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ABSTRACT
Monolithic three-dimensional (3D) integration enables stacking

multiple ultra-thin silicon tiers in a single package, thereby provid-

ing smaller footprint area, shorter wirelength, higher performance,

and lower power consumption than conventional planar fabrica-

tion technologies. Physical design of monolithic 3D integrated cir-

cuits (ICs) requires several design steps such as 3D placement, 3D

clock-tree synthesis, 3D routing, and 3D optimization. Among the

steps, 3D routing is very time-consuming due to numerous routing

blockages. Thus, 3D routing is typically performed in two sub-steps,

monolithic inter-layer via (MIV) insertion and tier-by-tier routing.

In this paper, we propose an algorithm to build a routing topology

database that can be used to construct all multilayer monolithic

rectilinear Steiner minimum trees on the 3D Hanan grid. The data-

base will help 3D routers reduce the runtime of the MIV insertion

step and improve the quality of the 3D routing.
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1 INTRODUCTION
Monolithic three-dimensional (3D) integration stacks very thin

silicon tiers and electrically connects transistors in different tiers by

monolithic inter-layer vias (MIVs). An MIV is similar to a through-

silicon via (TSV), but the width and the z-directional length of an

MIV are much shorter than those of a TSV. Thus, MIV insertion has
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Figure 1: 3D-net-first routing. (a) Three nets to route. (b) 3D
routing topology generation for the 3D net. (c) MIV inser-
tion. (d) Tier-by-tier routing.

almost negligible area and capacitance overheads in the monolithic

3D integrated circuit (IC) layout design. However, inserting too

many MIVs into a 3D IC layout causes serious routing congestion

because planar wires should be connected to the MIVs and routing

of the planar wires requires much larger area than the MIV area.

Thus, 3D placement in general tries to minimize the number ofMIVs

inserted into a layout [1, 10] and 3D routing should also minimize

the number of MIVs.

3D routing routes 2D and 3D nets.
1
3D routing algorithms could

route all the 2D and 3D nets in a given design separately or si-

multaneously. For example, the routing methodology in [3] routes

3D nets first, then routes 2D nets. On the other hand, the routing

methodology used in [9] routes 2D and 3D nets simultaneously

by using a commercial tool and modified library files. The latter,

however, has some drawbacks compared to the former. According

to our own routing simulations using modified library files, the

runtime of the simultaneous routing of 2D and 3D nets increases

significantly as the complexity (the average net degree, the num-

ber of tiers, and the number of instances) of a given design goes

up. On the other hand, if 3D nets are routed first, we can route

2D nets in each tier separately (tier-by-tier routing). Thus, the 3D-

net-first routing methodology has been used extensively in the

literature [3, 5, 10, 11].

The 3D-net-first routing methodology finds MIV locations for

each 3D net, inserts MIVs into the locations, and decomposes the 3D

1
A 2D (3D) net is a net connecting instances placed in a tier (different tiers).
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net into multiple 2D nets. Figure 1 shows an example. In Figure 1(a),

eight pins are spread out in two tiers. The net connecting four a pins
is a 3D net, whereas the other two nets connecting two b and two

c pins are 2D nets. In Figure 1(b), a 3D routing topology using two

z-directional edges is constructed for the 3D net. The z-directional

edges are replaced by MIVs and the 3D net is decomposed into three

2D nets, n1, n2, and n3 in Figure 1(c). By the decomposition of the

3D net into the three 2D nets, routing of the 3D net is converted

into routing of the three 2D nets, two in the bottom tier and one in

the top tier. Finally, the 2D nets are routed in each tier in Figure 1(d).

As mentioned above, 3D routing should minimize the number of

MIVs used to route 3D nets. In addition, 3D routing should evenly

distribute the MIVs over the entire layout area to minimize routing

congestion around the MIVs. At the same time, 3D routing should

evenly distribute planar wires routing 3D nets over the layout area

so that routing of 2D nets does not suffer from serious routing

congestion in specific tiers. The MIV insertion methodologies used

in the literature, however, do not control the MIV count, MIV lo-

cations, and planar wires of 3D nets effectively. For example, the

3D rectilinear Steiner tree (RST) algorithms used in [4, 5, 10, 11]

do not guarantee the minimization of the MIV count. The MIV in-

sertion algorithm used in [3] minimizes the MIV count, but fails to

minimize the planar wirelength. It is also possible to use multilayer

obstacle-avoiding rectilinear Steiner tree (MLOARST) construction

algorithms to minimize both the planar wirelength and the number

of MIVs [6, 8]. However, the MLOARST construction algorithms

do not generate multiple topologies having different MIV locations

and planar wire distributions.

In this paper, we propose an algorithm to build a database that

can be used to construct all multilayer monolithic rectilinear Steiner

minimum trees (MMRSMTs) on the 3D Hanan grid for given pin

locations for up to six-pin nets and four tiers. MMRSMTs have the

shortest planar wirelength with the minimum number of MIVs,

so MIV insertion algorithms can use the database to effectively

optimizeMIV locations and planarwires of 3D nets.We also propose

database size reduction techniques for practical use of the database

in academia and industry. To the best of our knowledge, this is the

first work on constructing all MMRSMTs on the 3D Hanan grid.

