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Abstract—In this paper, we propose a non-slicing 3-D floorplan
representation to design block-level monolithic 3-D ICs. The
new 3-D floorplan representation applied to simulated annealing-
based optimization achieves smaller volume, shorter wire length,
and lower dynamic power consumption than the Sequence
Triple, Sequence Quintuple, and Slicing Tree 3-D floorplanning
representations.

I. INTRODUCTION

Monolithic three-dimensional integration stacks multiple
ultra-thin silicon tiers (dies) and connects transistors in dif-
ferent tiers through monolithic inter-layer vias (MIVs). MIVs
are similar to through-silicon vias (TSVs) because both of
them are fabricated in silicon, made of conducting material,
and used for inter-tier electrical connections. However, the
typical width of an MIV is around 0.1um, whereas that of
a TSV is several micrometers. Thus, monolithic 3-D integra-
tion provides the most fine-grained 3-D integration, thereby
enabling shorter wire length, lower power consumption, and
higher performance than TSV-based 3-D integration [1]–[4].

One of the advantages of the monolithic 3-D integration
is that functional blocks (either logic or memory) can be
designed in multiple tiers. As shown in [5], redesigning a small
block in a TSV-based 3-D integrated circuit (IC) provides
almost no benefit or even has worse characteristics (longer
wire length, higher power consumption, or lower performance)
than its two-dimensional (2-D) counterpart because of the area
overhead caused by TSV insertion. Thus, redesigning only
large blocks can benefit from the TSV-based 3-D integration.
On the contrary, redesigning a small block by monolithic 3-D
integration still provides benefits because MIV insertion causes
almost no area overhead [5]. Therefore, block-level 3-D IC
design using monolithic 3-D integration enables the use of
both 2-D and 3-D blocks. Design of block-level monolithic
3-D IC layouts, however, requires sophisticated algorithms for
3-D floorplanning to effectively pack the 2-D and 3-D blocks
and minimize the wire length and power consumption.

In this paper, we propose a non-slicing 3-D floorplan repre-
sentation, so-called single matrix multiple sequences (SMMS)
representation, to design low-power block-level monolithic
3-D IC layouts. SMMS handles x-, y-, and z-coordinates
separately, thereby providing larger solution space than other
3-D floorplan representations. In addition, SMMS does not
require feasibility checks because each solution corresponds
to a feasible floorplan. SMMS can also be applied to any-
dimensional floorplanning problems. Simulation results in
Section IV show that SMMS can produce high-quality 3-D
floorplans.

II. PRELIMINARIES

In this section, we explain several terminologies used for
floorplanning, show a motivation for the development of a new
3-D floorplan representation, and review several 3-D floorplan
representations proposed in the literature. Table I summarizes
some properties of the 3-D floorplan representations.

A. Terminologies

Floorplan representations are evaluated based on the solu-
tion space size, evaluation time, feasibility, and representation
dependencies. A solution is a floorplan and the solution space
size of a floorplan representation is the total number of
floorplans that can be represented by the floorplan represen-
tation. In general, a floorplan representation that has a larger
solution space is better than other floorplan representations
that have smaller solution space. However, some floorplan
representations have many redundancies, which means that
several solutions correspond to the same floorplan.

A solution is infeasible if it cannot be converted into a
legal floorplan. For example, if a solution contains a condition
such as “A is to the left of B and B is to the left of
A”, it is infeasible. If a floorplan representation generates
infeasible solutions, it should perform a feasibility check for
each solution, otherwise it will waste runtime to evaluate
infeasible solutions.

A floorplan representation has dependencies if deciding
one of the coordinates of a block is dependent on at least
one of the other coordinates of the block. For example,
some floorplan representations forbid having both x- and z-
directional relations at the same time between two blocks.
Thus, if two blocks have a relation (e.g., A is to the left of
B) along an axis, they cannot have other relations (e.g., A is
above B) along all the other axes. If there exist dependencies
in a floorplan representation, the size of the solution space of
the floorplan representation decreases.

