
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020 5111

NP-Separate: A New VLSI Design Methodology
for Area, Power, and Performance Optimization

Monzurul Islam Dewan and Dae Hyun Kim , Member, IEEE

Abstract—Use of standard cells in the very-large-scale integra-
tion (VLSI) design enables very short time to market even for
complex microprocessors. Thus, most VLSI layouts are designed
using standard cells. In this article, we propose a new design
methodology, namely, NP-Separate, to reduce the power consump-
tion and area and increase the performance of a VLSI layout
more effectively than the standard-cell-based design methodol-
ogy. NP-Separate uses N cells and P cells composed of NFETs
and PFETs only, respectively, thereby providing a higher degree
of flexibility than using standard cells. Our simulation results
for several benchmark circuits show that NP-Separate reduces
the layout area by 9%, power consumption by 10%, power-
delay product by 18%, and energy-delay product by 26% on
average while satisfying given timing constraints compared to
standard-cell-based designs.

Index Terms—Physical layout design, standard cells, very-
large-scale integration (VLSI).

I. INTRODUCTION

STANDARD-CELL-BASED design methodologies provide
numerous advantages in the design of very-large-scale

integration (VLSI) layouts. For example, drawing long hor-
izontal lines at the top and bottom of the standard cell rows in
a layout connects all the power and ground pins of all the stan-
dard cell instances in the rows to the main power/ground rings
drawn around the core area of the layout. Thus, power/ground
network design is greatly simplified [1], [2]. Standard cell
placement easily optimizes the locations of all the transis-
tors in the layout by optimizing the locations of the standard
cell instances [3]–[5]. Timing and power optimization satisfies
given timing constraints and minimizes the power consump-
tion of the design by manipulating (inserting, removing, and
relocating) repeaters, upsizing and downsizing standard cell
instances, and replacing a set of instances by a different set
of instances [6]–[8]. For these reasons, most VLSI layouts are
designed using standard cells.

Each standard cell design is optimized to minimize the area
of the cell and satisfy constraints such as a target output resis-
tance. For example, if the smallest inverter is designed, the
width of the NFET of the inverter is set to the minimum tran-
sistor width and that of the PFET is optimized so that the rise

Manuscript received February 25, 2019; revised June 11, 2019 and October
1, 2019; accepted December 12, 2019. Date of publication January 13, 2020;
date of current version November 20, 2020. This article was recommended
by Associate Editor C. Zhuo. (Corresponding author: Dae Hyun Kim.)

The authors are with the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA 99164 USA (e-mail:
monzurulislam.dewan@wsu.edu; daehyun@eecs.wsu.edu).

Digital Object Identifier 10.1109/TCAD.2020.2966551

TABLE I
NOTATIONS AND TERMINOLOGIES USED IN THIS ARTICLE

and fall times of the inverter are equal. Library characteriza-
tion performs SPICE simulations to characterize the standard
cells and generate a standard cell library. All the synthesis,
placement, and routing software use the standard cell library
to design VLSI layouts.

One of the issues the standard-cell-based VLSI design
methodology has is that all the design and optimization steps
are based on standard cells, so it is impossible to fine-control
the size of each transistor for further optimization. For exam-
ple, suppose an optimization algorithm inserts an inverter into
a net. Assuming the optimal sizes of the NFET and the PFET
of the inverter are 3wmin and 8kμwmin, respectively, where
wmin and kμ are defined in Table I, the algorithm will likely
insert an 8× inverter whose NFET and PFET widths are 8wmin
and 8kμwmin, respectively. In this case, the NFET is unneces-
sarily upsized, which leads to a larger area and higher power
consumption. Although the standard cell library might have
an inverter cell having the optimal NFET and PFET widths in
this case, it would be practically impossible to design and use
standard cells having many different combinations of NFET
and PFET widths. In general, we cannot avoid overoptimizing
some parts of a layout unless we can fine control the sizes of
the transistors in the standard cells.

In this article, we propose a new VLSI design method-
ology, namely, NP-Separate, to optimize area, power, and
performance of a layout by fine-tuning transistor sizes. NP-
Separate designs a layout with N cells and P cells composed
of NFETs and PFETs only, respectively, thereby providing a
higher degree of flexibility. We design several layouts using
NP-Separate and show that it reduces the layout area by 9%,
power consumption by 10%, power-delay product by 18%, and
energy-delay product by 26% on average with shorter critical
path delays compared to standard-cell-based designs.

The rest of this article is organized as follows. In Section II,
we review the conventional standard-cell-based physical VLSI
layout design and transistor sizing. In Section III, we present
the motivation leading to the NP-Separate design methodology.

0278-0070 c© 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-3131-5745
https://orcid.org/0000-0001-8275-5949

5112 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Fig. 1. Three layouts for two-input NAND cells.

Fig. 2. Simplified standard-cell-based VLSI design process.

Section IV explains the details of NP-Separate. In Section V,
we show case studies and compare the two design method-
ologies. We discuss future work to improve NP-Separate in
Section VI, then we conclude in Section VII.

II. STANDARD-CELL-BASED VLSI DESIGN

In this section, we review the conventional standard-cell-
based physical VLSI layout design and optimization process,
transistor sizing, and multiheight standard cells.

