routers are placed in 4 × 4 × 4 (64
cores), 4 × 8 × 4 (128 cores), and 8 × 8 × 4 (256 cores) grids, respectively, to pack them as closely
as possible. The cores and the network routers are equally partitioned into the four layers. The
routers are synthesized from an RTL-level design using TSMC 65-nm CMOS process in Synopsys
Design Vision. All router ports have a buffer depth of two flits and each router port has four virtual
channels. The NoC simulator uses wormhole routing, where the data flits follow the header flits
once the router establishes a path. Due to the irregular nature of our 3D SWNoC architecture,
the topology-agnostic Adaptive Layered Shortest Path Routing (ALASH) is used as the routing
algorithm (Lysne et al. 2006). In this experimental study, we use 7 applications with widely varying
traffic patterns. We use seven MCSL benchmarks (FFT, SPEC fpppp (FPPPP), H.264 decoder, Robot
control (ROBOT), Reed-Solomon encoder and decoder (RS_enc and RS_dec) and sparse matrix
solver (SPARSE)) (Liu et al. 2011). These benchmarks vary in characteristics from computation
intensive to communication intensive in nature and thus are of interest in this work.

4.2 Performance of Optimized 3D NoC

In this section, we compare the performance of the SEN-, the SA-, and the ML-based link placement
algorithms. We employ network latency and energy-delay-product (EDP) as our performance met-
rics. EDP is defined as the product of network latency and energy consumption and unifies both
of them into a single value. For comparative performance evaluation, the performance metrics are
normalized with respect to those of the 3D SWNoC optimized with the SA algorithm.

4.2.1 Network Latency. Figure 4 shows the normalized network latency values of the 3D
SWNoCs optimized with SA-, ML-, and SEN-based algorithms for 64-, 128-, and 256-core system
sizes. We observe from the figure that SWNoC designed with SEN achieves the lowest network
latency for all the simulation cases. Compared to SA, SEN reduces the network latency by max-
imum 7.1% (4.3% on average), 10.4% (5.9% on average), and 29.0% (11.5% on average) for the 64-,
128-, and 256-core systems, respectively. In addition, SEN-based 3D SWNoC reduces the network
latency more effectively as the system size increases from 64 to 256.

However, the ML-based 3D SWNoC has 0.5%, 1.1%, and 2.1% higher network latency on average
for the 64-, 128-, and 256-core system sizes, respectively, than the SA-based counterpart. For FFT,
FPPPP, H.264, and SPARSE, the ML approach consistently achieves lower network latency than SA-
based solution for all the system sizes. The maximum reduction in the network latency is achieved
for the FFT benchmark for all the system sizes. For ROBOT, RS_dec, and RS_enc, however, ML-
optimized 3D SWNoC shows 6.5%, 7.9%, and 12.1% higher network latency on average, respectively,
than SA-based design for the 64-, 128-, and 256-core system sizes. For these three benchmarks, a
large number of cores do not have any inter-node communications, so the variation of the feature
vectors is minimal (zero variation is observed in most of the cases). Consequently, the ML-based
algorithm fails to distinguish different candidate solutions from each other and cannot capture the
network characteristics efficiently. We analyze the performance of the 3D SWNoCs optimized by
the ML-based algorithm and the dependency of the performance of the feature functions in more
detail in Section 4.3.2.

The SEN-optimized 3D SWNoCs exhibit the lowest network latency for all the benchmarks and
the three system sizes. To explain this, the normalized path lengths of the 3D SWNoCs optimized
with the SA-, ML-, and SEN-based algorithms for 64-, 128-, and 256-core system sizes are shown
in Figure 5. As the figure shows, the SEN-based 3D SWNoC achieves 5.8%, 7.9%, and 12.2% lower
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Fig. 4. Normalized network latency of the 3D SWNoC architectures optimized by SA-, ML- and SEN-based

optimization algorithms for 64-, 128-, and 256-core NoCs.

path lengths on average than the SA-based design for the 64-, 128-, and 256-core systems sizes,
respectively. However, the ML-based 3D SWNoC shows 3.2%, 2.8%, and 2.9% higher path lengths
on average than the SA-based solution for the 64-, 128-, and 256-core system sizes, respectively.
Similar to the network latency, ML-based design has much higher path lengths than SA for ROBOT,
RS_dec, and RS_enc, which leads to the higher average path lengths.