B. Motivation

Most of the 3-D floorplan representations and algorithms
focus on the minimization of the total volume of a given
design. However, minimization of the total wire length and
dynamic power consumption (sum of weighted wire lengths)
is also crucial in the design of block-level 3-D ICs. Unfortu-
nately, volume minimization does not necessarily lead to wire
length and power minimization. Figure 1 shows an example
in which a net connects two blocks b1 and b2 and a pin p1.
The half-perimeter wire length (HPWL) of the floorplan in
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Fig. 1. Wire length of a 2-D floorplan. w2 < w1 and h1 < h2. (a) Wire
length = w1 + h1. (b) Wire length = w2 + h2. (c) Wire length = w2 + h1.

TABLE I
COMPARISON OF 3-D FLOORPLAN REPRESENTATIONS. “SPACE” IS THE

SIZE OF THE SOLUTION SPACE, “EVAL. TIME” IS THE EVALUATION TIME,
“FEAS.” IS WHETHER EACH ALGORITHM NEEDS FEASIBILITY CHECKS FOR

SOLUTION PERTURBATIONS, AND “DEP.” IS THE DEPENDENCY AMONG
THE X-, Y-, AND Z-COORDINATES.

Representation Space Eval. time Feas. Dep.
Seq. Triple [6] O((n!)3) O(n2) No Yes

Seq. Quintuple [6] O((n!)5) O(n2) No Yes
3D CBL [7] O(n!48n) O(n) No Yes

Slicing Tree [8] O(6n(n!)2) O(n) Yes Yes
3D-subTCG [9] O((n!)3) O(n2) Yes Yes

Tree + Seq2 [10] O((n+ 1)n(n!)2) O(n2) No Yes
DTS [11] O(n!(n+ 1)2n) O(n2) Yes Yes

T-Tree [12] O(n! 33n

22nn1.5 ) O(n2) Yes Yes

SMMS (This work) O(7
n(n−1)

2 (n!)3) O(n2) No No

Figure 1(a) is w1 + h1. In this floorplan, the relation between
b1 and b2 is “b2 is above b1”, which can be formulated in
all the floorplan representations. Similarly, the HPWL of the
floorplan in Figure 1(b) is w2 + h2. The relation between b1
and b2 in the figure is “b2 is to the right of b1”. The HPWL
of the floorplan shown in Figure 1(c) is w2 + h1, which is
the shortest among the three floorplans. The relation between
b1 and b2 in this case is “b2 is above and to the right of b1”.
However, most of the 3-D floorplan representations do not
formulate this relation because they constrain only the x-, y-,
or z-coordinate for a pair of blocks. For example, the Sequence
Triple representation proposed in [6] determines a relation
between a pair of blocks along only the x-, y-, or z-axis, but
not along two or three axes at the same time. In addition,
some floorplan representations require a feasibility check after
perturbing a solution because some of their solutions are
physically infeasible, especially due to cyclic relations such
as “b1 is to the left of b2 and b2 is to the left of b1”. Although
some of the 3-D floorplan representations could be extended
to process x-, y-, and z-coordinates separately, they might still
need feasibility checks. The 3-D floorplan representation we
propose in this paper handles the x-, y-, and z-coordinates
separately and does not require feasibility checks.

C. 3-D Floorplan Representations

Sequence Triple (ST) proposed in [6] is an extension of the
Sequence Pair representation [13]. ST uses three sequences of
blocks and the relation between a pair of blocks is determined
by their relative locations in the three sequences. The total
number of combinations of the relative locations between two

blocks in the three sequences is eight, but there are only six
relations along the three axes, so two of the eight combinations
are redundantly mapped into two of the six relations.

