
High-Throughput Multiplier Architectures Enabled by Intra-Unit Fast Forwarding

Jihee Seo and Dae Hyun Kim
School of Electrical Engineering and Computer Science, Washington State University, Pullman, WA, USA

jihee.seo@wsu.edu, daehyun@eecs.wsu.edu

Abstract—In this paper, we propose a pipelined multiplier
architecture that can resolve data dependencies. The proposed
architecture generates partial results in the pipeline stages
of the multiplier and forwards the partial results back to
the pipeline stages through so-called fast-forwarding paths,
thereby enabling an execution of dependent multiplications
with a minimum delay penalty. We apply the architecture
to a normal binary multiplier (NBBE-2) and two redundant
binary multipliers (RBBE-4 and CRBBE-4) and compare the
execution time, clock period, area, and power consumption of
the multipliers. The simulation results show that the proposed
architecture achieves up to 30% execution time reduction.

Keywords-Multiplier; Multiplication; Fast Forwarding;

I. INTRODUCTION

The performance of arithmetic units such as multipliers
and dividers has a great impact on the throughput of process-
ing units utilizing the arithmetic units. Thus, an enormous
amount of effort has been put into the design of high-speed
arithmetic units [1]–[4]. Especially, integer multiplication
is heavily used in almost all applications. Thus, many
researchers have developed and proposed various high-speed
multiplier architectures [1], [3], [5]–[8].

Multiplier architectures can be generally decomposed into
three steps, partial product generation (PPG), partial product
reduction (PPR), and carry-propagate addition (CPA). The
PPG step generates partial products to be added. The PPR
step adds the partial products generated in the PPG step
until only two rows (a sum and a carry rows) are left. The
CPA step adds the two final rows by a carry-propagate adder
to produce the final multiplication result. Thus, improving
the performance of a multiplier tries to reduce the number of
partial products [9], reduce the computation time of the PPR
and CPA steps [10], or use different number representations
such as the redundant binary (RB) representation [11]. All
these methodologies reduce the delay of the multiplier, but
not its throughput (# multiplications per cycle). Thus, some
processors use pipelining to increase the throughput at a cost
of increased chip area and delay due to flip-flops. However,
pipelining does not increase the throughput if dependencies
exist in the incoming multiplications. Processors resolve the
dependency problem using various techniques such as out-
of-order execution. In many cases, however, those techniques
cannot fully utilize the pipelined multipliers due to the
dependencies.

In this paper, we apply an intra-unit fast-forwarding archi-
tecture to pipelined multipliers to improve the throughput.
The main idea is to generate partial results in all or some
of the pipeline stages and forward the results back to
previous pipeline stages. If incoming multiplications are
independent of each other, the forwarding paths are not used.
If they are dependent, however, the partial results of earlier
multiplications being executed in the multiplier are used in
some of the previous pipeline stages for later multiplications,
thereby increasing the throughput.

II. INTRA-UNIT FAST-FORWARDING ARCHITECTURE

Similar to the data bypassing architectures in datapath
architectures, the general intra-unit fast-forwarding architec-
ture consists of partial results generation, fast forwarding,
and multiplexing [12]. In this section, we briefly review
intra-unit pipelined architectures and present the general
intra-unit fast-forwarding architecture.

A. Definitions and Terminologies

Two multiplications are independent if the output of
one of them is not used as an input of the other. Two
multiplications 𝑀1 and 𝑀2 are dependent if they are not
independent. In this case, 𝑀2 is dependent on 𝑀1 if one of
the inputs of 𝑀2 is the output of 𝑀1. Notice that multiple
multiplications (𝑀2, ...,𝑀𝑗) can be dependent on the same
multiplication (𝑀1). In addition, a multiplication can be
dependent on two multiplications. For example, suppose
𝑀1 : 𝐶 = 𝐴 ∗ 𝐵, 𝑀2 : 𝐹 = 𝐷 ∗ 𝐸, 𝑀3 : 𝐺 = 𝐶 ∗ 𝐹 .
In this case, the two inputs of 𝑀3 are the outputs of 𝑀1

and 𝑀2, so 𝑀3 are dependent on both 𝑀1 and 𝑀2. In
addition, when a multiplication 𝑀𝐴 is dependent on another
multiplication 𝑀𝐵 , the output of 𝑀𝐵 could be used for 𝑀𝐴

as a multiplicand and/or a multiplier. Thus, we define the
following three dependency types for 𝑌 = 𝑂𝑃1 ∗𝑂𝑃2:

∙ Type01 dependency: 𝑂𝑃1 is independent and 𝑂𝑃2 is
dependent.

∙ Type10 dependency: 𝑂𝑃1 is dependent and 𝑂𝑃2 is
independent.

∙ Type11 dependency: Both 𝑂𝑃1 and 𝑂𝑃2 are dependent.

We also define the dependency distance between two depen-
dent multiplications as follows:

∙ Dependency distance: When 𝑗 multiplications
𝑀1, ...,𝑀𝑗 are executed in this order, if 𝑀𝑗 is

143

2019 IEEE 26th Symposium on Computer Arithmetic (ARITH)

978-1-7281-3366-9/19/$31.00 ©2019 IEEE
DOI 10.1109/ARITH.2019.00036

Table I
COMPARISON OF A NON-PIPELINED, AN 𝑛-STAGE PIPELINED, AND AN 𝑛-STAGE PIPELINED FULL FAST-FORWARDING (FF) ARCHITECTURES. 𝐿:

LOGIC DELAY. 𝛿F : A D FLIP-FLOP DELAY. 𝛿M : A MULTIPLEXER DELAY. “EXECUTION TIME (I)” AND “EXECUTION TIME (D)” ARE THE EXECUTION

TIMES FOR 𝑘 INDEPENDENT AND 𝑘 SEQUENTIALLY DEPENDENT OPERATIONS, RESPECTIVELY.