4.2.2 Energy-Delay-Product (EDP). Figure 6 shows the EDP values of the 3D SWNoCs opti-
mized by SA, ML, and SEN for 64-, 128-, and 256-core system sizes. As Figures 4 and 6 show, the
EDP result has the same trend as the network latency result explained in Section 4.2.1. The av-
erage EDP values of the 3D SWNoCs optimized by SEN for the 64-, 128-, and 256-core systems
are lower than those of the 3D SWNoCs optimized by SA by 8.3%, 10.7%, and 18.4%, respectively.
In addition, the SEN-based algorithm achieves the lowest EDP for all the benchmarks and sys-
tem sizes as the figure shows. However, the average EDP values of the 3D SWNoCs optimized by
ML for the 64-, 128-, and 256-core systems are higher than those optimized by SA by 0.2%, 1.6%,
and 3.3%, respectively. The reason that SEN achieves the lowest EDP is that each message travels
shorter planar and vertical link lengths in the SEN-optimized 3D SWNoCs than in the SA- and ML-
optimized 3D SWNoCs. Since shorter travel lengths lead to lower network energy consumption,
the SEN-optimized 3D SWNoCs achieve the lowest EDP.

4.3 Effects of the Optimization Algorithms: SEN and ML

In this section, we analyze the SEN- and ML-based optimization algorithms from NoC optimiza-
tion perspective. In addition, we also explain how the quality of the solution and the optimization
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Fig. 5. Normalized path lengths of the 3D SWNoC architectures optimized by the SA-, ML-, and SEN-based

optimization algorithms for 64-, 128-, and 256-core NoCs.

runtime vary with the characteristic of the benchmarks and system sizes for the two optimization
algorithms.

4.3.1 Analysis of SEN-based Optimized Network. The proposed SEN-based algorithm has poten-
tial to reduce the network latency of the 3D SWNoCs and the optimization runtime with additional
optimization steps, viz., refinement (for improving the quality of candidate NoC solutions) and re-
moving a large number of links in a single-step (for runtime improvement). In this section, we
discuss the details of employing these two additional steps during the optimization process and
their effects on the quality of the optimized 3D SWNoC architecture and the amount of runtime
reduction. We use the 64-core NoC for the analysis of the SEN-based algorithm.

4.3.1.1 Determination of R Parameter for Efficient Refinement. As discussed in Section 3.3.4.1,
we adopt the refinement approach for the SEN-based optimization to overcome the problem of
stalling at local optimal points. The refinement step repeats adding and removing R links where R

decides the quality of an optimized 3D SWNoC and the optimization runtime. If we increase R, then
we spend more time to explore a larger solution space, which will likely lead to a lower network
latency value, at the cost of increased optimization runtime. Since there is a trade-off between the
quality of an optimized 3D SWNoC and the optimization runtime, finding an optimal value of R

is crucial. Thus, we experimentally determine the optimal value of R to improve the efficiency of
the SEN-based algorithm.

Figure 7 shows the average EDP and runtime values of the seven benchmarks of the 64-core
3D SWNoCs optimized by the SEN-based algorithm for different R values. The EDP values are
normalized with respect to the EDP of the 3D SWNoC optimized with R = 0, which does not
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Fig. 6. Normalized EDP values of the 3D SWNoC architectures optimized by the SA-, ML-, and SEN-based

optimization algorithms for 64-, 128-, and 256-core NoCs.

Fig. 7. Normalized average EDP and runtime values of the seven benchmarks of the 64-core 3D SWNoCs

optimized by the SEN-based algorithm for different R values.

perform the refinement during network optimization. We observe from the figure that the EDP
decreases and the runtime increases monotonically as R increases from 0 to 6. The EDP reduces
noticeably up to R value of 3, and then remains almost constant even if R increases further. For
this reason, we used R = 3 for the SEN-based network optimization in Section 3.3.4.1.