Sequence Quintuple (SQ) proposed in [6] uses five se-
quences of blocks and each solution corresponds to a unique
3-D floorplan. The first two sequences and the next two
sequences are used as sequence pairs to determine the x- and
y-directional relations between two blocks, respectively. The
fifth sequence is used to determine the z-directional relation
between two blocks. However, the fifth sequence is effective
between two blocks only when there is no x- and y-directional
relation between them.

3D Corner Block List (CBL) proposed in [7] uses a three-
element triplet (S,L, T ) to represent 3-D floorplans. S has a
list of blocks, L has a list of orientations, and T has a list of
junction information. On the other hand, 3-D slicing floorplan
proposed in [8] uses a binary tree to construct 3-D slicing
floorplans. Both of them have dependencies among x-, y-, and
z-coordinates. 3-D Transitive Closure subGraph (3D-subTCG)
proposed in [9] uses three transitive graphs to determine the
relation between two blocks along the three axes. However, a
3D-subTCG should satisfy several feasibility conditions. For
example, each transitive graph in the 3D-subTCG should be
acyclic; otherwise, physical implementation of the graph will
fail. Thus, 3D-subTCG requires feasibility checks for some
solution perturbations.

The 3-D floorplan representation proposed in [10] uses a
labeled tree, a permutation sequence, and a number sequence.
This single-tree dual-sequence representation always tries to
minimize the volume, so it cannot effectively minimize the
wire length if the minimum wire length is obtained from a
non-smallest-volume floorplan.

Double tree and sequence (DTS) based 3-D floorplanning
proposed in [11] uses an x-tree and a y-tree to determine the x-
and y-directional relations between two blocks. DTS also uses
a sequence to determine the z-directional relation between two
blocks when they overlap in a plane. Thus, the z-coordinates
of the blocks are dependent on the x- and y-coordinates of the
blocks.

T-Tree proposed in [12] uses a tree structure in which a
node of a block has three child nodes of blocks by which
the relation between each child node (block) and its parent
node (block) is uniquely determined. However, some of the
solution perturbations such as move and swap operations need
feasibility checks. The 3-D floorplanning algorithms in [14]–
[16] use the sequence pair representation for each tier, so they
do not handle 3-D blocks.

The 3-D floorplan representation (SMMS) we propose does
not require feasibility checks because each solution corre-
sponds to a floorplan. In addition, the x-, y-, and z-coordinates
of each block are determined separately, so the representation
can minimize the volume, wire length, and power effectively.

III. SINGLE MATRIX MULTIPLE SEQUENCES 3-D
FLOORPLAN REPRESENTATION

In this section, we propose a new floorplan representation
for multitier block-level monolithic 3-D ICs that can handle
3-D blocks. Table II shows notations used in this paper.



TABLE II
NOTATIONS USED IN THIS PAPER

bi Block i
(xi, yi, zi) The coordinate of the bottom-left-front corner of bi

lxi The x-directional length of bi
lyi The y-directional length of bi
lzi The z-directional length of bi

A. Single Matrix Multiple Sequences

Two blocks in a 3-D floorplan always have at least one of
the X , Y , and Z relations as follows:

Definition 1: If biXbj holds, xi + lxi
≤ xj is satisfied.

Similarly, yi + lyi
≤ yj and zi + lzi ≤ zj are satisfied if

biY bj and biZbj hold, respectively.
We also define a relation matrix to store relations among

the blocks as follows:
Definition 2: A relation matrix MR is an n × n matrix

where n is the total number of blocks. The element mi,j at
the i-th row and the j-th column shows the relation between
block bi and block bj . mi,j can be X , Y , Z, XY , Y Z, ZX ,
or XY Z. If mi,j is X , either biXbj or bjXbi holds. Y and
Z are defined in a similar way. If mi,j is XY , either biXbj
or bjXbi holds and either biY bj or bjY bi holds at the same
time. Y Z, ZX , and XY Z are defined similarly.