2 PRELIMINARIES AND PROBLEM
FORMULATION

In this section, we explain terminologies used in this paper, review

the construction of an RSMT in FLUTE [2] and construction of all

RSMTs in [7], and formulate the problem we solve in this paper.

2.1 Terminologies
2.1.1 2D and 3D Hanan Grids. Suppose a finite set S of points are

given in the 2D plane. The 2D Hanan grid constructed from S is

a graph GS = (VS ,ES ). The vertex set of GS is VS = {(x ,y)|x ∈

XS ,y ∈ YS } where XS = {x1, ...,xL}(x1 < ... < xL) and YS =
{y1, ...,yM }(y1 < ... < yM ) are the sets of the x- and y-coordinates

of all the points in S , respectively. The edge set of GS is ES =
ES,X ∪ ES,Y where

ES,X = {(v1,v2)|v1 = (xi<L ,yj ) ∈ VS ,v2 = (xi+1,yj ) ∈ VS },

ES,Y = {(v1,v2)|v1 = (xi ,yj<M ) ∈ VS ,v2 = (xi ,yj+1) ∈ VS }.
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Figure 2: 2D and 3D Hanan grids.

In otherwords, ES,X and ES,Y are the sets of the x- and y-directional

edges of GS , respectively. Figure 2(a) shows the 2D Hanan grid

constructed for the five points located at (x1,y2), (x2,y5), (x3,y1),

(x4,y4), and (x5,y3).

Suppose a finite set T of points are given in the 3D space. The

3D Hanan grid constructed fromT is a graphGT = (VT ,ET ). The
vertex set of GT is VT = {(x ,y, z)|x ∈ XT ,y ∈ YT , z ∈ ZT } where
XT = {x1, ...,xL}(x1 < ... < xL),YT = {y1, ...,yM }(y1 < ... < yM ),

and ZT = {z1, ..., zN }(z1 < ... < zN ) are the sets of the x-, y-, and

z-coordinates of all the points in T , respectively. The edge set of
GT is ET = ET ,X ∪ ET ,Y ∪ ET ,Z where

ET ,X = {(v1, v2) |v1 = (xi<L, yj , zk ) ∈ VT , v2 = (xi+1, yj , zk ) ∈ VT },

ET ,Y = {(v1, v2) |v1 = (xi , yj<M , zk ) ∈ VT , v2 = (xi , yj+1, zk ) ∈ VT },

ET ,Z = {(v1, v2) |v1 = (xi , yj , zk<N ) ∈ VT , v2 = (xi , yj , zk+1
) ∈ VT }.

In other words, ET ,X , ET ,Y , and ET ,Z are the sets of the x-, y-, and

z-directional edges of GT , respectively. Figure 2(b) shows the 3D
Hanan grid constructed for the five points located at (x1,y2, z1),

(x2,y5, z2), (x3,y1, z1), (x4,y4, z1), and (x5,y3, z2).

2.1.2 Position Sequence. x+- and x−-directions are the directions
along which x-coordinates increase and decrease, respectively. y+-,
y−-, z+-, and z−-directions are defined similarly.

Suppose a finite set P = {p1, ...,pn } of n distinct pins
2
are

given in an n × n grid. Let the x-coordinates of the y-directional

edges be x1 to xn from the left and the y-coordinates of the x-

directional edges be y1 to yn from the bottom as shown in Fig-

ure 2(a). Then, we denote sorting the pins in the increasing (+)

and decreasing (−) order of their c-coordinates (c is x or y) by c+
and c−, respectively. In Figure 2(a), for example, y+ sorting leads to

the ordered list L1 = (p3,p1,p5,p4,p2) and x− sorting leads to the

ordered list L2 = (p5,p4,p3,p2,p1). Suppose we obtain an ordered

list L = (l1, ..., ln ) from c+ or c− sorting. Then, we can obtain the

c̄-coordinates (if c is x (or y), c̄ is y (or x)) of the pins in the c̄+- or
c̄−-direction from L. For example, we obtain (31542) and (35124)

if we extract the x-coordinates of the pins in L1 in the x+ and x−
directions, respectively. The position sequence Γ(R,C) for P is a

sequence (s1s2...sn ) where R ∈ {c+, c−}, C ∈ {c̄+, c̄−}, and si is the
c̄-coordinate of the i-th pin in the c̄+ or c̄−-direction in the list of

the pins sorted by c+ or c− sorting. For example, assume that (R,C)
is (y+,x+) and P is the set of pins in Figure 2(a). Then, we first

sort the pins along the y+-direction, which leads to the ordered list

2
If the coordinate of pi is (xpi , ypi ), xpi , xpj and ypi , ypj for any i and j
(i , j).
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Figure 3: Two trees constructed on the 2D Hanan grid.

(p3,p1,p5,p4,p2), and obtain Γ(y+,x+) = (31542). Similarly, Γ(y+,x−)
is (35124), Γ(y−,x+) is (24513), Γ(y−,x−) is (42153), Γ(x+,y+) is (25143),

Γ(x+,y−) is (41523), Γ(x−,y+) is (34152), and Γ(x−,y−) is (32514).