A. Standard Cell Libraries and Standard Cells

A standard cell library for automatic placement and rout-
ing generally consists of physical libraries such as library
exchange format (LEF) files, timing and power libraries such
as Liberty format files, and interconnect technology files. The
physical libraries contain physical information of the standard
cells (such as the pin locations of a cell) and interconnect
layers (such as the minimum width of a metal layer) in the
standard cell library. The timing and power libraries con-
tain timing, power, and functional information of the standard
cells (such as the delay of a cell for various input slews
and output loads). The interconnect technology files contain
detailed information for interconnect resistance and capaci-
tance (RC) extraction. In general, PFETs and NFETs of a
standard cell are placed in the upper and lower regions of the
cell layout, respectively, as shown in Fig. 1. Placing all the
NFETs (or PFETs) in the same area enables the transistors to
share their diffusion regions, which helps reduce the cell area.

B. Physical Design of VLSI Layout

Fig. 2 shows a simplified standard-cell-based physical VLSI
layout design process. Physical design (including netlist syn-
thesis) of a VLSI layout synthesizes a netlist from given
hardware description language (HDL) source codes, places

the standard cell instances in the netlist on a layout, performs
clock-tree synthesis (CTS), and routes the instances. Timing
and power optimization is performed before placement, CTS,
routing, and after routing. Design-rule violations, such as
max. capacitance violations, are also fixed during the phys-
ical design. All of these steps use standard cells. For example,
gate sizing upsizes or downsizes instances for area, power, and
performance optimization. Upsizing or downsizing an instance
replaces it by a new standard cell instance having the same
function with a different size (e.g., a NAND2_X4 instance
is replaced by a NAND2_X1 instance). Similarly, repeater
insertion inserts repeater instances for delay minimization.

C. Transistor Sizing

The sizes of the transistors in a standard cell are properly
optimized for various purposes, such as delay minimization
and fall/rise time matching. Since different transistor sizes
have different input capacitances and output resistances, stan-
dard cell libraries generally have multiple cell sizes for
each cell. For instance, a two-input NAND cell has three
definitions, NAND2_X1, NAND2_X2, and NAND2_X4 in
Fig. 1. The sizes of the transistors in the NAND2_X2 and
NAND2_X4 cells are two and four times as large as those
in the NAND2_X1 cell. Thus, NAND2_X2 and NAND2_X4
have lower output resistance and larger input and output capac-
itance than NAND2_X1. However, they might not occupy a
larger area than NAND2_X1 in terms of the cell area because
increasing the sizes of the transistors does not necessarily lead
to a larger cell area as shown in Fig. 1.

Suppose the resistance of an NFET whose width is wmin is
Rn. In this case, the resistance of a PFET whose width is wmin
is kμ · Rn. For an inverter, if the load capacitance is CL and a
given timing constraint is τ = RnCL, the widths of the NFET
and the PFET of the inverter are set to wmin and kμ · wmin,
respectively. Similarly, if the timing constraint is τ = RnCL/r,
the widths of the NFET and the PFET of the inverter are set
to r · wmin and r · kμ · wmin, respectively.

D. Multiheight Standard Cells

Recently, Baek et al. [9] proposed designing VLSI layouts
using multiheight standard cells. The multiheight-standard-
cell-based design methodology (MHSC) uses single-height
standard cells for simple cells, such as inverters and mul-
tiheight standard cells for complex cells such as flip-flops.
MHSC minimizes the layout area by reducing the height of
the single-height cells and designing complex cells in double-
height cells. The restriction of using the metal 1 layer only in
the standard cell design unnecessarily increases the standard
cell height and the area of complex cells. Thus, design-
ing complex cells across two rows and using the metal 2
layer for power and ground routing helps reduce the lay-
out area [9], [10]. To support the placement of mixed-height
standard cells, several placement legalization algorithms have
been proposed [11], [12]. In this article, we reduce the layout
area by using NFETs and PFETs whose sizes are optimized
separately. We also demonstrate how to incorporate optimal

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

DEWAN AND KIM: NP-SEPARATE: NEW VLSI DESIGN METHODOLOGY FOR AREA, POWER, AND PERFORMANCE OPTIMIZATION 5113

(a)

(b)

(c)

(d)

Fig. 3. (a) Single path transistor sizing example for a NOR2-NOR3-INV
configuration. (b) Brute-force. (c) Heuristic. (d) Optimal.

transistor sizes in the automatic layout generation to min-
imize area, power, and performance. Thus, we can apply
NP-Separate to MHSC to reduce the layout area further.

III. MOTIVATION

This section shows the motivation of this article with
an example. Fig. 3(a) shows a signal path composed
of a two-input NOR instance (NOR2), a three-input NOR

instance (NOR3), an inverter instance (INV), and some load
capacitors. Some parasitic capacitances are not shown in the
figure. We assume that all the NFETs (or PFETs) of each
cell have the same width as shown in the figure. For exam-
ple, the width of all the PFETs in the NOR2 instance is a1×,
which is a1 · wmin. We also assume that the load capacitance
of each instance is CL just for simplification. kμ = μn/μp is
set to 1.8. The red arrows show the signal flow of NOR2 = 1,
NOR3 = 0, and INV = 1, which means that the outputs
of the NOR2, NOR3, and INV instances are 1, 0, and 1,
respectively. Similarly, the green arrows show the signal flow
of NOR2 = 0, NOR3 = 1, and INV = 0. A given timing
constraint is τ = RnCL.

Fig. 3(b) shows the result of a brute-force transistor sizing
algorithm by which each instance is upsized to 3× so that the
path delay is evenly distributed throughout the three instances.