To represent the relations among the blocks, we use the
relation matrix defined above. Since mi,j has at least one
relation, any pair of two blocks always has at least one relation,
which is used to avoid an overlap between the two blocks.
However, the elements in the relation matrix do not show
the orders of the blocks. For example, if mi,j is Z, either
biZbj or bjZbi holds, but it does not determine which one is
chosen. To determine the order, we use sequences of blocks.
The following defines a sequence of blocks:

Definition 3: A sequence of blocks is an ordered list S =<
bi1 , ..., bin > of a set of n blocks B = {b1, ..., bn} where each
block appears only once in S.
For example, S1 =< b5, b3, b4, b1, b2 > is a sequence of
blocks for B = {b1, b2, b3, b4, b5}, but S2 =< b2, b3, b1, b5 >
and S3 =< b1, b4, b3, b5, b2, b1 > are not sequences for B
because S2 does not contain b4 and S3 has b1 twice.

The single-matrix multiple-sequences (SMMS) 3-D floor-
plan representation we propose has three sequences as follows:

Definition 4: An X sequence SX for a set of n blocks
B = {b1, b2, ..., bn} is a sequence of B having relations among
the blocks along the x-axis. If block bi appears before bj in
SX , either bi + lxi

≤ bj holds or they have no x-directional
relation. Y and Z sequences are defined similarly. If block bi
appears before bj in SY , either yi + lyi

≤ yj holds or they
have no y-directional relation. If block bi appears before bj in
SZ , either zi + lzi ≤ zj holds or they have no z-directional
relation.

Combining the relation matrix MR and the three sequences
SX , SY , and SZ produces a unique relation between any
two blocks. For example, suppose mi,j is XY , SX =<
..., bi, ..., bj , ... >, SY =< ..., bj , ..., bi, ... >, and SZ =<
..., bi, ..., bj , ... >. In this case, bi and bj have two relations,
one along the x-axis and the other along the y-axis. Since bi

appears before bj in SX , xi + lxi
≤ xj holds. Similarly, bj

appears before bi in SY , lj + lyj
≤ yi holds. However, mi,j

does not contain Z, so we ignore the z-directional relation
between bi and bj in SZ .

We call this floorplan representation the Single Matrix
Multiple Sequences (SMMS) representation because it con-
sists of a single relation matrix and multiple sequences. We
can also apply SMMS to a 2-D floorplanning by having only
two sequences SX and SY and allowing mi,j to have only
X , Y , and XY . In general, SMMS can be extended to a k-
dimensional floorplanning if all the blocks have k orthogonal
coordinates. In this case, the k-dimensional floorplan represen-
tation has k sequences S1, ..., Sk and a relation matrix MR in
which mi,j is an OR-ed value of {r1, ..., rk} where rp is the
relation along the p-th axis.

B. Properties of SMMS

The SMMS representation has the following properties.
Property 1 (Symmetric): MR is always symmetric, so we

use only the upper triangular elements in MR to evaluate an
SMMS solution.

Property 2 (Acyclic): A floorplan has an x-directional cycle
if there is a sub-sequence of blocks SC =< bi1 , bi2 , ..., bik >
such that xi1+lxi1

≤ xi2 , xi2+lxi2
≤ xi3 , ..., xik+lxik

≤ xi1 ,
which is physically infeasible. y- and z-directional cycles are
defined in a similar way. If a floorplan solution does not have
any cycle, it is called acyclic. All SMMS solutions are acyclic
because each block appears exactly once in each sequence.

Property 3 (Solution space): There are n(n − 1)/2 block
pairs for given n blocks and each block pair has a rela-
tion among {X,Y, Z,XY, Y Z,ZX,XY Z}, so there are total
7n(n−1)/2 combinations of the relations. In addition, each
sequence has n elements, so the total number of combinations
of the blocks in each sequence is n!. Since there are three
sequences in an SMMS solution, the total number of combi-
nations of the blocks in the three sequences is (n!)3. Thus,
the total number of SMMS solutions for 3-D floorplanning is
7

n(n−1)
2 · (n!)3 for n blocks.