Non-pipelined Pipelined Pipelined + Full FF
Stage delay 𝐿 𝐿/𝑛+ 𝛿F 𝐿/𝑛+ 𝛿F + 𝛿M

Execution time (I) 𝑘 ⋅ 𝐿 𝑘
𝑛
⋅ (𝐿+ 𝑛 ⋅ 𝛿F) + (𝑛− 1) ⋅ 𝛿F + (𝐿− 𝐿

𝑛
) 𝑘

𝑛
⋅ (𝐿+ 𝑛 ⋅ (𝛿F + 𝛿M)) + (𝑛− 1) ⋅ (𝛿F + 𝛿M) + (𝐿− 𝐿

𝑛
)

Execution time (D) 𝑘 ⋅ 𝐿 𝑘 ⋅ (𝐿+ 𝑛 ⋅ 𝛿F)

PS1

OP1[7:0] M
U

X C[1:0]

M
U

X C[3:2]

B[
7:

0]
 *

C
[1

:0
]

Y[1:0]

PS2
M

U
X C[5:4]

PS3

Y[1:0]

Y[3:2]

Y[3:0]
B[

7:
0]

 *
C

[3
:2

]

M
U

X C[7:6]

PS4

Y[5:0]

B[
7:

0]
 *

C
[7

:6
]

Y[5:4]

B[
7:

0]
 *

C
[5

:4
]

Y[7:6]

Y[7:0]

PS5

8-
bi

t C
PA

Y[15:0]
IR1-2 IR2-3 IR3-4 IR4-5

(a) (b)

Multiplications
M1: Y = A * B

M2: D = E * Y

t
M1
M2

PS1 PS2 PS3 PS4 PS5
PS1 PS2 PS3 PS4 PS5OP2[7:0]

Figure 1. (a) An intra-unit pipelined multiplication architecture with D1 fast-forwarding paths. (b) A timing diagram for the architecture shown in (a).

dependent on 𝑀1, the dependency distance between
𝑀𝑗 and 𝑀1 is defined as 𝑗 − 1.

Sequentially dependent multiplications are a stream of de-
pendent multiplications (except a few leading multiplica-
tions) whose dependency distances are all one. We also
define the D-𝑠 dependency as follows:

∙ D-𝑠 dependency: If 𝑀𝑗 is dependent on 𝑀𝑖, 𝑀𝑗 has a
D-𝑠 (Distance-𝑠) dependency where 𝑠 = 𝑗 − 𝑖.

For example, if 𝑀4 is dependent on 𝑀1, 𝑀4 has a D-
3 dependency. Notice that a multiplication can have two
dependencies if it has a Type11 dependency. For example,
if 𝑀5 is dependent on 𝑀2 and 𝑀4, 𝑀5 has a D-3 and a
D-1 dependencies.

B. Intra-Unit Pipeline Architecture

Pipelined architectures are widely used for throughput
improvement in high-performance arithmetic units. Table I
compares a non-pipelined and a pipelined architectures
for executing 𝑘 independent operations and 𝑘 sequentially
dependent operations. The non-pipelined architecture has
one logic stage and the delay of the logic is 𝐿. For this
architecture, executing 𝑘 independent operations does not
differ from executing 𝑘 dependent operations. Thus, the total
execution time of 𝑘 operations is 𝑘 ⋅ 𝐿.

The pipelined architecture, however, has a shorter stage
delay than the non-pipelined architecture. An ideal pipelin-
ing is to split the logic into 𝑛 equal-delay stages. In this case,
the delay of a stage is 𝐿/𝑛 + 𝛿F where 𝛿F is the delay of
a flip-flop. If 𝑘 independent operations are executed in this
architecture, an operation can be issued every clock cycle, so
the total execution time is 𝑘

𝑛 ⋅(𝐿+𝑛⋅𝛿F)+(𝑛−1)⋅𝛿F+(𝐿−𝐿
𝑛)

as shown in the table. Assuming 𝑘 is sufficiently large and
𝑛 is sufficiently small, the total execution time is reduced by

1/𝑛 compared to the non-pipelined architecture. However, if
the operations are sequentially dependent, the total execution
time becomes 𝑘 ⋅ (𝐿+ 𝑛 ⋅ 𝛿F), which is longer than that of
the non-pipelined architecture. In addition, if the pipeline
depth 𝑛 goes up, both the flip-flop delay and area overheads
increase. Thus, 𝑛 should be small enough to minimize the
overheads, but large enough to maximize the throughput.

C. Intra-Unit Fast-Forwarding Architecture

The motivation of this paper is to reduce the total execu-
tion time regardless of their dependency patterns. A solution
for the execution time reduction is to generate some partial
results for a multiplication 𝑀1 in the pipeline stages of a
multiplier. If a multiplication 𝑀2 is dependent on 𝑀1, the
multiplier uses the partial results of 𝑀1 to execute 𝑀2 with
a minimum delay penalty.

Figure 1(a) shows an example of an 8-bit 5-stage mul-
tiplier. Suppose 𝐴[7 : 0] and 𝐵[7 : 0] are fed into the
multiplier for 𝑀1 : 𝑌 = 𝐴 ∗ 𝐵. In the first stage, the
multiplexer selects the input 𝐴 and the logic calculates
𝐵[7 : 0] ∗ 𝐴[1 : 0] and generates two outputs. The first
output is a partial result 𝑌 [1 : 0] denoted by the thick
line in the figure and the second output is an intermediate
output (if necessary) denoted by 𝐼𝑅1−2. Some or all of
the primary inputs 𝐴 and 𝐵, the partial result 𝑌 [1 : 0],
and the intermediate output are passed to the next stage.
In the second stage, the multiplexer selects 𝐴[3 : 2] and
the logic calculates 𝐵[7 : 0] ∗ 𝐴[3 : 2] and generates
𝑌 [3 : 0] (actually 𝑌 [3 : 2] is newly generated and 𝑌 [1 : 0]
is just concatenated). At the same time, the second stage
also generates an intermediate output 𝐼𝑅2−3. The third
and fourth stages are similar to the second stage. At the
end of the fourth stage, a partial result 𝑌 [7 : 0] and an

144

intermediate output 𝐼𝑅4−5 are generated. The intermediate
output is fed into the 8-bit carry-propagation adder (CPA),
which generates the final result 𝑌 [15 : 8]. Concatenating the
output of the 8-bit CPA and 𝑌 [7 : 0] produces 𝑌 [15 : 0].