2.1.3 Potentially OptimalWirelength Vector and Potentially Optimal
Steiner Tree. The wirelength of an RST on the 2D Hanan grid can

be expressed as a linear combination of the x- and y-directional

edge vectors representing the tree as explained in [2]. For example,

the wirelength of the tree in Figure 3(a) is

L = 1 ·h1 + 2 ·h2 + 2 ·h3 + 1 ·h4 + 1 ·v1 + 1 ·v2 + 1 ·v3 + 1 ·v4, (1)

which can also be expressed as

L = (1, 2, 2, 1, 1, 1, 1, 1)· (h1,h2,h3,h4,v1,v2,v3,v4). (2)

The first vector (1, 2, 2, 1, 1, 1, 1, 1) is called a coefficient vector
and the second vector (h1,h2,h3,h4,v1,v2,v3,v4) is called an edge
length vector . The edge length vector is a constant vector for a

given set of pin locations. However, the coefficient vector is de-

pendent on the topology of the constructed tree. For example, the

wirelength of the tree in Figure 3(b) is

L = 1 ·h1 + 2 ·h2 + 1 ·h3 + 1 ·h4 + 1 ·v1 + 1 ·v2 + 2 ·v3 + 1 ·v4, (3)

whose coefficient vector is (1, 2, 1, 1, 1, 1, 2, 1). Thus, the two trees in

Figure 3(a) and (b) have the same edge length vector, but different

coefficient vectors.

For a given set of pin locations, a coefficient vectorV = (c1, ..., ck )
becomes a potentially optimal wirelength vector (POWV) if it
satisfies the following conditions [2]:

• There exists an RST that connects all the pins and uses the

edges specified in the coefficient vectorV on the Hanan grid

constructed for the pins.

• For the same pin locations, there is no other coefficient vector

V ′ = (c ′
1
, ..., c ′k ) satisfying c

′
i ≤ ci for all i = 1, ...,k .

An RST corresponding to a POWV is called a potentially optimal
Steiner tree (POST) [2]. The RST shown in Figure 3(a) is a POST

for POWV (1, 2, 2, 1, 1, 1, 1, 1), which belongs to position sequence

(31542). Similarly, the RST shown in Figure 3(b) is a POST for POWV

(1, 2, 1, 1, 1, 1, 2, 1), which belongs to the same position sequence.

2.2 Construction of an RSMT and All RSMTs
on the Hanan Grid

FLUTE constructs an RSMT by a lookup table [2]. The lookup table

consists of all position sequences, all POWVs belonging to each

Position sequence

(1 2 3 4 5)

(1 2 3 5 4)

...

(5 4 3 2 1)

POWV

(1,1,1,1,1,1,1,1)

(1,1,1,1,1,1,2,1)

(1,1,1,1,1,1,1,1)

(1,1,2,1,1,1,1,1)

...

(1,1,1,1,1,1,1,1)

POST

...

...

...

Figure 4: An overview of the lookup table of all POSTs in [7].

position sequence, and one POST for each POWV. Whenever a set

of pin locations is given, FLUTE first finds the position sequence of

the pin locations, then compares the wirelengths of all the POWVs

belonging to the position sequence by calculating the inner prod-

uct of each POWV and the edge length vector for the given pin

locations. Then, FLUTE returns the POST of the POWV having

the minimum wirelength. If multiple POWVs have the same wire-

length, FLUTE can return the POSTs of all the POWVs having the

minimum wirelength. The returned POSTs are RSMTs for the pin

locations. For more details, we refer readers to [2].

FLUTE contains only one POST per POWV, but a POWV can

have multiple POSTs. If the lookup table contains all POSTs for

each POWV, numerous CAD algorithms can also benefit from the

POSTs. For example, congestion-aware global routing can reduce

routing congestion by finding all RSMTs and choosing the best

one for each net. Thus, Lin generated a lookup table storing all

POSTs in [7]. Figure 4 shows an overview of the lookup table of all

POSTs. The algorithm of finding all POSTs uses a binary decision

tree with several speed-up techniques to reduce the runtime. For

more details, we refer readers to [7].

2.3 Multilayer Monolithic Rectilinear Steiner
Minimum Trees

The following three definitions define a 3D rectilinear tree, a 3D

rectilinear Steiner tree, and a 3D rectilinear Steiner minimum tree.

Definition 1. A 3D rectilinear tree is a tree having only x-, y-,
and z-directional edges and connecting all given pins.

Definition 2. A 3D rectilinear Steiner tree (3D RST) is a 3D
rectilinear tree with Steiner points. A Steiner point is a non-pin vertex
having more than two edges.

Definition 3. A 3D rectilinear Steiner minimum tree (3D
RSMT) is a 3D RST having the minimum wirelength.

The wirelength of a 3D rectilinear tree is computed by the sum

of the lengths of all the x-, y-, and z-directional edges in the tree.

When 3D RSTs or 3D RSMTs are used for routing of 3D IC layouts,

the length of a vertical via is adjusted so that the actual overhead

of the vertical via can be properly taken into account in the design.