4.3.1.2 Runtime Improvement. As discussed in Section 3.3.5, the joint effect of the one-time re-
moval of a large number of links at the beginning of the network optimization and the refinement
procedure is that we can significantly reduce the optimization runtime without degrading the
quality of the NoC architecture. Before we start the three-step SEN-based optimization procedure
(Section 3.3.2.2), we can remove some low-communication links (fij ≈ 0), which are non-critical
from the NoC performance perspective. If restoring some of the removed links can improve the
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Fig. 8. Normalized average EDP values of the seven benchmarks of the 64-core 3D SWNoCs optimized by

the SEN-based algorithm with and without the network refinement step and their optimization runtimes for

different numbers of links removed at the beginning of the optimization.

performance of the NoC architecture, then the network refinement step will re-examine the
effects of the links on the performance of the NoC architecture and restore them. Consequently,
we can save the unnecessary computation time associated with non-critical link search and
removal during the optimization process.

To find an optimal number of links, we can remove without sensitivity update at the beginning of
the optimization, we removedKinit % of the total links and started the normal network optimization
process (link constraint, removal, updating the current state and refinement). Figure 8 shows the
average EDP values of the seven benchmarks of the 64-core 3D SWNoCs optimized by SEN with
and without the network refinement step and their optimization runtime values for different Kinit

varying from 0% to 70% with a step size of 10. The reason we do not explore removing more than
70% is as follows. Since we keep removing links during the optimization process, we cannot have
144 links at the end of the optimization if the 3D NoC architecture has less than 144 links after
the one-time removal of links. Although the refinement step temporarily adds some links, the
total number of links before and after a refinement step does not change. Since the initial 3D NoC
architecture has total 528 links (120 horizontal links forming a complete graph in each layer and
16 vertical links between two adjacent layers), removing 70% and 80% links leave 158 links and
106 in the architecture, respectively. Thus, we experimented with removing up to 70% links. In
Figure 8, the EDP values of the 3D SWNoCs are normalized with respect to that of the 3D SWNoC
optimized with no one-time link removal and without the refinement step.

We first observe in the figure that the EDP values increase as Kinit % increases from 0% to 70%
if the network refinement step is not used. This means that some of the links removed at the
one-time removal step become critical for EDP reduction during the main optimization process.
Without the network refinement step, however, those links cannot be restored in the main opti-
mization process. Thus, removing more links at the one-time removal step results in the increased
EDP. However, the EDP values do not monotonically increase as Kinit % increases if the network
refinement step is used. This is because some of the links that are removed at the one-time removal
step, but become critical for EDP reduction during the main optimization process are restored by
the network refinement step. In Figure 8, the EDP values of the cases of removing 20% and 40% of
the links in the one-time removal step are lower than the EDP value of the case of skipping the
one-time removal step. Moreover, the EDP of the case of removing even 50% of the total links at
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the one-time removal step is also similar to the case of Kinit = 0% while the runtime of the former
is 50% shorter than that of the latter.

If more than 50% of the links are removed at the one-time link removal step, however, then
the EDP value starts increasing, even if the network refinement step is used. This is because the
network refinement step cannot restore some of the critical links removed earlier. A way to resolve
this problem would be to increase R so that the refinement step can search a larger design space.
However, increasing R will also increase the optimization runtime. From all these observations, we
find that combining the one-time link removal step and the network refinement step with proper
Kinit and R values can significantly reduce the optimization runtime without degrading the EDP
of the 3D SWNoC architecture.

4.3.2 Analysis of ML-based Optimized Network. In this section, we analyze the performance of
the ML-based NoC optimization algorithm. Especially, we discuss how the ML-based algorithm
explores the NoC design space, successfully learns the solution space, and converges to the final
network configuration. In addition, we explain why the performance of the ML-based algorithm
is limited for some of the benchmarks considered here. We consider the change in feature vectors
of the 3D SWNoC and the communication characteristics of different benchmarks to analyze the
performance of the ML-based approach.

4.3.2.1 Change in Feature Functions with ML. In the machine-learning-based optimizations, the
set of candidate solutions in the design space is represented as a function of the feature vec-
tors. Depending on the effectiveness of the feature vectors and type of the learning function,
the optimization algorithm explores and gathers knowledge about the design space. In this work,
we defined in total 20 feature vectors to represent any NoC configuration in the design space.
The differences in respective values of the feature vectors are utilized to separate those NoC
configurations from each other. In general, larger variation separates different candidates in the
solution space more efficiently while no difference in feature vectors represents identical NoC
configurations.