Now, suppose the next multiplication is 𝑀2 : 𝐷 = 𝐸 ∗𝑌 ,
which has a Type01 dependency, and 𝐸 and 𝑌 are fed into
𝑂𝑃2 and 𝑂𝑃1, respectively. In this case, 𝑀2 is issued one
clock cycle after 𝑀1 is issued. In the first stage for 𝑀2, the
multiplexer selects the partial result coming from the next
stage. Thus, the first stage for 𝑀2 computes 𝐸[7 : 0]∗𝑌 [1 :
0]. During the next clock cycle, the third stage forwards
𝑌 [3 : 2] back to the second stage and computes 𝐵[7 : 0] ∗
𝐴[5 : 4]. At the same time, the multiplexer in the second
stage selects 𝑌 [3 : 2] and the logic in the stage computes
𝐸[7 : 0] ∗ 𝑌 [3 : 2] for 𝑀2. Thus, the two multiplications
can be executed with a minimum delay penalty. Figure 1(b)
shows a timing diagram for 𝑀1 and 𝑀2.

Before we present detailed multiplier architectures in the
next section, we define a D-𝑠 (Distance-𝑠) fast-forwarding
path and discuss properties of the fast-forwarding architec-
ture shown in Figure 1(a).
∙ D-𝑠 fast-forwarding path: If the partial result of the 𝑗-th

pipeline stage is forwarded to the 𝑖-th pipeline stage,
we call the forwarding path a D-𝑠 fast-forwarding (or
just forwarding) path where 𝑠 is 𝑗 − 𝑖+ 1.

In Figure 1(a), for example, all the forwarding paths are D-
1 forwarding paths because the partial result generated at
stage 𝑗 is fed back to stage 𝑗 for 𝑗 = 1, ..., 4 (through the
flip-flops between stage 𝑗 and stage 𝑗+1). The D-1 forward-
ing paths enable the multiplier to execute multiplications
having D-1 dependencies with a minimum delay penalty.
Thus, the execution time for 𝑀1 and 𝑀2 in Figure 1(a) is
six cycles as shown in Figure 1(b).

D. Dependencies, Fast Forwarding, and Overheads

In general, if a multiplier has D-𝑗 forwarding paths, it can
resolve D-𝑗 dependencies. However, whether a dependency
could be resolved by fast forwarding or not is strongly de-
pendent on available forwarding paths in the multiplier and
the actual dependencies among incoming multiplications.
For example, if the multiplier has only D-𝑠 forwarding paths,
it cannot resolve D-𝑗 dependencies for 𝑗 ∕= 𝑠. Figures 2(b)-
(f) compare several architectures for the two dependency pat-
terns shown in Figure 2(a). For the comparison, we assume
that the flip-flop and multiplexer delays are negligible and
the multiplier has four pipeline stages. In Case 1, 𝑖2, 𝑖3, and
𝑖4 have D-1 Type01 dependencies. In Case 2, 𝑖3 and 𝑖4 have
D-2 Type01 dependencies. For the non-pipelined multiplier
shown in Figure 2(b), the total execution time is 4𝑇 . For
the four-stage pipelined multiplier shown in Figure 2(c),
the total execution time for independent multiplications is
1.75𝑇 , whereas the total execution times for Case 1 and
Case 2 are 4𝑇 and 2.25𝑇 , respectively. If the pipelined
multiplier has D-1 forwarding paths as shown in Figure 2(d),

the total execution time for independent multiplications and
the dependent multiplications in Case 1 is 1.75𝑇 , which
is better than the architecture in Figure 2(c). However, it
cannot resolve D-2 dependencies, so the execution time for
Case 2 is still 2.25𝑇 . The pipelined multiplier with D-2
forwarding paths shown in Figure 2(e) has shorter execution
time (1.75𝑇) than the architectures shown in Figure 2(c)
and (d), but it has longer execution time (2.5𝑇) for Case 1.
Lastly, the multiplier in Figure 2(f) has full (D-1, D-2, D-
3) forwarding paths, so its execution time is 1.75𝑇 for all
the independent and dependent multiplications. The fourth
column in Table I shows the execution time for independent
and sequentially dependent operations. As long as some
operations are dependent, the pipelined architecture with full
forwarding paths has shorter execution time than the one
without forwarding paths.

As shown above, having full forwarding paths will min-
imize the execution time regardless of the dependency pat-
terns. However, adding forwarding paths has two problems.
First, adding forwarding paths requires multiplexers and
more routing resources, which leads to area and power
overheads. We can resolve this problem by adding only the
most-demanding forwarding paths. Second, multiplier archi-
tectures that can support fast forwarding for Type01/10/11
dependencies should be developed, which is the main topic
of this paper.

III. HIGH-THROUGHPUT MULTIPLIER ARCHITECTURES

In this section, we propose high-throughput multiplier de-
signs by inserting fast forwarding paths to several multiplier
architectures.