In the monolithic 3D IC layout design, the area and capacitance

overhead of an MIV is negligible, so we can set the length of an

MIV to zero during 3D routing. However, minimizing the number

of MIVs inserted in the layout is still crucial. Thus, we define a

multilayer monolithic rectilinear Steiner minimum tree as follows:

Definition 4. A multilayer monolithic rectilinear Steiner
minimum tree (MMRSMT) is a 3D RSMT using the minimum num-
ber of z-directional edges with zero z-directional edge length.
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Since an MMRSMT is a 3D RSMT, it has the shortest planar

wirelength. Thus, if we project all the edges in an MMRSMT onto

the xy plane, the projection becomes a 2D RSMT. In other words,

an MMRSMT can be constructed from a 2D RSMT by properly placing
x- and y-directional edges of the 2D RSMT in a 3D grid and inserting
z-directional edges. In addition, we obtain 2D RSMTs from POSTs

as mentioned in the previous section. Thus, we can construct an

MMRSMT from a POST. We define a 3D potentially optimal Steiner

tree as follows:

Definition 5. Suppose a set of xy-distinct3 pin locations is given.
Let the set be P = {(x1,y1, z1), ..., (xn ,yn , zn )}. Let the set of the pro-
jections of the pins onto the xy plane be P ′ = {(x1,y1), ..., (xn ,yn )}.
Let a POST constructed for P ′ be G ′ = (V ′,E ′). Let the coordinate
of e ′ in E ′ be e ′(i, j). A 3D potentially optimal Steiner tree (3D
POST) is a tree T that connects all the pins in P , uses the minimum
number of z-directional edges in the 3D Hanan grid G constructed
from P , and uses one of the edges among e(i, j,k = 0, ..., t − 1) in G
for each e ′(i, j) ∈ E ′. t in the definition is the number of tiers. From

now, we denote the POSTs in the database of all POSTs in [7] by

2D POSTs to distinguish them from 3D POSTs.

In summary, if we have a database of all 3D POSTs, we can build

all MMRSMTs for a given set of pin locations in a very short period

of time. In this paper, we build a database of all 3D POSTs for all

possible relative pin locations in two, three, and four tiers.

3 CONSTRUCTION OF ALL 3D POSTS
In this section, we present an algorithm to construct all 3D POSTs

on the 3D Hanan grid for a given set of pin locations and a 2D POST

for them. Figure 5 shows a 3D grid, pin and non-pin vertices, x-, y-,

and z-directional edges, and notations used in this paper.

3.1 Construction of All 3D POSTs
The input to the algorithm is a set P of pin locations and a 2D POST,

G2 = (V2,E2) constructed for the projections of the pins onto the

xy plane. In Figure 6(a), for example, the coordinates of the three

pins are (0, 0, 0), (1, 2, 2), and (2, 1, 1). The position sequence Γ(y+,x+)
of the projections is (132) and the 2D POST shown in Figure 6(a)

belongs to the position sequence.

Algorithm 1 shows the algorithm for constructing all 3D POSTs.

We first set the visited variables of all the edges in E2 to false (Line 1).

Then, we sort the edges in E2 and store the result in an ordered set

E ′
2
(Line 2). The function sort_edges chooses a pin vertex in G2

and performs the breadth-first search starting from the pin vertex

until all the pin vertices are reached. Whenever it goes through

an edge, the function inserts the edge into E ′
2
. This order reduces

the runtime of the algorithm. For example, the sort_edges function

starts from the pin vertex (0, 0, 0) in Figure 6(a). Then, E ′
2
becomes

(ex (0, 0), ey (0, 1), ex (1, 1), ey (1, 1)). Then, we construct a 3D grid

G3 = (V3,E3) from G2 and P (Line 3). The construct_3D_grid
function expands the 2D graph G2 to a 3D graph G3 as shown in

Figure 6(b). The expansion adds vertices v(i, j,k = 0, . . . , t − 1)

to G3 for each vertex v ′(i, j) in G2 where t is the number of tiers.

Similarly, the expansion adds ex (i, j,k = 0, . . . , t − 1) toG3 for each

3
If the coordinate of pi is (xpi , ypi , zpi ), xpi , xpj and ypi , ypj for any i and j
(i , j).
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Figure 5: An n × n × t 3D grid, pin and non-pin vertices, and
indices for x-, y-, and z-directional edges.

e ′x (i, j) in G2, ey (i, j,k = 0, . . . , t − 1) to G3 for each e ′y (i, j) in G2,

and ez (i, j,k = 0, . . . , t − 2) to G3 for each v ′(i, j) in G2. Then, we

set the used variables of all the edges in E3 to false, which means

that the edges are not used yet (Line 4). T is a set of graphs storing

all the 3D POSTs, nr_MIVs is a variable storing the number of MIVs

used in G3, and min_nr_MIVs is a variable storing the minimum

number of MIVs used in the 3D POSTs (Line 5). Then, we call the

recur_con function to recursively construct all 3D POSTs for the

given pin locations and the 2D POST (Line 6). Once the algorithm

ends, we return T (Line 7).

The recur_con function starts from checking the given index,

which is used to access the edges in E ′
2
. The edge index is greater

than the number of edges in E ′
2
when there is no more edge to

process in G3 (Line 1), which means that G3 is a 3D graph con-

necting all the pins. In this case, if the total number of MIVs used

in G3 is equal to the minimum number of MIVs used in the best

graphs found until now, we add it to T (Line 3). However, if the

total number of MIVs used in G3 is less than the minimum number

of MIVs used in the best graphs found until now, all the graphs in

T use more MIVs thanG3, so we emptyT (Line 5), addG3 toT , and
update min_nr_MIVs (Line 6).

If the edge index is less than than the size of E ′
2
(Line 10), we

visit the edge in E ′
2
indexed by the edge index variable (Line 11) and

try using edges inG3 corresponding to the indexed edge (Line 12 to

Line 32). First, suppose e ′d (i, j) is E
′
2
[index] where d is either x or y.