Thus, the delay of each instance is (1/3)τ and the total transis-
tor width is 93.6wmin. Fig. 3(c) shows the result of a heuristic
transistor sizing algorithm by which NOR2, NOR3, and INV
are upsized to a×, b×, and c×, respectively. The algorithm
minimizes the total transistor width as follows:

Minimize W = (
2 + 4kμ

)
a + (

3 + 9kμ

)
b + (

1 + kμ

)
c (1)

Subject to Rising:
2kμ · Rn

2kμa
CL + Rn

b
CL + kμ · Rn

c
CL ≤ τ

(2)

Falling:
Rn

a
CL + 3kμ · Rn

3kμb
CL + Rn

c
CL ≤ τ. (3)

Solving the above problem leads to (a, b, c) =
(3×, 2.1×, 5.4×). The delays of the NOR2, NOR3, and INV
instances are 0.33τ , 0.48τ , and 0.19τ , respectively. The total
transistor width is 82.6wmin, which is approximately 11.8%
smaller than that of the brute-force algorithm.

Fig. 3(d) shows the result of an optimal algorithm by which
the PFETs and NFETs of NOR2, NOR3, and INV are upsized
to (a1×, a2×), (b1×, b2×), and (c1×, c2×), respectively. The
following formulates the problem:

Minimize W = 2(a1 + a2) + 3(b1 + b2) + (c1 + c2) (4)

Subject to Rising:
2kμ · Rn

a1
CL + Rn

b2
CL + kμ · Rn

c1
CL ≤ τ

(5)

Falling:
Rn

a2
CL + 3kμ · Rn

b1
CL + Rn

c2
CL ≤ τ. (6)

Solving the above problem leads to (a1, a2) = (7.7×, 4.6×),
(b1, b2) = (8.7×, 3.3×), and (c1, c2) = (7.7×, 6.4×). The
total transistor width is 74.7wmin, which is 20.2% and 9.6%
smaller than the sizes of the transistors optimized by the brute-
force and heuristic algorithms, respectively. For the rising
path, the delays of the NOR2, NOR3, and INV instances are
0.47τ , 0.3τ , and 0.23τ , respectively. For the falling path, the
delays are 0.22τ , 0.63τ , and 0.15τ , respectively. The delays
are unevenly distributed among the three instances as shown
above and even the PFETs and NFETs of an instance have
different delay values.

Table II also compares the three transistor sizing algorithms
for various paths. For example, the total transistor width of the
NOR4-NOR4-NOR4-NOR4 path optimized by the brute-force
and heuristic algorithms is 524.80wmin, whereas that optimized
by the optimal sizing is 434.13wmin. Thus, the optimal sizing
algorithm achieves 17.28% smaller transistor width than the
other two algorithms. Note that the optimal transistor sizing
has been proposed in [13]–[18], some of which used more
complicated but accurate delay models such as the Elmore
delay model. In addition, they also minimized the total area
or power consumption and we can also take the internal
capacitances into account [15], [18].

IV. NP-SEPARATE: NEW VLSI DESIGN METHODOLOGY

In this section, we propose a new VLSI design methodology,
namely, NP-Separate, to minimize the layout area and power
consumption of a given design.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

5114 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

TABLE II
TOTAL AREAS (UNIT: wmin) OF SINGLE PATH CIRCUITS OPTIMIZED BY THE BRUTE-FORCE, HEURISTIC, AND OPTIMAL SIZING

ALGORITHMS FOR DIFFERENT LOGIC GATE COMBINATIONS

Fig. 4. Standard-cell-based and NP-Separate VLSI design flows.

A. Overview

Fig. 4 shows an overview of the NP-Separate design
methodology we propose. First, we begin the design from the
synthesis of a given HDL source code using a plain stan-
dard cell library. The synthesis generates a netlist composed
of standard cell instances. Then, we size the transistors of
the instances using the optimal transistor sizing explained in
the previous section. When we optimally size the transistors,
we estimate the load capacitance of each instance using the
standard cell library and add the capacitance to the timing
constraints. The optimal transistor sizing gives us the size of
each transistor of each standard cell instance. Then, we create
N and P cells having the sizes found by the optimal sizing.
The creation of the N and P cells includes layout drawing,
design-rule check (DRC), and layout-versus-schematic (LVS).
Then, we create an NP cell corresponding to each standard
cell instance by merging the N and P cells. The creation of
an NP cell includes physically placing an N and a P cell in a
layout editor and routing the input and output ports. The next
step is to replace the standard cell instances with the NP cell
instances in the layout. We also prepare a physical library in
LEF for the NP cells and use the library and a commercial
router to perform CTS and route the NP cells. The following
sections show more details of each step.

Fig. 5. NAND2_N_1W and NOR4_N_2W cells.

B. N Cells and P Cells

N and P cells are similar to standard cells. However, N
cells have NFETs only and P cells have PFETs only. Although
the transistors in an N or P cell can have different widths,
we apply the same width to all the transistors in an N or P
cell for the following reasons. First, applying different widths
to the transistors in an N or P cell leads to too many N or
P cell designs, which will increase the overall design time
significantly. Second, timing constraints are greatly simplified
if all the transistors in a cell have the same width.

An N cell is named Func_N_sW, where Func is the function
of the cell such as NAND2, N denotes the type of the cell (N
cell), and sW is the size of each NFET in the cell. For example,
NOR4_N_2W is a four-input NOR N cell and the width of
each NFET in the cell is 2 · wmin. Fig. 5 shows our layouts
for NAND2_N_1W and NOR4_N_2W. Notice that the two
output ports in the NOR4 cell are not routed yet, although
they could be prerouted in the N cell. In our methodology,
they are routed after the creation of an NP cell. A P cell is
named similarly like Func_P_sW. Once we design N and P
cells, we can reuse them to create NP cells. Thus, creating N
and P cells in Fig. 4 will create only the N and P cells missing
in the NP cell library.