Property 4 (P-admissible): First, the solution space of
SMMS is finite as shown in Property 3. Second, every solution
of SMMS is feasible. Third, realization of an SMMS solution
takes polynomial time as shown in the next section. Fourth,
there exists an SMMS solution corresponding to an optimal
solution because it is always possible to convert a given floor-
plan to an SMMS solution. Thus, the SMMS representation is
P-admissible.

C. From an SMMS Solution to a 3-D Floorplan

Algorithm 1 shows a function to evaluate the x-coordinates
of the blocks in B. We evaluate the y- and z- coordinates in
a similar way using SY and SZ instead of SX , respectively.
The algorithm first constructs a directed graph G and inserts
a head node and a tail node into G. Then, for each block bj ,
it inserts a node nj corresponding to bj and creates an edge
from the head node to nj and an edge from nj to the tail
node. Then, we check mj,k for each block pair and insert an
edge from bj to bk if mj,k has X and bj appears before bk in
SX or from bk to bj if mj,k has X and bk appears before bj



Algorithm 1: Evaluation of the x-coordinates for an
SMMS representation.

Input: MR, SX =< bi1 , ..., bin > for B = {b1, ..., bn}
Output: The x-coordinates of all the blocks in B
1: Declare a directed graph G;
2: G.insert node (head); // nh is the head node.
3: G.insert node (tail); // nt is the tail node.
4: for j = 1 to n do
5: G.insert node (bj ); // node nj is for bj
6: G.insert edge (nh, nj ); // eh,j = nh → nj

7: G.insert edge (nj , nt); // ej,t = nj → nt

8: end for
9: for j = 1 to n do

10: // for block bij in SX

11: for k = j + 1 to n do
12: // for block bik in SX
13: if mij ,ik in MR has X then
14: G.insert edge (bij , bik );
15: end if
16: end for
17: end for
18: G.recursive traversal (tail);
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Fig. 2. An example of the SMMS representation. (a) An SMMS solution.
(b) Its constraint graphs. (c) The 3-D floorplan corresponding to the SMMS
solution in (a).

in SX . We call G a constraint graph. The recursive traversal
function finds the longest length from the head node to each
block node by recursive traversal starting from the tail node.
Figure 2 shows an example. The evaluation time of a constraint
graph is O(n2).

D. From a 3-D Floorplan to an SMMS Solution

We translate a given 3-D floorplan into an SMMS solution
as follows. We first prepare three empty directed graphs,
GX , GY , and GZ for x-, y-, and z-directional relations,
respectively. Then, for each pair of blocks bi and bj , we update
MR, GX , GY , and GZ based on their relative locations. Once
GX , GY , and GZ are constructed, we iteratively find the nodes
that have no incoming edges in each graph and insert them into
the end of the sequence corresponding to the graph. Whenever

we add blocks to each graph, we remove the outgoing edges
of the blocks. This procedure constructs a sequence of blocks
from each graph.

E. Solution Perturbation

We use the following perturbations for the simulated
annealing-based optimization using the SMMS representation.

• Change an element in the relation matrix: Choose two
blocks randomly and change their relationship in the
relation matrix.

• Swap two blocks in a sequence: Choose two blocks bi and
bj and a sequence St randomly. Then, swap the locations
of the two blocks in St.

• Swap two blocks in two sequences: Choose two blocks
bi and bj and two sequences St and Sp randomly. Then,
swap the locations of the two blocks in St and Sp.

• Swap two blocks in all the sequences: Choose two blocks
bi and bj randomly. Then, swap the locations of the two
blocks in SX , SY , and SZ .

• Resize a block in 2-D: Choose a block bi randomly and
resize it in 2-D. Thus, its z-directional length does not
change, but its x- and y-directional lengths change.