Then, we try using ed (i, j,k) inG3 for each k = 0, ..., t − 1 (Line 14).

In Figure 6(c), ex (0, 0, 0) in G3, which corresponds to the first edge

ex (0, 0) in E ′
2
, is used. Then, if e is x-directional, we obtain its left

vertex inG2, otherwise we obtain its bottom vertex inG2 and assign

it to v (Line 15). Then, we find the bottommost and topmost tiers

that should be connected along the z-axis through v in G3 by the

get_min_max_tier function (Line 16 to Line 19). The function
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Function: Construct all 3D POSTs for P and G2.

Input: Pin locations (P ) and a 2D POST G2 = (V2, E2).

1: e .visited = false for all e ∈ E2;

2: Ordered set E′
2
= sort_edges (G2);

3: G3 = (V3, E3) = construct_3D_grid (G2, P );
4: e .used = false for all e ∈ E3;

5: T = {}; nr_MIVs = 0; min_nr_MIVs = ∞;

6: Call recur_con (T , G2, G3, E′
2
, 0, nr_MIVs, min_nr_MIVs);

7: Return T ;
Function: recur_con (T , G2, G3, E′

2
, index, nr_MIVs, min_nr_MIVs)

1: if index ≥ |E′
2
| then

2: if nr_MIVs == min_nr_MIVs then
3: Add G3 to T ;
4: else if nr_MIVs < min_nr_MIVs then
5: Clear T ;
6: Add G3 to T ; min_nr_MIVs = nr_MIVs;

7: end if
8: return;

9: end if
10: e = E′

2
[index];

11: e .visited = true;

12: for tier = 0 ; tier < # tiers ; tier = tier + 1 do
13: e3 = E3[e .x ][e .y][t ier ];
14: e3.used = true;

15: v = e .left (or e .bottom);

16: min_t1 = max_t1 = 0;

17: if All the edges connected to v in G2 have been visited then
18: min_t1, max_t1 = get_min_max_tier (v , G2, G3);
19: end if
20: v = e .right (or e .top);
21: min_t2 = max_t2 = 0;

22: if All the edges connected to v in G2 have been visited then
23: min_t2, max_t2 = get_min_max_tier (v , G2, G3);
24: end if
25: delta = (max_t1 - min_t1) + (max_t2 - min_t2);

26: nr_MIVs = nr_MIVs + delta;

27: if nr_MIVs ≤ min_nr_MIVs then
28: recur_con (T , G2, G3, E′

2
, index+1, nr_MIVs, min_nr_MIVs);

29: end if
30: nr_MIVs = nr_MIVs - delta;

31: e3.used = false;

32: end for
33: e .visited = false;

Algorithm 1: Construction of all 3D POSTs for a given 2D

POST and pin locations in 3D.

finds all the visited edges connected to e in G2, obtains the tiers

of the edges in G3 corresponding to the visited edges, and finds

the bottommost and topmost tiers. In addition, if v is a pin vertex,

the z-coordinate of the pin should be included in the computation

of the range of the tiers. We repeat the same process for the right

vertex of e (or top vertex if e is y-directional) (Line 20 to Line 24).

If we have visited all the edges connected to the left (bottom)

and/or right (top) vertices of e , we can find the z-directional edges

required to connect to the pin and the edges along the z-axis at

the vertices. From the z-directional edges, we obtain the number

of MIVs (Line 25). If the total number of MIVs currently used in

G3 is less than or equal to the minimum number of MIVs used in

the best graphs found until now, we move on to the next edge in

(a) (b)

E2’={ex(0,0),ey(0,1),ex(1,1),ey(1,1)}

(c) (d)

(e) (f) (g) (h) (i)

(j) (k) (l) (m) (n)

Projection

Figure 6: Construction of all 3D POSTs in three tiers for pins
(0, 0, 0), (1, 2, 2), (2, 1, 1). (a) A 2D POST is given. (b) The con-
struct_3D_grid function creates a 3D grid structure. (c)-(n)
3D POST construction. The red edges are used planar edges
and the blue edges are used z-directional edges.

E ′
2
(Line 28). Otherwise, the current graph uses more MIVs than

the best graphs found until now, so we do not need to proceed to

the next edge. Once the recursive function call ends (Line 28), we

readjust the number of MIVs used inG3 (Line 30) and try using the

edge above e (Line 31 and Line 32).

In Figure 6(c), for example, ex (0, 0, 0) is in Tier 0 and the left

vertex of ex (0, 0, 0) is a pin vertex, which is also in Tier 0. Thus,

both the bottommost and topmost tiers for the vertex are Tier 0.