A. Intra-Unit Fast-Forwarding Paths

Figure 3 shows two 8-bit 5-stage pipelined unsigned mul-
tiplier architectures having intra-unit fast-forwarding paths.
The architecture (Arch1) shown in Figure 3(a) resolves
Type01 and Type10 dependencies, whereas the architec-
ture (Arch2) shown in Figure 3(b) resolves Type01, Type10,
and Type11 dependencies. The first stage of Arch1 calculates
𝐴[7 : 0] ∗ 𝐵[1 : 0] and generates two intermediate outputs
and a partial result. The intermediate outputs are the sum
and carry-out rows of 𝐴[7 : 0] ∗ 𝐵[1 : 0]. The partial result
is 𝑀 [1 : 0] where 𝑀 is the final result. Thus, the first
stage of Arch1 requires a complete 8-bit input for 𝐴, but
a partial 2-bit input (𝐵[1 : 0]) for 𝐵 and generates a partial
output 𝑀 [1 : 0]. Thus, the partial result can be forwarded
back to the first stage so that multiplications having D-1
dependencies can use the forwarding path. Similarly, the
second stage of Arch1 calculates 𝐴[7 : 0] ∗ 𝐵[3 : 2] and
the intermediate output of the first stage using carry-save
adders. The outputs of the second stage are an intermediate
output and a partial result 𝑀 [3 : 2]. The partial result
𝑀 [1 : 0] generated in the first stage is also passed to the
second stage, so the second stage actually has 𝑀 [3 : 0].

145

i1 : R1 = A1 op B1
i2 : R2 = A2 op R1
i3 : R3 = A3 op R2
i4 : R4 = A4 op R3

i1 : R1 = A1 op B1
i2 : R2 = A2 op B2
i3 : R3 = A3 op R1
i4 : R4 = A4 op R2

(a) Dependency
Case 1 (Dependency distance: 1) Case 2 (Dependency distance: 2)

(b) Non-pipelined

For all the cases

timeT T T T
i1

i2 i3 i4

Multiplier

T
T
4

T
4

T
4

T TT T

(c) Pipelined, no forwarding path
Multiplier time

i1
i2 i3 i4

i1
i2 i3 i4

For independent multiplications

For dependent multiplications (Case 1)

time

T
T
4

T
4

3T
4

(d) Pipelined, D-1 forwarding paths
Multiplier T

T
4

T
4

T
4 time

i1
i2 i3 i4

For independent &
dependent multiplications
(Case 1)

time

For dependent multiplications (Case 2)

i1
i2

i3 i4

T
T
2

(e) Pipelined, D-2 forwarding paths
Multiplier T

T
4

T
4

T
4 time

i1
i2 i3 i4

For independent &
dependent multiplications
(Case 2)

For dependent (Case 1) multiplications

time
i1

i2
i3 i4

T
2

T
2

(f) Pipelined, full forwarding paths
Multiplier T

T
4

T
4

T
4 time

i1
i2 i3 i4 For all the cases

T
T
4

T
4

3T
4 time

For dependent multiplications (Case 2)

i1
i2

i3 i4

Figure 2. Timing diagrams of non-pipelined and pipelined architectures.

PPPP Partial products (PPmn = Am x Bn) M Final product (new) M Final product (passsed) Sum and Carry from the carry-save adders

MUX

Logic

A B

MUX

Logic

MUX

Logic

MUX

Logic

Logic

IR1

IR2

IR3

IR4

PR3

PR2

PR1

PR4

Final result

Stage1

Stage2

Stage3

Stage4

Stage5

M0

M0M1M2M3

M0M1M2M3M3M4

M0M1M2M3M3M4M5M6

M0M1M2M3M4M5M6M7M8M9M10M11M12M13M14M15

M1

PP00PP10PP20PP30PP40PP50PP60PP70

PP01PP11PP21PP31PP41PP51PP61PP71

PP02PP12PP22PP32PP42PP52PP62PP72

PP03PP13PP23PP33PP43PP53PP63PP73

PP04PP14PP24PP34PP44PP54PP64PP74

PP05PP15PP25PP35PP45PP55PP65PP75

PP06PP16PP26PP36PP46PP56PP66PP76

PP07PP17PP27PP37PP47PP57PP67PP77

A7 A6 A5 A4 A3 A2 A1 A0

B7X B6 B5 B4 B3 B2 B1 B0
Stage1

Stage2

Stage3

Stage4

Stage5

M
U

X
M

U
X

M
U

X
M

U
X

(a)

MUX

Logic

A B

MUX

MUX

Logic

MUX

MUX

Logic

MUX

MUX

Logic

MUX

Logic

IR1

IR2

IR3

IR4

PR3

PR2

PR1

PR4

Final result

Stage1

Stage2

Stage3

Stage4

Stage5

M0

M0M1M2M3

M0M1M2M3M3M4

M0M1M2M3M3M4M5M6

M0M1M2M3M4M5M6M7M8M9M10M11M12M13M14M15

M1

PP00PP10PP20PP30PP40PP50PP60PP70

PP01PP11PP21PP31PP41PP51PP61PP71

PP02PP12PP22PP32PP42PP52PP62PP72

PP03PP13PP23PP33PP43PP53PP63PP73

PP04PP14PP24PP34PP44PP54PP64PP74

PP05PP15PP25PP35PP45PP55PP65PP75

PP06PP16PP26PP36PP46PP56PP66PP76

PP07PP17PP27PP37PP47PP57PP67PP77

A7 A6 A5 A4 A3 A2 A1 A0

B7X B6 B5 B4 B3 B2 B1 B0 Stage1

Stage2

Stage3

Stage4

Stage5

M
U

X
M

U
X

M
U

X
M

U
X

(b)

Figure 3. Two 8-bit 5-stage pipelined unsigned multipliers. (a) Arch1 resolving Type01 and Type10 dependencies. (b) Arch2 resolving Type01, Type10,
and Type11 dependencies.

𝑀 [3 : 2] is forwarded back to the second stage and 𝑀 [1 : 0]
is forwarded back to the first stage. The third and fourth
stages have similar architectures as shown in the figure.
The fifth stage is a carry-propagation addition stage, which
adds the intermediate output (the sum and carry-out rows)
of the fourth stage using a high-speed parallel adder. The
fifth stage generates the final result 𝑀 [15 : 0]. Note that
some additional flip-flops are needed after the fifth stage to
hold the final result and forward it to the previous stages
to resolve D-2 to D-5 dependencies. Note also that we can

resolve Type10 dependencies by swapping the inputs.