• Resize a block in 3-D: Choose a block bi randomly and
resize it in 3-D. We first change its z-directional length
because it should be an integer. Then, we change its x-
and y-directional lengths.

F. Reduction of the Evaluation Time

The time complexity of the evaluation of each constraint
graph is O(n2). However, we reduce the evaluation time as
follows. First, changing an element in the relation matrix in
the solution perturbation requires selective evaluation of the
constraint graphs. For instance, if mi,j is XY and changed to
XY Z, we do not need to re-evaluate the x- and y-directional
constraint graphs because only the z-coordinates of the blocks
are affected by adding the Z relation between bi and bj .
Second, the perturbation methods except resizing requires
reconstruction of the constraint graphs. However, once we
construct a constraint graph, we can incrementally update the
constraint graph whenever we perturb the current solution.
Changing an element mi,j in the relation matrix adds or
removes maximum three edges between bi and bj . Thus, the
runtime for updating the constraint graphs for changing mi,j is
O(1). Swapping two blocks bi and bj in a sequence in which
bi appears before bj requires 1) reversing the edges from bi
to the blocks between bi and bj , 2) reversing the edges from
the blocks between bi and bj to bj , and 3) reversing the edge
from bi to bj , all in the constraint graph corresponding to the
sequence. The complexity of updating a constraint graph for
swapping two blocks is O(n) in the worst case.

IV. SIMULATION RESULTS

In this section, we present 3-D floorplanning simulation
results and detailed analysis.



TABLE III
COMPARISON OF THE 3-D FLOORPLANNING ALGORITHMS. SEQT: SEQUENCE TRIPLE. SEQQ: SEQUENCE QUINTUPLE. SLIT: SLICING TREE. SMMS IS

THE PROPOSED ALGORITHM. V : 3-D FLOORPLAN VOLUME. L: WIRE LENGTH. P : DYNAMIC POWER CONSUMPTION (SUM OF THE WEIGHTED WIRE
LENGTHS). THE NUMBERS IN THE PARENTHESES SHOW THE VALUES SCALED TO THE VALUES OF THE SMMS DESIGNS.

Benchmark # tiers SeqT SeqQ SliT SMMS
V L P V L P V L P V L P

n100 500

2 21,226 67,219 32,456 27,047 92,508 44,770 28,189 72,470 35,333 18,146 50,347 24,433
(1.17) (1.34) (1.33) (1.49) (1.84) (1.83) (1.55) (1.44) (1.45) (1.00) (1.00) (1.00)

3 22,608 61,691 30,230 25,874 91,290 44,449 16,085 58,919 28,393 14,253 56,215 25,860
(1.59) (1.10) (1.17) (1.82) (1.62) (1.72) (1.13) (1.05) (1.10) (1.00) (1.00) (1.00)

4 22,287 56,300 27,596 23,488 86,126 41,935 18,692 53,068 26,031 17,341 35,625 17,190
(1.29) (1.58) (1.61) (1.35) (2.42) (2.44) (1.08) (1.49) (1.51) (1.00) (1.00) (1.00)

5 19,191 57,502 22,542 25,153 91,065 44,592 17,582 40,427 19,715 19,400 30,937 15,027
(0.99) (1.85) (1.50) (1.30) (2.94) (2.97) (0.91) (1.31) (1.31) (1.00) (1.00) (1.00)

Avg. (1.24) (1.26) (1.39) (1.47) (2.15) (2.19) (1.25) (1.31) (1.33) (1.00) (1.00) (1.00)

n200 600

2 34,282 122,622 58,241 50,690 160,530 74,928 34,803 87,989 44,206 34,062 84,758 40,599
(1.01) (1.45) (1.43) (1.49) (1.89) (1.85) (1.02) (1.04) (1.09) (1.00) (1.00) (1.00)

3 38,231 120,814 57,455 47,701 170,572 81,138 33,468 69,422 33,076 32,846 68,618 32,689
(1.16) (1.76) (1.76) (1.45) (2.49) (2.48) (1.03) (1.03) (1.03) (1.00) (1.00) (1.00)