C. NP Cell Creation

Once the size of each transistor is optimized in the tran-
sistor sizing step, we create all the required N and P cells.
Then, we create NP cells by merging and routing the N and
P cells as follows. First, each standard cell instance in the
synthesized netlist is replaced by an N and a P cell instances
as shown in Fig. 6. For example, the optimal sizes of the
NFETs and PFETs of the NAND2_X1 instance in Fig. 6(a)
are 2wmin and 2wmin, respectively. Thus, we create an NP
cell NAND2_N_2W_P_2W by combining a NAND2_N_2W
instance and a NAND2_P_2W instance as shown in Fig. 6(b).

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

DEWAN AND KIM: NP-SEPARATE: NEW VLSI DESIGN METHODOLOGY FOR AREA, POWER, AND PERFORMANCE OPTIMIZATION 5115

(d)

(c)

(b)

(a)

Fig. 6. (a) Two standard cells NAND2_X1 and NOR4_X2. (b) NP cell
creation. (c) Input and output port routing. (d) Abstraction.

Similarly, the optimal sizes of the NFETs and PFETs of
the NOR4_X2 instance are 6wmin and 4wmin, respectively.
Thus, we create an NP cell NOR4_N_6W_P_4W by com-
bining a NOR4_N_6W instance and a NOR4_P_4W instance.
The PFETs in the NOR4_P_4W instance are separated into
two diffusion regions to reduce the complexity of input/output
port routing. Notice that the centers of the NOR4_N_6W and
NOR4_P_4W instances are aligned, but they do not need to
be aligned.

Once we merge an N cell and a P cell into an NP cell, we
route the input and output ports using the poly and metal 1
layers as shown in Fig. 6(c) so that the NP cell becomes a
fully functional cell. We manually route them in this article,
but we can route them automatically using commercial tools.
We also create input and output pins like standard cell pins.
All the processes in the routing and pin creation follow all
the design rules, so the final NP cell layout is DRC-clean. We
also perform LVS for the NP cell to verify its function.

DRC and LVS are followed by abstraction as shown in
Fig. 6(d). The abstraction process for NP cells is exactly the
same as that for standard cells. One thing to notice is that the
boundary (width and height) of an NP cell is determined by

(a)

(b)

(c)

Fig. 7. Optimization in an NP-Separate design. (a) Two NP cell instances
placed by a placement software. (b) Area minimization by instance overlap.
(c) Abstracted view of the instances.

the maximum width of the N and P cells in the NP cell and the
sum of the heights of the N and P cells. Thus, the shape of an
NP cell is always a rectangle like standard cells. The abstrac-
tion of the NP cells creates a physical library in LEF format
so that the NP cell instances can be routed automatically using
commercial tools.

D. Placement, CTS, and Routing

Once we create all the NP cells and an NP cell library for
the cells, we place all the NP cell instances in the layout. We
use a commercial tool to place the NP cell instances. Notice
that the physical library of the NP cells looks similar to that
of standard cells. Thus, placing the NP cell instances does not
differ from placing standard cell instances. Similarly, CTS and
signal routing can be performed using commercial tools.

However, there is a fundamental difference between the
two design methodologies. In NP-Separate, we can optimize
the locations of the transistors further after placement
so that we can reduce the area further. For example, a
NOR4_N_6W_P_4W and a NAND4_N_2W_P_4W NP cell
instances are placed in Fig. 7(a). Notice that the two instances
cannot overlap because placement software will avoid over-
lapping the instance boundaries. In this case, however, we
can shift the NAND4_N_2W_P_4W instance to the left as
shown in Fig. 7(b) so that we can reduce the total area fur-
ther. Fig. 7(b) shows that the two instances overlap, but it is
allowed in NP-Separate as long as all the layout objects such
as wires do not violate the design rules. Fig. 7(c) shows that
the instances overlap in the abstracted design level, but they
can be routed by commercial tools.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

5116 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

V. CASE STUDY

In this section, we design five 8-bit adders, three 32-bit
adders, a 4-bit multiplier, a 64-bit pipelined multiplier, and a
data encryption standard (DES) core using the conventional
standard-cell-based and NP-Separate design methodologies
and compare the quality of the designs. The five 8-bit adders
are ripple-carry adder (RCA), carry-lookahead adder (CLA),
Brent–Kung adder (BKA), Kogge–Stone adder (KSA), and
binary coded decimal adder (BCD). The three 32-bit adders
are 32-bit version of the CLA, BKA, and KSA. The 4-bit
multiplier is a Wallace-tree-based parallel multiplier (WT).
The pipelined multiplier, MUL_B64 is a high-throughput
64-bit multiplier with nine pipelined stages [19]. The DES
core, DES_PERF is a five-stage DES encryption core opti-
mized for performance. We chose these benchmarks because
they have different connectivity and routing patterns. For
example, the RCA is slow, but has very low routing com-
plexity. On the other hand, the CLA is fast, but has forward
and backward paths among its submodules. Both the BKA and
KSA are high-speed prefix adders, but the former has a large
logic depth with low routing complexity, whereas the latter
has the minimum logic depth with very high routing complex-
ity. The BCD adder and the multiplier also have unique logic
and routing characteristics. The MUL_B64 and DES_PERF
are hierarchically designed, partitioned into several pipeline
stages, and much larger than the other benchmarks.