To explain the effectiveness of STAGE-based NoC optimization approach, Figures 9(a) and
9(b) show the difference in the values of all the feature vectors between a randomly generated
SWNoC and the optimized architecture (initial and terminal state of the base search as outlined in
Section 3.4 and Figure 3). For the ease of understanding, the values of all feature vectors are nor-
malized with respect to the values of the initial solution. Here, as an example, we consider 64-core
NoC configuration for two benchmarks with opposite characteristics (from communication per-
spective) viz. FFT and RS_dec. The other two system sizes (128- and 256-core) also show similar
characteristics. In addition, other benchmarks (FPPPP, H.264, RS_enc, ROBOT, and SPARSE) also
show similar feature vector characteristics like either FFT or RS_dec, and hence, we have not
shown the traffic characteristics plots for them.

From the figures, it is seen that for FFT benchmark, there are consistent variations between the
initial and final optimized architectures across all the feature vectors. This states that the NoC so-
lution space of FFT benchmark has a large variation across the candidates and they are distinguish-
able from each other. As a result, the ML-based approach can learn this space easily and exploit
these variations to explore better quality solutions during the optimization process. Consequently,
for FFT benchmark, the ML performs similarly compared to SA or SEN algorithms (Figures 4 and
6 shown before).

However, for RS_dec benchmark, there are variations for only some of the features while others
have only marginal or no variations at all. This refers to a solution space where NoC candidate
solutions have identical characteristics and inseparable from each other. As a result, the trajectory
of the base search (as shown in Figure 3) is short, number of data points in the training set is small,
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Fig. 9(a). Variation in feature vectors for the initial (random) and optimized 64-core 3D SWNoC with STAGE-

based optimization for FFT benchmark.

Fig. 9(b). Variation in feature vectors for the initial (random) and optimized 64-core 3D SWNoC with STAGE-

based optimization for RS_dec benchmark.

Fig. 10(a). Internode traffic injection rates for each node for 64-core system with FFT.

Fig. 10(b). Internode traffic injection rates for each node for 64-core system with RS_dec.

and data points are also identical in nature, and consequently the search space is difficult to learn
for the evaluation function, E. Hence, the quality of the NoC solutions explored by the STAGE
in the considered NoC design space does not improve significantly as seen from Figures 4 and 6
before. This type of variation in feature vectors is observed for RS_enc and Robot benchmark as
well and, hence, they also show similar quality solutions during the optimization.

4.3.2.2 Analysis of Benchmark Characteristics. To analyze the performance of STAGE-based
optimization for the benchmarks further, we consider the traffic injection rates of each node in
the system and their mean and standard deviation. In this case, we also consider the 64-core NoC
for illustration purpose. Figures 10(a) and 10(b) show the injection rates in flits/cycle/node for
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Fig. 11. Average and standard deviation (STD) in injection rates among the nodes of a 64-core system.

each node for FFT and RS_dec benchmarks, respectively. While the traffic injection rates for FFT
benchmark (Figure 10(a)) has non-zero values across all the nodes, however, large number of nodes
have really low rates (almost zero) compared to some other benchmark like RS_dec (Figure 10(b)).
As a result, for FFT, the internode communications vary widely, and for RS_dec benchmark, large
number of nodes do not interact with each other. To elaborate this, Figure 11 shows the average
and standard deviation (STD) in traffic injection rates of 64-core NoC for all the benchmarks.

As seen from this figure, both the average and standard deviation values of the injection rates
vary widely among the benchmarks. In addition, the FFT benchmark has higher values for both
the average and standard deviation compared to the RS_dec benchmark. As a result, the commu-
nication characteristics of individual nodes in RS_dec benchmark are indistinguishable from each
other. Consequently, for RS_dec, different candidate solutions in the NoC design space have simi-
lar values for respective feature vectors, and are not distinguishable. As a result, the performance
of STAGE-based optimization for RS_dec benchmark is limited compared to the other algorithms
considered in this work.