Then, we move on to ey (0, 1) in E ′
2
and try using ey (0, 1, 0) in G3

in Figure 6(d). The used variables of all the edges connected to the

bottom vertex of ey (0, 1) are true at this point and all the edges

are placed in Tier 0. Thus, we do not need to add any z-directional

edges above the vertex. Then, we process the next edge ex (1, 1)
in E ′

2
in Figure 6(e). The right vertex of ex (1, 1) is connected to

the pin located at (2, 1), which corresponds to the pin located at

(2, 1, 1) in G3, so the bottommost and topmost tiers at the vertex

are Tier 0 and Tier 1, respectively. Thus, we use ez (2, 1, 0) in G3,

which is inserting an MIV into the location. When we also try using

ey (1, 1, 0) in Figure 6(f), we finally construct a 3D graph connecting

all the pins. The total number of MIVs is three. Similarly, the total

numbers of MIVs in the 3D graphs in Figure 6(g), (h), and (i) are all

three. However, the 3D graph in Figure 6(j) uses two MIVs. At this

time, T contains all the 3D graphs found in Figure 6(f), (g), (h), and

(i), so we delete all of them from T and add the 3D graph found in

Figure 6(j) to T . There are four more 3D graphs using two MIVs as

shown in Figure 6(k), (l), (m), and (n). Thus, when the algorithm
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finishes, T contains the five 3D graphs found in Figure 6(j), (k),

(l), (m), and (n). All of them become 3D POSTs for the given pin

locations and 2D POST.

3.2 Congruence of 3D POSTs
The runtime of the algorithm shown in Algorithm 1 is prohibitively

long. In addition, there are numerous 3D POSTs in the database, so

it is crucial to reduce the runtime and the size of the database. In

this section, we show congruent properties of the 3D POSTs, which

are used to skip generating and storing some 3D POSTs.

3.2.1 Congruence of Position Sequences. As mentioned in [2], two

position sequences are congruent if rotating one of them leads to

the other. For example, Figure 7(a) shows position sequence (31542).

If we rotate it counterclockwise by 90, 180, and 270 degrees, we

obtain position sequences (41523), (42153), and (34152) as shown in

Figure 7(b), (c), and (d), respectively. If two position sequences are

congruent to each other, a 2D POST constructed for one of them

can be for the other position sequence. Thus, we do not need to

generate 2D POSTs for some position sequences.

In addition to the rotation, reflection also generates congruent

position sequences. If we reflect the pin locations in Figure 7(a) over

a y-directional line results in position sequence (35124) shown in

Figure 7(e). Now, rotating the position sequence counterclockwise

by 90, 180, and 270 degrees leads to position sequences (32514),

(24513), and (25143) shown in Figure 7(f), (g), and (h), respectively.

Rotating and reflecting a position sequence has the same effect as

generating position sequences by Γ(d1,d2). For example, generating

the position sequence in Figure 7(a) is the same as generating the

position sequence Γ(y+,x+). The position sequences obtained by

rotating the position sequence Γ(y+,x+) by 90, 180, and 270 degrees

are the same as the position sequences Γ(x+,y−), Γ(y−,x−), and Γ(x−,y+),
respectively. Similarly, reflecting Γ(y+,x+) over a y-directional line
is the same as generating the position sequence Γ(y+,x−). Then,
rotating Γ(y+,x−) by 90, 180, and 270 degrees are the same obtaining

the position sequences Γ(x−,y−), Γ(y−,x+), and Γ(x+,y+), respectively.
If multiple position sequences are congruent, we can store POSTs

for only one (called a base position sequence) of them. Then, we can

obtain POSTs for the other position sequences by properly trans-

forming the POSTs stored for their base position sequences. Notice

that a position sequence can be congruent to multiple position

sequences as shown in Figure 7, so we need a rule to choose a base

position sequence among congruent position sequences. In this pa-

per, we use the following rule to determine base position sequences.

Suppose a set of pin locations is given in the 2D plane. Then, we find

all the eight position sequences Γ(y±,x±) and Γ(x±,y±) and choose the
smallest position sequence for their base sequence. In Figure 7, for

example, (24513) in Figure 7(g) is the smallest number, so (24513)

becomes the base position sequence for all the position sequences

in Figure 7.

3.2.2 Congruence of 3D POSTs. Suppose pin locations are given in

the 3D space. Then, we can characterize the pin locations by two

sequences, a position sequence and a tier sequence. The position

sequence PS = (s1...sn ) is based on the projections of the pins onto

the xy plane and the tier sequence TS = (t1...tn ) is a sequence of
the z-coordinates of the pins where ti corresponds to si . Figure 8

(a)

PS: (3 1 5 4 2)

(b)

PS: (4 1 5 2 3)

(c)

PS: (4 2 1 5 3)

(d)

PS: (3 4 1 5 2)

(e)

PS: (3 5 1 2 4)

(f)

PS: (3 2 5 1 4)

(g)

PS: (2 4 5 1 3)

(h)

PS: (2 5 1 4 3)

Figure 7: Congruence of eight position sequences.

shows an example. In Figure 8(a), the z-coordinates of the pins

corresponding to the position sequence elements 3, 1, 5, 4, 2 are 0,

1, 0, 1, 0, respectively. Thus, the tier sequence for the pin locations

is TS = (01010).

If we rotate the two tiers in Figure 8(a) counterclockwise by

90, 180, and 270 degrees around the z-axis, we obtain the position

and tier sequences shown in Figure 8(b), (c), and (d), respectively.

In addition, if we reflect the two tiers in Figure 8(a) over a plane

parallel to the yz plane, we obtain the position and tier sequences in

Figure 8(e). Rotating the two tiers in Figure 8(e) counterclockwise

by 90, 180, and 270 degrees around the z-axis leads to the position

and tier sequences in Figure 8(f), (g), and (h), respectively. Moreover,

reflecting the two tiers in Figure 8(a) and (e) over a plane parallel to

the xy plane generates the position and tier sequences in Figure 8(i)

and (m), respectively. Rotating the position and tier sequences in

Figure 8(i) and (m) counterclockwise by 90, 180, and 270 degrees

around the z-axis generates the position and tier sequences in

Figure 8(j), (k), and (l), and Figure 8(n), (o), and (p), respectively.