A. Layout Design and Analysis

We first synthesized HDL source codes for the benchmarks
using a 22-nm standard cell library and Cadence Genus. We
turned on all the optimization options in Genus to optimize
the critical path delay, power, and area. For the standard-cell-
based layouts, which we will call S-designs in this article, we
used Cadence Innovus for placement and routing. We will call
the NP-Separate layouts NP-designs. For both the S- and NP-
designs, we set the initial core area utilization to almost 100%
so that the layouts have no white space. After we obtained
the S- and NP-designs, we imported the layouts into Cadence
Virtuoso, performed parasitic RC extraction, simulated the
final netlists with the parasitic RC using Synopsys HSpice,
and obtained critical path delays and power consumption.
We used ALGLIB [20] to solve the nonlinear optimization
for transistor sizing. For the NP-designs of MUL_B64 and
DES_PERF, we designed them hierarchically starting from the
bottommost-level modules.

B. Simulation Results

1) Transistor Width and Layout Area: Table III compares
the S- and NP-designs. First, the average transistor width of the
NP-designs is 20% less than that of the S-designs. In addition,
the average transistor width reduction by NP-Separate for the
five large benchmarks (BKA32, CLA32, KSA32, MUL_B64,
and DES_PERF) is 22%. This is because NP-Separate can
freely size the transistors, whereas the conventional VLSI
design tools cannot. However, the actual cell area reduction
ratio is less than the transistor width reduction ratio. The table
shows that the NP-designs have 4%–13% smaller area than the

S-designs and the average area of the NP-designs is 9% less
than that of the S-designs. For the five large benchmarks, the
NP-designs occupy 8% less area on average. Since we set the
core utilization of the layouts to almost 100%, this area ben-
efit is the actual benefit we can obtain from the NP-Separate
design methodology.

2) Wirelength: The NP-designs also have shorter wire-
length than the S-designs. For all the benchmarks except
CLA32 and DES_PERF, the NP-designs have up to 12%
shorter wirelength than the S-designs. For CLA32, the wire-
length reduction ratio is 27%, which is because the S-design
has 11 rows for placement, whereas the NP-design has ten
rows. As a result, the CLA32 NP-design reduced the wire-
length dramatically. On the other hand, the S-designs and
NP-designs have the same number of rows for most of the
other benchmarks, so the wirelength reduction ratio of the
designs is relatively smaller than that of CLA32 design.
DES_PERF has a different reason for the huge wirelength
reduction ratio (26%). Both the S- and NP-designs use the
same number of rows, so the area difference between them
is only 4%. However, we found that optimizing the timing of
the S-design was much harder than optimizing the NP-design.
As a result, the S-design used much more upper metal layers
and had many routing detours. At the same time, the coupling
capacitance of the S-design is much larger than that of the NP-
design due to the detours as shown in the table. However, the
S- and NP-designs have almost equal parasitic resistance. In
summary, optimizing the total transistor size by NP-Separate
helps reduce not only the area and wirelength but also the
parasitic capacitance.

3) Critical Path Delay and Power Consumption: Table III
also compares the critical path delay, power consumption,
power-delay product (PDP), and energy-delay product (EDP)
of the S- and NP-designs. When we solved the nonlinear
optimization problems for the NP-designs, we applied slightly
tighter timing constraints to them than the S-designs because
we did not use an accurate delay model for the sizing. Thus,
the NP-designs have a 9% shorter critical path delay on aver-
age than the S-designs. However, this does not mean that the
comparison is not fair. Rather, it means that the NP-designs can
have even smaller area than the area shown in Table III with
the same critical path delays as the S-designs if we slightly
loosen the timing constraints for the NP-designs.

The NP-designs also have 10% lower power consumption
on average than the S-designs because the NP-designs have
a smaller capacitance than the S-designs. Since all the NP-
designs have shorter critical path delays and lower power
consumption than the S-designs, the NP-designs have smaller
PDP and EDP (18% and 26% on average, respectively). In
addition, for the five large benchmarks, NP-designs have 10%
lower power consumption with 16% smaller PDP and 22%
smaller EDP on average than the S-designs.

4) Temperature: All the NP-designs consume less power
than the S-designs, but the NP-designs have smaller area than
the S-designs. Thus, the power density of an NP-design could
be smaller or larger than its S-design counterpart depending
on their power and area reduction ratios. As Table III shows,
the NP-designs of RCA08, BKA08, CLA32, MUL_B64, and

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

DEWAN AND KIM: NP-SEPARATE: NEW VLSI DESIGN METHODOLOGY FOR AREA, POWER, AND PERFORMANCE OPTIMIZATION 5117

TABLE III
COMPARISON OF THE LAYOUTS BUILT BY THE CONVENTIONAL STANDARD-CELL-BASED (DENOTED BY S-DESIGN) AND NP-SEPARATE (DENOTED BY

NP-DESIGN) DESIGN METHODOLOGIES FOR THE CRITICAL PATH DELAY (CPD), POWER CONSUMPTION, POWER-DELAY PRODUCT (PDP),
ENERGY-DELAY PRODUCT (EDP), POWER DENSITY, AND MAXIMUM AND MINIMUM TEMPERATURE. “# INSTS” DENOTES THE NUMBER OF

INSTANCES. TR WIDTH IS THE TOTAL TRANSISTOR WIDTH (UNIT: wmin). WL IS THE TOTAL WIRELENGTH. R IS THE TOTAL PARASITIC RESISTANCE

AND C AND CC ARE THE TOTAL PARASITIC GROUND AND COUPLING CAPACITANCES, RESPECTIVELY, EXTRACTED FROM THE LAYOUT

DES_PERF have 1%–14% smaller power densities than their
S-design counterparts. However, the NP-designs of the other
benchmarks have 1%–12% higher power densities than their
S-design counterparts. On average, the S- and NP-designs have
almost the same power density. In addition to the power den-
sity computation, we also performed thermal simulation using
3D-ICE [21] to show the minimum and maximum temperature
values of the designs. We observe in Table III that the differ-
ences between the minimum and maximum temperatures of all
the designs are less than 2 ◦C. We also find that the maximum
temperature difference between an S-design and its NP-design
counterpart is less than 1 ◦C.