Arch2 in Figure 3(b) resolves all the three dependency
types as follows. The first stage of Arch2 adds 𝐴[1 : 0]∗𝐵[0]
and 𝐴[1 : 0] ∗ 𝐵[1] and generates an intermediate output
and a partial result 𝑀 [1 : 0]. Arch2 requires partial inputs
for the first stage computation, whereas Arch1 requires a
complete input and a partial input. Thus, Arch2 can also
resolve Type11 dependencies. The second, third, and fourth
stages of Arch2 are similar to the first stage as shown in the
figure. The fifth stage is a carry-propagation addition stage.

146

(a) (b) (c) (d)

Stage1

Stage2

CPA

PPG

MUX

CPA

PPG

MUX

CPA

 Wallace
 Tree

 Wallace Tree

M
U

X

M
U

X

0N/2N3N/2

Stage1

Stage2

 Wallace Tree

PPG

MUX

CPA

 Wallace Tree

PPG

MUX

CPA

0N/2N3N/2

CPA

 Wallace Tree

Stage1

Stage2

PPG

PPG

0N/2N3N/2

 Wallace Tree

CPA

PPG

Wallace Tree

Stage1

0N/2N3N/2

CPA

Figure 4. General 𝑁 -bit three-stage signed multiplier architectures. (a) Non-pipelined. (b) Pipelined. (c) Pipelined + fast forwarding paths (Arch1)
resolving Type01/10 dependencies. (d) Pipelined + fast forwarding paths (Arch2) resolving Type01/10/11 dependencies.

Note that the number of partial products to add in each stage
is fixed in Arch1, but linearly increases in Arch2. However,
the maximum number of bits to add at each column in each
stage of Arch2 is fixed to 4 in the figure and 2 ⋅𝑁/(𝑆−1) in
general where 𝑁 and 𝑆 are the number of operand bits and
the number of pipeline stages, respectively. If the multiplier
in Figure 3 is a signed multiplier, there will be more bits
to be added, but the same architectures can still be used for
signed multiplications.

Figure 4 compares general 𝑁 -bit three-stage signed mul-
tiplier architectures compared in this paper. All the ar-
chitectures are composed of three stages, partial product
generation, partial product reduction, and carry-propagate
addition. The non-pipelined multiplier in Figure 4(a) uses
the Wallace tree in the partial product reduction stage, but it
can use different partial product reduction architectures such
as the Dadda tree [13]. The three-stage pipelined architecture
shown in Figure 4(b) splits the partial product generation
and partial product reduction stages into two stages. If it
has 𝑠 pipeline stages, the first 𝑠 − 1 stages will consist of
the partial product generation and reduction stages and the
last stage will be the carry-propagate addition stage. The
three-stage pipelined architecture in Figure 4(c) has D-1
and D-2 forwarding paths to resolve Type01 and Type10
dependencies. The first and second stages contain small
carry-propagate adders to generate partial results. Thus,
the last stage carry-propagate adder is an 𝑁 -bit adder.
Since the Wallace tree is just split into upper and lower
stages, this architecture (Arch1) resolves only Type01 and
Type10 dependencies. On the other hand, Arch2 shown in
Figure 4(d) splits the Wallace tree in V-shaped form, thereby
resolving Type11 dependencies too.

B. Applications to Existing Multipliers

In this section, we apply the general fast forward-
ing paths to three multiplier architectures, normal binary

based multiplication using Radix-4 Booth encoding (NBBE-
2) [9], redundant binary based multiplication using Radix-
16 Booth encoding (RBBE-4) [14], [15], and redundant
binary based multiplication using covalent Radix-16 Booth
encoding (CRBBE-4) [1]. Figure 5 shows partial product
reduction trees used for NBBE-2, RBBE-4, and CRBBE-4.

1) NBBE-2: Figure 5(a) shows a partial product reduction
tree architecture we propose for NBBE-2 Arch1. We use the
sign extension prevention method proposed in [16] in the
architecture. We also use the Booth encoder and decoder
used in [3] for Radix-4 Booth encoding. The figures show
two partial product reduction stages (Pipeline Stage 1 and 2)
and a carry-propagate addition stage (Pipeline Stage 3). The
first pipeline stage adds the partial products in two sub-
stages, Stage 1a and Stage 1b. While we add the higher
bits (Bit 11 to Bit 4) and generate an intermediate output
in Stage 1b, we add the lower bits (Bit 3 to Bit 0) by a
carry-propagate adder (CPA), generate a partial result, and
forward it to the first stage (the forwarding paths are not
shown in the figure). The second pipeline stage is composed
of four sub-stages, Stage 2a to Stage 2d. In this stage, we add
the intermediate output passed from the first pipeline stage
and the partial products generated in the second pipeline
stage. The last sub-stage (Stage 2d) generates a partial result
by a CPA. The third pipeline stage adds the intermediate
output passed from the second pipeline stage by a CPA and
generates the final result. Figure 5(b) shows a partial product
reduction tree architecture we propose for NBBE-2 Arch2.
It is similar to the Arch1 design, but the first pipeline stage
adds only the partial products of 𝐴[3 : 0]∗𝐵[3 : 0]. Stage 1b
uses a CPA to generate the partial result 𝑌 [3 : 0]. Similarly,
Stage 2d uses a CPA to generate the partial result 𝑌 [7 : 4].