To find a congruence between two sets of position and tier se-

quences, we define a 3D position sequence Γ(R,C,T ), which consists

of a pair of sequences. The first sequence is the 2D position se-

quence (s1...sn ) obtained from Γ(R,C). The second sequence is the

tier sequence along the T -direction (T ∈ {z±}) as defined above.

Then, the 3D position sequence for the pins in Figure 8(a) is de-

noted by Γ(y+,x+,z+). Similarly, 3D position sequences for the pins

in Figure 8(b), (c), (d), (e), (f), (g), and (h), are Γ(x+,y−,z+), Γ(y−,x−,z+),
Γ(x−,y+,z+), Γ(y+,x−,z+), Γ(x−,y−,z+), Γ(y−,x+,z+), and Γ(x+,y+,z+), respec-
tively. Since the reflection over a plane parallel to the xy plane

reverses the tier sequence, 3D position sequences for the pins in

Figure 8(i), (j), (k), (l), (m), (n), (o), and (p) are Γ(y+,x+,z−), Γ(x+,y−,z−),
Γ(y−,x−,z−), Γ(x−,y+,z−), Γ(y+,x−,z−), Γ(x−,y−,z−), Γ(y−,x+,z−), and Γ(x+,y+,z−),
respectively. If two sets of pin locations are congruent, we can use

the 3D POSTs belonging to one of them for the other by properly

transforming the 3D POSTs.

We also define a 3D base position sequence as follows. Suppose
a set of pin locations is given in the 3D space. Then, we find all

the 16 3D position sequences Γ(y±,x±,z±) and Γ(x±,y±,z±) for them
and choose the smallest 3D position sequence. If multiple 3D po-

sition sequences have the same 2D position sequence, we choose
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(a)

PS: (3 1 5 4 2)

TS: (0 1 0 1 0)

(b)

PS: (4 1 5 2 3)

TS: (1 0 0 1 0)

(c)

PS: (4 2 1 5 3)

TS: (0 1 0 1 0)

(d)

PS: (3 4 1 5 2)

TS: (0 1 0 0 1)

(e)

PS: (3 5 1 2 4)

TS: (0 1 0 1 0)

(f)

PS: (3 2 5 1 4)

TS: (0 1 0 0 1)

(g)

PS: (2 4 5 1 3)

TS: (0 1 0 1 0)

(h)

PS: (2 5 1 4 3)

TS: (1 0 0 1 0)

(i)

PS: (3 1 5 4 2)

TS: (1 0 1 0 1)

(j)

PS: (4 1 5 2 3)

TS: (0 1 1 0 1)

(k)

PS: (4 2 1 5 3)

TS: (1 0 1 0 1)

(l)

PS: (3 4 1 5 2)

TS: (1 0 1 1 0)

(m)

PS: (3 5 1 2 4)

TS: (1 0 1 0 1)

(n)

PS: (3 2 5 1 4)

TS: (1 0 1 1 0)

(o)

PS: (2 4 5 1 3)

TS: (1 0 1 0 1)

(p)

PS: (2 5 1 4 3)

TS: (0 1 1 0 1)

Figure 8: Congruence of 16 position and tier sequences.

the smallest tier sequence among them. In Figure 8, for example,

the smallest 2D position sequence is (24513) in Figure 8(g) and

(o). Between these two, the tier sequence (01010) in Figure 8(g) is

smaller than (10101) in Figure 8(o), so the 3D position sequence of

Figure 8(g) becomes the base 3D position sequence for all the 3D

position sequences in Figure 8.

4 SIMULATION RESULTS
In this section, we present simulation results obtained from the con-

struction of all 3D POSTs on the 3D Hanan grid. We implemented

the proposed algorithm using C/C++ and ran the code in an Intel

Core i5-6600K 3.3GHz CPU system with 64GB memory. We used

the 2D POST database in [7].

Table 1 shows statistics of the construction of all 3D POSTs for

two- to six-pin nets and two to four tiers. The number of position

sequences is n! where n is the number of pins. The number of 2D

POSTs comes from the database of all 2D POSTs in [7].

Our first observation is that as the tier count goes up from two

to four, the total number of 3D POSTs increases exponentially. This

is because the number of combinations of placing pins in different

tiers increases exponentially as the tier count goes up. The recurrent

relation for counting the number of the combinations is as follows:

f (n, t) = tn −

t−1∑
i=1

{(t − i + 1) · f (n, i)} (4)

where f (n, t) is the number of combinations of placing n pins in t
consecutive tiers. A closed-form expression for f (n, t) is as follows:

f (n, t) = tn − 2 · (t − 1)n + (t − 2)n , (5)

f (n, 1) = 1. (6)

Thus, as t increases, f (n, t) goes up exponentially. In addition, as

the pin count goes up, the number of 2D POSTs also increases

exponentially as shown in the table. Thus, the total number of 3D

POSTs increases extremely fast as the pin and tier counts go up.