For FFT, due to a large variation in communication characteristics, the NoC candidates are easily
distinguishable from each other, and hence, STAGE learns the NoC design space efficiently to
explore high-quality solutions. Finally, following similar arguments, the performance of STAGE
for other benchmarks can be explained and found to be consistent with the performance shown
in Figures 4 and 6.

4.3.3 Performance Analysis of SA-based Optimized SWNoC. In this section, we analyze the per-
formance of the SA-, ML-, and SEN-based NoC optimization algorithms in detail. Especially, we
discuss how the SEN-based algorithm achieves better latency, EDP, and runtime than the SA-
based algorithm. Figure 12 shows the difference in the communication path lengths of the 64-core
SWNoCs optimized by the SA-, ML-, and SEN-based algorithms for the FFT benchmark as an
example. The considered NoCs have total 4032 (P (64, 2) = 64!/62!) fi j values. However, the to-
tal communication path length is generally dominated by frequently-communicating node pairs,
which have high fi j values. Thus, we pick the top 300 (64% of the total traffic) among the 4032
fi j values and analyze them. In Figure 12, the x-axis represents the 300 communication node pairs
that are sorted in the descending order of the fi j values. The y-axis shows the differences in the
communication path lengths obtained through two optimization algorithms (Oi j,SA −Oi j,SEN and
Oi j,ML −Oi j,SEN in Figures 12(a) and (b), respectively). If SEN achieves lower path length than SA,
then Oi j,SA −Oi j,SEN is positive in Figure 12(a). If SA achieves lower path length than SEN, then
Oi j,SA −Oi j,SEN is negative.

Figure 12(a) shows the difference in communication path length of SWNoC optimized by the
SA- and SEN-based algorithms. We observe in the figure that SEN achieves lower communica-
tion path lengths than SA for most of the frequently communicating nodes. SA uses random
perturbations for the neighborhood search and the acceptance of the perturbations follows the
Boltzmann distribution. Thus, SA finds a suboptimal solution with limited time and generally
requires numerous iterations to reach a desired result. The number of solutions of the 64-core NoC
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Fig. 12(a). The difference in communication path length of the 64-node SWNoC optimized by the SA- and

SEN-based algorithm for FFT benchmark.

Fig. 12(b). The difference in communication path length of the 64-node SWNoC optimized by the ML- and

SEN-based algorithm for FFT benchmark.

optimization problem we are solving in this article is approximately 1.04 × 1062. (Each layer has
16 cores on a 4 × 4 grid and 24 links. Assuming the link distribution of each layer is {16, 5, 2, 1},
the total number of core pairs (nr ) separated by the Euclidean distance r in each layer as follows:
n1 = 24, n2 = 34,n3 = 40,n4 = 20. Thus, the total number of combinations of the link placement

in each layer is (24
16) × (34

5 ) × (40
2 ) × (20

1 ) ≈ 3.19 × 1015. Since there are four layers, the total number

of combinations of the link placement for the 64-core 3D NoC is (3.19 × 1015)4 ≈ 1.04 × 1062.)
Hence, the runtime of SA-based optimization is significantly longer than that of SEN. SA might be
able to find a better solution than SEN, but it will require very long optimization time. However,
the SEN-based optimization algorithm removes least-critical links and adds most-critical links
repeatedly in the link removal and refinement steps. This methodology is similar to applying
the gradient descent method (removing the least-critical link) with hill climbing (adding the
most-critical link), so it is fast and effective at the same time.

As shown in Figure 12(b), ML-based NoC achieves comparable path length with SEN. The ML
technique intelligently searches the design space to optimize the placement of links, and converges
to the same quality solution with significantly lower runtime when compared to the SA. Therefore,
as shown in Figures 4 and 6, the latency and EDP differences between ML and SEN are only 1.5%
and 3.1%, respectively.

4.4 Convergence Time

In this section, we analyze the convergence time of all the optimization algorithms used in this
work. Figure 13 shows the runtimes of the SA, ML, and SEN algorithms for 64-, 128-, and 256-core
systems. It is seen from Figure 13 that the runtimes of the ML-based optimization for the 64-, 128-,
and 256-core NoCs are on average 12.2, 23.4, and 96.8 times faster than the SA-based approach, re-
spectively. Similarly, the runtimes of SEN-based optimization for the 64-, 128-, and 256-core NoCs
are on average 32.7, 27.6, and 25.5 times faster for the same NoC sizes than SA. For the 64- and
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Fig. 13. Runtimes of the SA-, ML-, and SEN-based optimization algorithms.