2) RBBE-4 and CRBBE-4: Figure 5(c) and (d) show the
partial product reduction trees for the RBBE-4 Arch1 and
Arch2 designs, respectively. Similarly, Figure 5(e) and (f)
show the partial product reduction trees for the CRBBE-4

147

(a)

0 index123456789101112131415

1

1

1

1

PR0PR1PR2PR3

PR0PR1PR2PR3

PR4PR5PR6PR7

PR4PR5PR6PR7 PR0PR1PR2PR3

PR12PR13PR14PR15 PR8PR9PR10PR11

IRIRIRIRIRIRIRIR
IRIRIRIRIRIRIRIR

 C

 IR IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR IR

 IR
 C

Pipeline
Stage 1

(Stage1a)

(Stage1b)

(Stage2a)

Pipeline
Stage 2

(Stage2b)

(Stage2c)

(Stage2d)

Pipeline
Stage 3

(b)

0 index123456789101112131415

1

1

PR0PR1PR2PR3

PR0PR1PR2PR3

PR4PR5PR6PR7

PR4PR5PR6PR7 PR0PR1PR2PR3

PR12PR13PR14PR15 PR8PR9PR10PR11

IRIRIRIRIRIRIRIR
IRIRIRIRIRIRIRIR

 C

 IR IR
 IR IR

 C

11

Pipeline
Stage 1

(Stage1a)

(Stage1b)

(Stage2a)

Pipeline
Stage 2(Stage2b)

(Stage2c)

(Stage2d)

Pipeline
Stage 3

(c)

0123456789101112131415

PR0PR1PR2PR3 C

PR0PR1PR2PR3

PR4PR5PR6PR7

PR4PR5PR6PR7 IR IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR IR

PR0PR1PR2PR3

PR12PR13PR14PR15 PR8PR9PR10PR11

 C

 C

 IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR

 0
 0 0 0 0

 0 0 0

 C

 C

index

Pipeline
Stage 1

Pipeline
Stage 2

Pipeline
Stage 3

(Stage2a)

(Stage2b)

(d)

0123456789101112131415

PR0PR1PR2PR3 C

PR0PR1PR2PR3

PR4PR5PR6PR7

PR4PR5PR6PR7 IR IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR IR

PR0PR1PR2PR3

PR12PR13PR14PR15 PR8PR9PR10PR11

 C

 C

 C

 C

index

0
0000

000

Pipeline
Stage 1

Pipeline
Stage 2

Pipeline
Stage 3

(Stage2a)

(Stage2b)

(e)

0123456789101112131415

PR0PR1PR2PR3 C

PR0PR1PR2PR3

PR4PR5PR6PR7

PR4PR5PR6PR7 IR IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR IR

PR0PR1PR2PR3

PR12PR13PR14PR15 PR8PR9PR10PR11

 C

 C

 IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR

 C

 C

index

Pipeline
Stage 1

Pipeline
Stage 2

Pipeline
Stage 3

(Stage2a)

(Stage2b)

(f)

0123456789101112131415

PR0PR1PR2PR3 C

PR0PR1PR2PR3

PR4PR5PR6PR7

PR4PR5PR6PR7 IR IR IR IR IR IR IR IR
 IR IR IR IR IR IR IR IR

PR0PR1PR2PR3

PR12PR13PR14PR15 PR8PR9PR10PR11

 C

 C

 C

 C

index
Stage1

Stage2

(Stage2a)

Stage3

Figure 5. Partial product reduction trees and carry-propagate addition. (a) NBBE-2 (Arch1), (b) NBBE-2 (Arch2), (c) RBBE-4 (Arch1), (d) RBBE-4
(Arch2), (e) CRBBE-4 (Arch1), (f) CRBBE-4 (Arch2).

Arch1 and Arch2 designs, respectively. In the first stage of
RBBE-4 and CRBBE-4, we add the RB partial products
while generating a partial result by a redundant binary
addition followed by redundant binary to normal binary
conversion. The intermediate outputs are passed to the
second pipeline stage in which the four rows of partial
products are added and some partial results are generated.
The width of the CPA is 𝑁

𝑆−1 where 𝑆 is the total number
of pipeline stages.

IV. SIMULATION RESULTS

In this section, we present simulation results of the three
multipliers. We implemented the multipliers using VHDL
and synthesized them using Synopsys Design Compiler and
the Nangate 45nm open cell library [17]. For the carry-
propagate addition, we used the Kogge-Stone adder [18].
The following lists the multiplier architectures we compare:

∙ N-P: Non-pipelined multipliers.
∙ Base: Pipelined multipliers without forwarding paths.

The pipelining scheme is the same as that of Arch1.

∙ Arch1: Pipelined multipliers with forwarding paths
resolving Type01/10 dependencies.

∙ Arch2: Pipelined multipliers with forwarding paths
resolving Type01/10/11 dependencies.

A. Clock Period

Table II shows the clock periods of 32- and 64-bit
multiplier designs. 𝑆 is the number of pipeline stages for
the Base, Arch1, and Arch2 designs. The clock periods of
the Base designs are greater than 𝐿/𝑆 where 𝐿 is the clock
period of the N-P designs. The reason is that the delays of
the N-P designs are not evenly distributed throughout the
pipeline stages. In addition, pipelining adds flip-flop delays
to the logic delay. The clock periods of the Arch1 and Arch2
designs are greater than those of the Base designs because
the Arch1 and Arch2 designs have multiplexers, which add
additional delays into the logic. Moreover, the Arch2 designs
have more multiplexers than the Arch1 delays, so the Arch2
designs have longer clock periods than the Arch1 designs
in general. If all multiplications are independent, the Base
designs will have shorter execution time than the Arch1

148

Table II
CLOCK PERIOD, AREA (𝑢𝑚2), AND POWER (𝑢𝑊). 𝑆: # PIPELINE STAGES (FOR BASE, ARCH1, AND ARCH2). THE LAST PIPELINE STAGES ARE

CARRY-PROPAGATE ADDITION.