5) In-Depth Analysis: Since the S- and NP-designs use
the same netlist for each benchmark, we also compare the
widths of the NFETs and PFETs of the NP cell instances in
the NP-designs and their corresponding standard cell instances

in the S-designs for CLA08 and WT04 in Fig. 8. The x-axis
shows the instance indices in the netlists. The y-axis shows
the differences of the transistor widths of the NP and stan-
dard cell instances corresponding to the instance index. If the
difference is positive, the transistor width in the NP-design is
larger than that in the S-design. We observe from the figure
that if the NFETs of a standard cell instance are upsized (or
downsized) in its corresponding NP-cell instance, the PFETs
are also upsized (or downsized) in most cases. This is counter-
intuitive because the example in Fig. 3 shows that the PFETs
connected in series are generally downsized while the NFETs
connected in parallel are generally upsized in the NP-designs
compared to the S-designs.1 Since the PFET network of a cell

1The heuristic optimization algorithm is similar to what is used for the
standard-cell-based design methodologies.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

5118 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

(a) (b)

Fig. 8. Differences of the widths of the NFETs and PFETs of the NP cell instances in the NP-designs and the corresponding standard cell instances in the
S-designs for (a) CLA08 and (b) WT04. x-axis: The instance indices. y-axis: The differences of the transistor widths (unit: wmin).

is the dual network of the NFET network of the cell, the PFETs
are connected in series if the NFETs are connected in parallel
and vice versa. Thus, if the NFETs of an instance are down-
sized (or upsized), the PFETs of the instance are expected to
be upsized (or downsized). In Fig. 8, however, the NFETs and
PFETs of an instance are either upsized or downsized together.
This is mainly because both the NFETs and PFETs of the
instances in the critical paths are upsized, whereas both the
NFETs and PFETs of the instances in the noncritical paths are
downsized.

In addition, the NFETs and PFETs of an instance have dif-
ferent sizing ratios. In some NP cell instances, the PFETs
are significantly downsized while the NFETs are not sized
at all. For example, the instance marked by a red arrow in
Fig. 8(b) is a two-input NOR instance. In the S-design, the
instance is upsized to 2×, so the widths of the NFETs and
PFETs become 2wmin and 7.2wmin, respectively. In the NP-
design, on the other hand, the NFETs are not upsized (so
their widths are 1wmin) and the PFETs are upsized to
1.2wmin. Thus, the sizing ratios between the S- and NP-
designs for the NFETs and PFETs of the instance are 2 and 6,
respectively.

6) Design Time: Table IV shows the design time for the
S- and NP-designs. We used an Intel Xeon CPU E5-2650
v3 (2.30 GHz) computer for all the simulations. The netlist
synthesis took just a few seconds for all the designs. However,
the transistor sizing step spent a few seconds for small designs
such as RCA08 to 40 h for large designs such as DES_PERF.
Although the MUL_B64 and DES_PERF designs are much
larger than the other designs, they have several pipeline stages
and each pipeline is hierarchically organized. Thus, we applied
NP-Separate to each subdesign with proper timing budgeting,
which reduced the runtime significantly. Creating (drawing a
layout and performing DRC and LVS) an N or P cell took
approximately 20 min on average. Similarly, creating (draw-
ing input and output pins and performing DRC and LVS) an
NP cell took about 15 min on average. However, after we cre-
ated the N and P cells for a design, we reused them for the
other designs, so the N- and P-cell creation time is a one-time
design cost. For the NP-cell creation time, if we can auto-
matically route the input and output pins of an NP cell, the

TABLE IV
COMPARISON OF THE RUNTIME OF EACH STAGE. “P&R”

DENOTES PLACEMENT AND ROUTING

NP-cell creation time will be reduced significantly. We dis-
cuss the automatic input/output pin routing in Section VI-D.
Innovus spent only a few seconds to perform placement and
routing.

7) Iterative Transistor Sizing: In the transistor sizing step,
the load capacitance of each instance is unknown. Thus, we
estimate the load capacitance of an instance using a given stan-
dard cell library as follows. Suppose the output of an instance
drives a two-input NAND and a two-input NOR instances. Then,
we obtain the input capacitance (c1) of a two-input NAND

gate of a certain size and that (c2) of a two-input NOR gate
of a certain size and set the load capacitance of the tar-
get instance to the sum (c1 + c2) of the two capacitances.
Once we set the load capacitances for all the instances, we
perform transistor sizing and obtain the size of each transis-
tor. Then, we modify the load capacitances using the result
of the transistor sizing and perform transistor sizing again.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

DEWAN AND KIM: NP-SEPARATE: NEW VLSI DESIGN METHODOLOGY FOR AREA, POWER, AND PERFORMANCE OPTIMIZATION 5119

TABLE V
MINIMUM, MAXIMUM, AND AVERAGE OF THE DIFFERENCES (IN fF) OF

THE LOAD CAP. OF TWO SUCCESSIVE ITERATIONS FOR THE NP-DESIGNS

Table V shows the minimum, maximum, and average differ-
ences between estimated and actual load capacitances at each
iteration step. As the table shows, the absolute value of the
average difference after the first transistor sizing (Iteration-1)
is approximately 0.03 fF to 0.33 fF. After the second transis-
tor sizing (Iteration-2), the average difference becomes almost
zero.