4 41,018 121,331 57,788 62,836 161,978 76,639 33,017 61,190 28,958 33,981 59,743 27,784
(1.21) (2.03) (2.08) (1.85) (2.71) (2.76) (0.97) (1.02) (1.04) (1.00) (1.00) (1.00)

5 39,696 121,101 57,759 52,191 146,513 69,285 36,051 61,965 29,409 35,604 60,201 28,619
(1.11) (2.01) (2.02) (1.47) (2.43) (2.42) (1.01) (1.03) (1.03) (1.00) (1.00) (1.00)

Avg. (1.12) (1.80) (1.80) (1.56) (2.36) (2.35) (1.01) (1.05) (1.05) (1.00) (1.00) (1.00)

n300 1000

2 37,489 170,558 83,681 86,868 376,977 186,771 48,263 182,309 97,721 36,522 168,538 84,748
(1.03) (1.01) (0.99) (2.38) (2.24) (2.20) (1.32) (1.08) (1.15) (1.00) (1.00) (1.00)

3 37,011 170,496 83,902 104,464 361,270 179,048 52,578 160,906 79,893 37,226 171,882 84,597
(0.99) (0.99) (0.99) (2.81) (2.11) (2.12) (1.41) (0.94) (0.94) (1.00) (1.00) (1.00)

4 38,040 173,986 84,961 94,159 409,077 203,014 46,623 130,784 65,339 35,642 129,570 68,624
(1.07) (1.34) (1.24) (2.64) (3.16) (2.96) (1.31) (1.01) (0.95) (1.00) (1.00) (1.00)

5 35,719 168,526 82,438 99,260 367,025 182,364 43,696 168,831 82,149 35,989 167,137 81,738
(0.99) (1.01) (1.01) (2.76) (2.20) (2.23) (1.21) (1.01) (1.01) (1.00) (1.00) (1.00)

Avg. (1.02) (1.08) (1.05) (2.64) (2.39) (2.35) (1.31) (1.01) (1.01) (1.00) (1.00) (1.00)

TABLE IV
RUNTIME COMPARISON OF THE 3-D FLOORPLANNING ALGORITHMS. WE

SHOW ONLY RELATIVE RUNTIME VALUES.

Benchmark SeqT SeqQ SliT SMMS
n100 500 4.15 4.20 0.08 1.00
n200 600 3.96 4.45 0.09 1.00

n300 1000 4.82 5.07 0.12 1.00

A. Benchmarks and Simulation Settings

We generated three benchmarks to compare 3-D floorplan
representations. The name of each benchmark is nA B where
A is the number of blocks and B is the number of nets. The
three benchmarks are n100 500, n200 600, and n300 1000.
Each block has a fixed volume. All the blocks are resizable
in 3-D and the range of the planar aspect ratio (y-directional
length / x-directional length) of the blocks is [0.7, 1.3]. For
example, if the volume of a block is V and its z-directional
length is t, its planar area is V/t. In this case, the minimum and
maximum values of the width of the block are

√
V/(1.3t) and√

V/(0.7t), respectively. When we generated the benchmarks,
we also randomly generated access frequencies for all the
nets to obtain and compare dynamic power consumption.
We compare the volume, the total wire length, and the total
dynamic power consumption. We use the half-perimeter wire
length (HPWL) for the wire length computation and the
weighted HPWL for the dynamic power consumption. The
weighting factors are the access frequencies for the nets.

We implemented four 3-D floorplanning representations,

Sequence Triple (SeqT), Sequence Quintuple (SeqQ), Slicing
Tree (SliT), and the proposed algorithm (SMMS). We applied
them to the simulated annealing algorithm with the following
objective function:

C = α · V + β · L+ γ · P (1)

where V is the volume, L is the wire length, P is the dynamic
power consumption, and α, β, and γ are weighting factors for
the volume, wire length, and power consumption, respectively.
We ran each algorithm ten times for each benchmark and
obtained average values. For a fair comparison, we used
the same simulated annealing parameters (initial and final
temperatures, cooling rate, etc.) for all the algorithms.