N S Design
Clock period (ns) Area (𝑢𝑚2) Power (𝑢𝑊)

N-P Base Arch1 Arch2 N-P Base Arch1 Arch2 N-P Base Arch1 Arch2

32 bits

2
NBBE-2 1.64 1.19 1.56 1.58 8534.61 9299.09 8346.81 8356.92 381.4 429.2 359.3 359.4
RBBE-4 1.75 1.43 1.64 1.68 12107.52 13860.73 10870.36 10732.83 533.6 645.7 476.4 472.1

CRBBE-4 1.70 1.17 1.64 1.67 14701.29 15568.98 14326.23 14309.74 677.2 716.3 662.3 664.5

3
NBBE-2 - 1.07 1.37 1.54 - 9797.31 8984.95 9306.81 - 501.8 446.8 472.4
RBBE-4 - 1.24 1.41 1.56 - 14454.71 11447.58 13099.17 - 737.7 572.1 622.8

CRBBE-4 - 1.15 1.47 1.69 - 15246.85 13049.43 14707.67 - 773.6 655.2 694.7

5
NBBE-2 - 0.87 1.12 1.22 - 11316.44 10866.63 10853.33 - 618.2 609.9 585.8
RBBE-4 - 1.02 1.19 1.41 - 16204.19 13035.33 13699.00 - 896.0 734.9 755.2

CRBBE-4 - 0.95 1.24 1.38 - 16865.46 15191.26 14205.46 - 926.6 845.6 777.2

64 bits

2
NBBE-2 2.13 1.50 2.00 1.93 32414.76 33075.77 32381.78 29135.51 1521 1546 1519 1258
RBBE-4 2.24 1.78 1.96 1.99 48937.62 49468.29 50097.11 37070.56 2332 2349 2387 1643

CRBBE-4 2.19 1.46 1.99 2.05 50800.68 54205.48 52081.47 51764.93 2401 2525 2441 2433

3
NBBE-2 - 1.24 1.68 1.82 - 35691.88 33316.23 31405.56 - 1862 1745 1635
RBBE-4 - 1.53 1.82 1.97 - 51622.89 44016.88 42408.91 - 2637 2241 2131

CRBBE-4 - 1.42 1.74 1.98 - 54540.11 52447.75 47676.24 - 2762 2626 2416

5
NBBE-2 - 1.11 1.39 1.55 - 38162.49 32318.20 34394.86 - 2199 1859 1995
RBBE-4 - 1.28 1.46 1.75 - 46740.46 40813.98 45787.38 - 2577 2337 2691

CRBBE-4 - 1.23 1.51 1.76 - 57956.88 44993.37 52365.03 - 3265 2578 3070

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

NBBE-2

N-P Base1 Arch1 Arch2

Ex
ec

ut
io

n
tim

e

Dependency case

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

RBBE-4

N-P Base1 Arch1 Arch2

Ex
ec

ut
io

n
tim

e

Dependency case

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

Dep(0%) Dep(25%) Dep(50%) Dep(75%) Dep(100%)

CRBBE-4

N-P Base1 Arch1 Arch2
Ex

ec
ut

io
n

tim
e

Dependency case

Figure 6. Comparison of the execution times of the 64-bit 5-stage N-P, Base, Arch1, and Arch2 designs. Dep (𝑟) denotes that 𝑟% of the multiplications
are dependent. All the execution times are scaled to the N-P designs.

and Arch2 designs because the latter have the clock period
overheads. If the dependency goes up, however, the Arch1
and Arch2 designs will have shorter execution than the Base
designs. We present actual execution times in Section IV-B.
Regarding the number of pipeline stages, it is possible to
increase the number of stages further, but the overhead due
to additional flip-flops will go up. In addition, the size of
the multiplexers and routing complexity in the Arch1 and
Arch2 designs will also go up if full fast forwarding paths
are to be added. Thus, increasing the pipeline depth over
five might be unrealistic.

B. Execution Time

The actual execution time of a given sequence of multipli-
cations depends on both the clock period and the dependency
patterns of the multiplications. Thus, we also compared the
total execution times for different sequences of multiplica-
tions. Our simulation methodology is as follows:

∙ Five sequences of 10,000 64-bit multiplications are
randomly generated. Each sequence is named Dep (𝑟).

∙ We assign two random integers 𝑑1 and 𝑑2 (0 ≤
𝑑1, 𝑑2 ≤ 4) to the multiplications. 𝑑1 and 𝑑2 are the

dependency distances for the multiplicand and multi-
plier, respectively, of each multiplication. For example,
(𝑑1 = 0, 𝑑2 = 3) means that the multiplicand is
independent and the multiplier has a D-3 dependency.

∙ When we generate 𝑑1 and 𝑑2, we controlled the ra-
tio (𝑟) of the number of dependent multiplications to
the number of independent multiplications. Sequence
Dep (𝑟) means that 𝑟 of the 10,000 multiplications in
the sequence are dependent. The five sequences are
Dep (0%), Dep (25%), Dep (50%), Dep (75%), and
Dep (100%).

∙ For each multiplication simulation, we obtain the end
time 𝑇𝑒. Then, we obtain the actual execution time from
𝑇𝑒 ⋅𝑇𝑐𝑙𝑘 for each design where 𝑇𝑐𝑙𝑘 is the clock period
of the design in Table II.

Figure 6 shows the execution times of the 64-bit N-P
and 5-stage Base, Arch1, and Arch2 designs for NBBE-
2, RBBE-4, and CRBBE-4. For the independent multipli-
cations (Dep (0%)), all the pipelined designs have shorter
execution times than the N-P designs. In addition, the
Base designs have the shortest execution times because
they do not have multiplexers and carry-propagate adders

149

in the carry-save addition stages. As the dependency ratio
increases, however, the execution times of the Base designs
go up significantly and are 40% to 53% longer than the N-P
designs due to the clock period overhead. On the other hand,
the Arch1 and Arch2 designs still have shorter execution
times than the N-P designs by almost 5% to 35%. Especially,
the Arch2 designs consistently show approximately 20%
and 30% shorter execution times than the N-P designs.
Thus, we clearly see the impact of the fast forwarding
path architecture on the throughput improvement. On the
other hand, the execution times of the Arch1 designs go
up as the dependency ratio increases. This is because more
Type11 dependencies are added to the multiplications as the
dependency ratio goes up.