VI. DISCUSSION

In this section, we discuss several issues existing in NP-
Separate and future work for the adoption of NP-Separate in
the VLSI layout design.

A. NP Cell Library

In Fig. 4, the NP cell library has only a physical library,
but not a timing and power library. The reason is that we
allow overlapping N and P instances in the placement. Thus,
if we characterize the NP cells and create a timing and power
library, we can use the timing and power library without allow-
ing instance overlaps. If we use the library and allow instance
overlaps, however, the accuracy of the library will go down,
so we will have to perform a full-design RC extraction again
in a later design stage. We can also build NP-designs with-
out the timing and power library as we showed in the case
study. In this case, however, the timing and power estimation
is postponed to the end of the layout design, so timing closure
and optimization will need several iterations from the place-
ment to the routing steps. We think the second method would
be the best among them, but better methodologies should
be developed for accurate timing and power estimation for
overlapped NP cell instances.

B. Transistor Sizing

An issue in NP-Separate is that the number of timing con-
straints has a great impact on the runtime of the transistor
sizing. Therefore, if the circuit size increases, the runtime for
transistor sizing will go up significantly. In our simulation,
we were able to successfully optimize all the transistors in
the 11 benchmarks. However, we failed to solve the non-
linear optimization problem for more complex benchmarks
because the solver could not find optimal solutions in a
reasonable amount of time. We can resolve the issue by

using more efficient algorithms [22], [23], fine-grained design
partitioning, multilevel hierarchical design, and progressive
sizing.

C. Algorithms—Placement

Since we can treat NP cells as standard cells, we can use
any placement algorithm to place NP cell instances. However,
overlapping NP cell instances requires additional algorithms,
especially new detailed placement algorithms. We formulate
the detailed placement problem for NP-Separate as follows.
The objective would be minimizing the total layout area.
There could be several constraints, but at least the follow-
ing three constraints should be imposed. First, the wirelength
after the detailed placement (overlapping NP cell instances)
should be within a certain range. For example, the wirelength
overhead should be less than 5%, otherwise, the layout area
minimization might lead to performance degradation. Second,
the maximum displacement of each NP cell instance should
also be within a certain range. Third, the N and P cell instances
belonging to an NP cell instance should be aligned. For
instance, suppose a wide N cell instance whose width is wN

and a narrow P cell instance whose width is wP are combined
into an NP cell instance. If the x-coordinate of the bottom-left
corner of the NP cell instance is xNP, the following should be
satisfied:

xN = xNP (7)

xNP ≤ xP ≤ xNP + (wN − wP) (8)

where xN and xP are the x-coordinates of the N and P cell
instances, respectively. Then, the detailed placement problem
is to adjust the locations of the N and P cell instances (i.e.,
overlap NP cell instances) under the constraints so that the
objective function is minimized.

Algorithm 1 shows a stochastic algorithm based on simu-
lated annealing for the detailed placement. The input consists
of a global placement result So generated from a commercial
tool, the initial temperature To and the stopping temperature
Tf for the annealing process, and the initial iteration number
Mo. α is the cooling rate, β controls the number of iterations
for each specific temperature, and maxTime and maxClimb
are the maximum limits for the iterations and the number of
hill climbing, respectively. First, we set the current tempera-
ture T to To, the current layout S and the best layout Sbest to
So, the maximum number of moves M to Mo, the current time
t to zero, and the number of rejects r to zero (line 1). If t is
less than the time limit, T is greater than Tf , and r is less than
a certain number (line 2), we call the metropolis function in
which we perturb the current layout to obtain better layouts
and adjust r, t, T , and M (lines 3 and 4).

In the metropolis function, we first set the number of
rejected moves to zero (line 7) and repeat perturbing the cur-
rent layout M times (line 8). We obtain a new layout Snew
from the current layout S (line 9) by the solution_perturbation
function. Snew might be NULL in which case we just reduce
M and repeat the solution perturbation (lines 10–13). If Snew
is not NULL, we compute the difference of the costs between
the new and the current layouts (line 14). The cost function

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

5120 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

could be the layout area for area minimization. If the cost dif-
ference is less than zero (i.e., the new layout is better than the
current layout) or a randomly generated number is less than
e−k·�cost/T , we replace the current layout by the new layout
(line 16) and adjust the number of hill climbing (line 18) and
the best layout (line 21).

The solution perturbation is 1) moving a randomly chosen
NP cell instance from its current row to one of its adjacent
rows or to a different location in the same row or 2) swap-
ping two randomly chosen NP cell instances. To maximize the
effect of moving NP cell instances, however, we precompute
the difference d between the widths of the N and P cells for
each NP cell instance. If d is positive, the N cell has a larger
width than the P cell. Thus, if two horizontally adjacent NP
cell instances have positive (or negative) d values, we cannot
overlap the instances. However, if one of them has a positive
d value, whereas the other has a negative d value, we might
be able to overlap them to minimize the total area. Thus, we
choose a positive-d and a negative-d NP cell instances for the
solution perturbation.