128-core 3D NoCs, SEN is faster than ML. However, the runtime of the ML-based optimization for
the 256-core system is shorter than the SEN-based optimization. As discussed in Section 3.3.4.2,
the complexity of the SEN-based optimization is O (L2) where L is the number of links of the fully
connected 3D NoC for given core locations. However, the time complexity of the STAGE algo-
rithm is O(4PuTb) where P, u, and Tb refer to the number of iterations required to converge, the
number of successors, and the length of the search trajectory, respectively (Section 3.4.4). Table 1
shows the experimental values of the parameters affecting the convergence time and the num-
ber of steps performed for the SEN-, ML-, and SA-based algorithms for the FFT benchmark as
a case study. As seen from the table, the SA-based algorithm requires a larger number of steps
than the SEN- and ML-based algorithms. This is because SA uses random perturbations for the
neighborhood search and the new state is accepted with probability Prob (ΔO ) = e−ΔO/T emper atur e

(Kirpatrick et al. 1983). Thus, SA generally requires numerous iterations to reach a desired result.
The SEN-based algorithm requires a smaller number of steps than the ML-based algorithm for 64-
and 128-core systems. However, the SEN-based algorithm requires a larger number of steps than
the ML-based algorithm for the 256-core system. In the ML-based approach, a significant amount of
time is spent in generating training data. In contrast, the SEN algorithm removes links and updates
the cost function. As a result, the ML-based algorithm has higher convergence time for the 64-core
system even when the number of steps is orders of magnitude lower than the SEN algorithm. As the
system size increases, however, the number of steps in the SEN algorithm increases more rapidly
than the ML algorithm. Hence, the runtime of the SEN algorithm increases much faster than the
ML algorithm as the system size goes up. As Figure 13 shows, the SEN algorithm has much shorter
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Table 1. Different Parameters for NoC-optimization Convergence Time Analysis

SEN-based NoC optimization (estimated approximately)

System
size, N

Number of
effective links, L

Number of
initial links

removed, Kinit

Refinement depth, R
Number of
SEN-steps

64 163 60% 3 7.97 × 104

128 736 60% 3 1.63 × 106

256 3110 60% 3 2.90 × 107

ML-based NoC optimization (estimated approximately)

System
size, N

Number of links,
L

Number of
iterations

required for
convergence, P

Number of
successors, u

Search
Trajectory, Tb

Number of
ML-steps

64 144 6 500 60 0.72 × 106

128 304 9 500 108 1.94 × 106

256 640 13 500 156 4.06 × 106

SA-based NoC optimization (estimated approximately)
System
size, N

Number of links,
L

Initial and Min.
Temp.

θ and β
# of moves to

attempt, M

Number of
SA-steps

64 144
100 / 1 0.98 / 0.98

3 × 103 9.23 × 106

128 304 1 × 104 6.28 × 107

256 640 6 × 104 7.59 × 108

runtime than the ML algorithm for the 64-core system, but we observe the opposite trend for the
256-core system. Hence, we conclude that the SEN-based NoC optimization is more efficient for
smaller system size whereas the ML algorithm is much more efficient for bigger systems.

5 CONCLUSION

In this article, we have proposed a sensitivity-based 3D SWNoC optimization algorithm, which is
significantly faster than the traditional SA-based algorithm. The proposed algorithm repeatedly
explores the impact of each link on the network performance and removes less important links
to optimize the link placement. Also, we proposed a link refinement algorithm by which some of
the previously removed links are re-inserted into the network to improve the performance of the
3D SWNoC. We compared the performance of 3D SWNoCs optimized by the SEN-based, the SA-
based, and the ML-based algorithms. The comparison results show that the 3D SWNoCs optimized
by the SEN algorithm has lower latency than those optimized by the SA and ML algorithms. The
SEN algorithm also has the shortest runtime for optimization of the 64- and 128-core systems, but
it is slower than the ML and still much faster than the SA for the 256-core system.
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