C. Area and Power

Table II also shows the area and power consumption of
the designs. The Base designs have larger area than the
N-P designs for both 32- and 64-bit multipliers. However,
some of the Arch1 and Arch2 designs such as the 64-
bit 5-stage Arch1 designs have smaller area than the N-P
designs. The reason is that the delay values are unevenly
distributed throughout the five stages, so the synthesis tool
uses small cells for the stages that have large timing margin.
Comparing NBBE-2, RBBE-4, and CRBBE-4, the NBBE-2
designs have the smallest area because they have the simplest
architecture. On the other hand, the CRBBE-4 designs have
the largest area. We also observe similar trends for the power
consumption. The Base designs consume about 15% to 58%
more power than the N-P designs because of the additional
flip-flops for pipelining. However, the Arch1 and Arch2
designs have lower power overhead than the Base designs. In
addition, some of the Arch1 and Arch2 designs consume less
power than the N-P designs. This is because the Arch1 and
Arch2 architectures use carry-propagate adders for partial
result generation, which helps reduce the number of partial
product terms.

V. CONCLUSION

In this paper, we developed intra-unit fast-forwarding ar-
chitectures to design high-throughput multipliers. The main
idea of the fast-forwarding architectures is to generate partial
results in the pipeline stages of the multipliers and forward
them to previous pipeline stages to resolve data dependen-
cies. The simulation results show that the multipliers with
the fast-forwarding paths achieve up to 35% execution time
reduction.

ACKNOWLEDGMENT

This work was supported by the Defense Advanced Re-
search Projects Agency (DARPA) Young Faculty Award
under Grant D16AP00119.

REFERENCES

[1] Y. He and C.-H. Chang, “A New Redundant Binary Booth
Encoding for Fast 2𝑛-Bit Multiplier Design,” in IEEE Trans.
on Circuits and Systems, vol. 56, no. 6, 2009, pp. 1192–1201.

[2] J. Rupley, J. King, E. Quinnell, F. Galloway, K. Patton et al.,
“The Floating-Point Unit of the Jaguar x86 Core,” in Proc.
IEEE Int. Symp. on Computer Arithmetic, Apr. 2013, pp. 7–
16.

[3] X. Cui, W. Liu, X. Chen, Earl E. Swartzlander Jr., and
F. Lombardi, “A Modified Partial Product Generator for
Redundant Binary Multipliers,” in IEEE Trans. on Computers,
vol. 65, no. 4, Apr. 2016, pp. 1165–1171.

[4] J. D. Bruguera, “Radix-64 Floating-Point Divider,” in Proc.
IEEE Int. Symp. on Computer Arithmetic, Jun. 2018, pp. 84–
91.

[5] W.-C. Yeh and C.-W. Jen, “High-Speed Booth Encoded
Parallel Multiplier Design,” in IEEE Trans. on Computers,
vol. 49, no. 7, Jul. 2000, pp. 692–701.

[6] F. Elguibaly, “A Fast Parallel Multiplier-Accumulator Using
the Modified Booth Algorithm,” in IEEE Trans. on Circuits
and Systems – II: Express Briefs, vol. 47, no. 9, Sep. 2000,
pp. 902–908.

[7] J.-Y. Kang and J.-L. Gaudiot, “A Simple High-Speed Multi-
plier Design,” in IEEE Trans. on Computers, vol. 55, no. 10,
Oct. 2006, pp. 1253–1258.

[8] S.-R. Kuang, J.-P. Wang, and C.-Y. Guo, “Modified Booth
Multipliers with a Regular Partial Product Array,” in IEEE
Trans. on Circuits and Systems – II: Express Briefs, vol. 56,
no. 5, May 2009, pp. 404–408.

[9] A. D. Booth, “A Signed Binary Multiplication Technique,” in
The Quarterly Journal of Mechanics and Applied Mathemat-
ics, vol. 4, no. 2, Jan. 1951, pp. 236–240.

[10] C. S. Wallace, “A Suggestion for a Fast Multiplier,” in IEEE
Trans. on Electron Computers, Feb. 1964, pp. 14–17.

[11] N. Takagi, H. Yasuura, and S. Yajima, “High-Speed VLSI
Multiplication Algorithm with a Redundant Binary Addition
Tree,” in IEEE Trans. on Computers, vol. 32, no. 9, Sep.
1985, pp. 789–796.

[12] G. Govindu, P. Gupta, S. Pitkethly, and G. J. Rozas, “Execu-
tion Pipeline Data Forwarding,” in US Patent US9569214B2,
2017.

[13] L. Dadda, “Some Schemes for Parallel Multipliers,” in Alta
Frequenza, vol. 34, Mar. 1965, pp. 349–356.

[14] H. Makino, Y. Nakase, H. Suzuki, H. Morinaka, H. Shinohara
et al., “An 8.8-ns 54x54-Bit Multiplier with High Speed
Redundant Binary Architecture,” in IEEE Journal of Solid-
State Circuits, vol. 31, no. 6, 1996, pp. 773–783.

[15] N. Besli and R. G. Deshmukh, “A Novel Redundant Bi-
nary Signed-Digit(RBSD) Booth’s Encoding,” in Proc. IEEE
SoutheastConf, Apr. 2002, pp. 426–431.

[16] D. P. Agrawal and T. R. N. Rao, “On Multiple Operand
Addition of Signed Binary Numbers,” in IEEE Trans. on
Computers, vol. c27, no. 11, Nov. 1978, pp. 1068–1070.

[17] Nangate, “Nangate 45nm Open Cell Library,”
http://www.nangate.com.

[18] P. M. Kogge and H. S. Stone, “A Parallel Algorithm for
the Efficient Solution of a General Class of Recurrence
Equations,” in IEEE Trans. on Computers, vol. C-22, no. 8,
Aug. 1973, pp. 786–793.

150