We also observe that the number of generated 3D POSTs is

approximately 16% of the total 3D POSTs. As explained in Sec-

tion 3.2, using the congruence properties of position sequences

and 3D POSTs significantly reduces the number of 3D POSTs actu-

ally generated from the proposed algorithm. Thus, we reduce the

construction time and the database size effectively. The database

contains the generated 3D POSTs for all the 3D base position se-

quences. For non-base topologies, the database contains their base

topologies and rules transforming the non-base topologies to their

base topologies.

The construction efficiency measured by the ratio between the

number of generated 3D POSTs and the total construction time

decreases almost exponentially as the pin count and the tier count

go up. The proposed algorithm can still construct approximately

130,000 3D POSTs for the six-pin four-tier case. However, there

are almost 15-billion 3D POSTs to generate for the case, so the

construction time is about 30 hours. The table size is approximately

135 GB, which can be easily handled in server computers.

Figure 9 shows two 3D POSTs constructed for pin locations

(0, 0, 0), (3, 1, 3), (2, 2, 2), (5, 3, 1), (1, 4, 0), (4, 5, 3) and the same 2D

POST. The red edges are planar wires and the blue edges are MIVs.

The 3D POST in Figure 9(a) has five planar edges in Tier 0 (the

bottommost tier) and eight planar edges in Tier 1, respectively. On

the other hand, the 3D POST in Figure 9(b) has 12 planar edges in

Tier 2 and a planar edge in Tier 3 (the topmost tier). In addition,

the planar coordinates of the MIVs in Tier 1 in Figure 9(a) are (2, 1)

and (2, 3), whereas those in Tier 1 in Figure 9(b) are (0, 0) and (1, 4).

Similarly, the planar coordinates of the MIVs in Tier 2 in Figure 9(a)

are (3, 1), (2, 2), and (4, 5), whereas those in Figure 9(b) are (0, 0),

(1, 4), and (5, 3). The planar coordinates of the MIVs in Tier 3 in

Figure 9(a) are (3, 1) and (4, 5), whereas those in Figure 9(b) are

(2, 1) and (4, 5). Thus, among the seven MIVs inserted in the two 3D

POSTs, only one MIV located at (4, 5, 3) is common and the other

six MIVs are located at different locations. We have also compared

various 3D POSTs and found similar trends. Overall, we expect that

the database of the 3D POSTs can be used for 3D routing to evenly

distribute planar wires and MIVs across the tiers in a given layout.

5 CONCLUSION
Monolithic 3D integration uses ultra-small MIVs, so routing of 3D

nets in the design of monolithic 3D IC layouts should minimize

the planar wirelength and the number of MIVs at the same time

while evenly distributing planar wires across tiers. In this paper,

therefore, we have developed an algorithm to build a database of

3D POSTs, which can help routers generate MMRSMTs in no time

and use them to route monolithic 3D ICs and optimize 2D and 3D

interconnects. The database size is manageable for up to four-tier
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Table 1: Statistics of the construction of all 3D POSTs for two- to six-pin nets for two, three, and four tiers. “# PS” is the number
of 2D position sequences for projected pins. “# all 3D POSTs” is the total number of 3D POSTs and “# gen. 3D POSTs” is the
number of 3D POSTs generated from the proposed algorithm. r is the ratio between the number of generated 3D POSTs and the
total number of 3D POSTs. “Con. time” is the construction time for all the generated 3D POSTs. “Con. eff.” is the construction
efficiency, which is measured by the ratio between the number of generated 3D POSTs and the construction time in seconds.

# pins (n) # PS (n!) # 2D POSTs # tiers # all 3D POSTs # gen. 3D POSTs r Con. time Con. eff. Table size

2 2 4

2 24 12 0.5 0.0 s - < 1 KB

3 48 24 0.5 0.0001 s - < 1 KB

4 80 40 0.5 0.0001 s - < 1 KB

3 6 16

2 224 84 0.375 0.0001 s - 1 KB

3 896 336 0.375 0.0003 s - 2 KB

4 2,352 888 0.378 0.0006 s - 4 KB

4 24 284

2 20,056 5,372 0.268 0.0043 s 1,249,302 35 KB

3 226,800 60,120 0.265 0.0457 s 1,315,536 313 KB

4 1,396,944 367,424 0.263 0.3465 s 1,060,387 2 MB

5 120 4,260

2 719,864 125,360 0.174 0.1484 s 844,744 850 KB

3 14,876,928 2,575,092 0.173 5.2478 s 490,699 16 MB

4 142,195,680 24,482,354 0.172 95.77 s 255,637 167 MB

6 720 120,212

2 85,530,040 13,831,206 0.162 20.13 s 687,094 93 MB

3 4,318,826,472 697,355,262 0.161 42.2 m 275,417 5.1 GB

4 90,473,628,112 14,586,090,890 0.161 30.2 h 134,162 129 GB

(a) (b)

Tier 0

Tier 1

Tier 2

Tier 3

Figure 9: Comparison of two 3D POSTs constructed for pin
locations (0, 0, 0), (3, 1, 3), (2, 2, 2), (5, 3, 1), (1, 4, 0), (4, 5, 3). 3D
position sequence: PS = (143625), TS = (032103).

six-pin 3D POSTs. Thus, the proposed algorithm and the database

of 3D POSTs will help various VLSI CAD algorithms optimize 3D

IC layouts more effectively and serve as a baseline algorithm for

better monolithic 3D IC routing algorithms.
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