B. Comparison of Volume, Wire Length, and Power

Table III compares the four 3-D floorplanning algorithms for
the three benchmarks. We also vary the number of tiers to com-
pare the quality of the algorithms for different floorplanning
configurations. For n100 500, the SMMS algorithm achieves
24% to 47% smaller volume, 26% to 115% shorter wire
length, and 33% to 119% lower dynamic power consumption
on average than the other algorithms. However, there are a
few cases for which some of the other algorithms achieve
smaller volume than the SMMS algorithm. For example, the
volumes of the five-tier floorplan designed by the Sequence
Triple and the Slicing Tree algorithms are 1% and 9% smaller
than the SMMS designs, respectively. In those cases, however,
the wire length and the power consumption of the floorplans



designed by the two algorithms are 31% to 85% worse than
those designed by the SMMS algorithm.

For the n200 600 benchmark, the SMMS representation still
achieves the best volume, wire length, and power consumption
on average. The Slicing Tree has 1% larger volume, 3% longer
wire length, and 3% higher power consumption than SMMS.
The Sequence Triple and Sequence Quintuple representations
have 12% and 56% large volume, 80% and 236% longer wire
length, and 80% and 235% higher power consumption than
SMMS, respectively. We find similar trends for n300 1000
although the volume, wire length, and power differences be-
tween the Sequence Triple and SMMS and between the Slicing
Tree and SMMS go down. The reason that the Sequence Quin-
tuple shows the worst values is because Sequence Quintuple
requires longer runtime or more perturbations to generate high-
quality floorplans. Thus, if the same number of perturbations
is applied, the Sequence Quintuple representation is expected
to show the worst values.

A result to note is that building a block-level 3-D IC layout
in multiple tiers does not necessarily increase the quality of the
layout as the tier count goes up. For instance, SMMS obtains
the smallest average volume, the shortest wire length, and the
lowest power consumption for n300 1000 when the tier count
is four. The solution set of the five-tier floorplanning includes
the solution set of the four-tier floorplanning, so ideally the
quality of the five-tier designs should be better than that of the
four-tier designs. However, we use the simulated annealing
algorithm, which is a stochastic algorithm. Thus, applying
different constraints (max. four tiers vs. max. five tiers) does
not necessarily lead to a better solution although the solution
set of the latter includes that of the former.

C. Runtime

Table IV compares the average runtimes of the four algo-
rithms for the three benchmarks. The evaluation complexity of
the Slicing Tree representation is O(n) where n is the number
of blocks as shown in Table I, but that of the other three
algorithms is O(n2). Thus. the Slicing Tree has the shortest
runtime and almost ten times as fast as the SMMS algorithm
and 40 times as fast as the Sequence Triple and the Sequence
Quintuple algorithms. In addition, the runtime of the SMMS
algorithm is approximately four times as short as the Sequence
Triple and the Sequence Quintuple algorithms although they
have the same evaluation complexity theoretically. The rea-
son is that we use the evaluation time reduction technique
explained in Section III-F. The technique helps reduce the
complexity from O(n2) to O(n). However, notice that we
can apply a similar evaluation time reduction technique to the
Sequence Triple and the Sequence Quintuple algorithms.

V. CONCLUSION

In this paper, we proposed a 3-D floorplan representation
that supports independent x-, y-, and z-directional relations
without any feasibility check. The new representation uses a
relation matrix and multiple sequences to determine the rela-
tion between a pair of blocks. In addition, the representation
can be extended to any-dimensional floorplanning problems.

The simulation results show that the proposed representation
constantly produces high-quality 3-D floorplans.
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