In line 29 in Algorithm 1, we randomly choose a
row (case 1) or two adjacent rows (case 2). For case 1, the row
becomes the p- and the n-rows for the perturbation. For case 2,
we randomly choose one of the rows for its p-row and the other
becomes its n-row. Then, we insert all the instances having
positive d values in the p-row to set P and all the instances hav-
ing negative d values in the n-row to set N (lines 30 and 31). If
one of the sets is empty, we return NULL (line 33). Otherwise,
we randomly choose an instance IP from P and an instance
IN from N (lines 35 and 36). Then, we move IP (or IN) to a
location adjacent to IN (or IP) or swap IP and IN (line 37). If
the wirelength of the new layout is larger than that of the cur-
rent layout by at least 5% after the perturbation, we reject the
move (line 39). Otherwise, we return the new layout (line 41).
Notice that moving NP cell instances requires adjustment of
the locations of some or all of the NP cell instances in the rows
affected by the move. Thus, the move in line 37 should include
the adjustment of the locations of the affected instances. Once
the detailed placement finishes, we can overlap adjacent NP
cell instances by checking the boundaries of the N and P cells
of the NP cell instances as shown in Fig. 7.

D. Algorithms—Routing (Input and Output Pins)

After the placement, we should route the input and output
pins of the N and P cell instances. We routed them manually
in this article, but automatic algorithms for the routing of input
and output pins would help reduce the design time. One way to
automatically route them is to use a signal net router. Suppose
an NP cell instance has two inputs A and B and an output Y .
Then, the N and P cell instances have their own input and out-
put pins. In this case, we can create a physical library for the N
and P cell instances and a netlist having the two instances. The
netlist has two nets for the input pins A and B and a net for the
output pin. Then, any router can route the three nets using the
netlist and only one metal layer. However, more efficient algo-
rithms dedicated for the routing of the inputs and outputs of N
and P cell instances would help minimize the parasitic RC of

Algorithm 1 A Simulated-Annealing-Based Detailed
Placement Algorithm
Function: detailed_placement (So, To, Tf , Mo, α, β,

maxTime, maxClimb)
1: T = To, S = So, Sbest = So, M = Mo, t = 0, r = 0;
2: while t ≤ maxTime and T > Tf and r

t < 0.95 do
3: r = r+ metropolis (S, T, M);
4: t = t + M; T = α · T; M = β · M;
5: end while
6: Return Sbest;

Function: metropolis (S, T, M)
7: reject = 0; climb = 0;
8: while M > 0 and climb ≤ maxClimb do
9: Snew = solution_perturbation (S);

10: if Snew == NULL then
11: M = M − 1;
12: continue;
13: end if
14: �cost = cost(Snew) - cost(S);
15: if �cost ≤ 0 or random() < e

−k·�cost
T then

16: S = Snew;
17: if �cost > 0 then
18: climb = climb + 1;
19: end if
20: if cost(S) < cost(Sbest) then
21: Sbest = S;
22: end if
23: else
24: reject = reject + 1;
25: end if
26: M = M − 1;
27: end while
28: Return reject;
Function: solution_perturbation (S)
29: Randomly pick two rows from S, same or adjacent.
30: Set P = {all the +d-value instances in the p-row};
31: Set N = {all the −d-value instances in the n-row};
32: if P.size == 0 or N.size == 0 then
33: Return NULL;
34: end if
35: IP = Randomly pick an instance from P.
36: IN = Randomly pick an instance from N.
37: Move IP (or IN) to an adjacent location of IN (or IP) or

swap IP and IN .
38: if hpwl(Snew)

hpwl(S)
> 1.05 then

39: Return NULL;
40: end if
41: Return Snew;

the instances. For example, if we allow only I-, L-, or Z-shaped
routing topologies for the input and output pins, we can gen-
erate all possible I-, L-, and Z-shaped routing topologies for
each pin and choose best shapes for all the pins concurrently
by linear programming. If some of the pins need detours, we
can route the inner pins first and the rest of them by maze
routing.

E. Synthesis and Layout Optimization

In Fig. 4, we synthesized a netlist using a standard cell
library, then converted the standard cell instances into NP
cell instances. However, synthesis software should be able
to use NP cell libraries to directly synthesize netlists of NP
cell instances. Timing and power optimization algorithms will

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

DEWAN AND KIM: NP-SEPARATE: NEW VLSI DESIGN METHODOLOGY FOR AREA, POWER, AND PERFORMANCE OPTIMIZATION 5121

also have to handle N and P cell instances. For example, siz-
ing an NP cell instance should be able to size the N and P
cell instances of the NP cell instance separately, which will
also require rerouting of the input and output pins of the NP
cell instance. Basically, all the optimization algorithms such
as repeater insertion should be able to optimize a given layout
using N and P cells.

F. Issues in NP-Separate

NP-Separate minimizes the layout area by incorporating
optimal transistor sizes and overlapping NP cell instances.
As a result, the pin density of an NP-design is higher than
its S-design counterpart, which might lead to an unroutable
layout. In this case, NP-Separate can mitigate the routabil-
ity issue by inserting white space into the congested area.
Overlapping NP cell instances as shown in Fig. 7 will also
increase the parasitic coupling capacitance between them.
Thus, it might degrade the performance of the instances, which
could also be mitigated by inserting white space between
the instances critically affected by the overlaps. In addition,
we perform RC extraction and characterization for the whole
design after placement and routing for accurate timing and
power analysis of the design. Thus, if the design is too large,
it would be better to characterize the NP cells and gener-
ate a timing and power library after creating the cells and
use the library during placement and routing without cell
overlapping.

In this article, we sized the transistors of inverters, NAND,
NOR, XOR, and XNOR cells only. A main reason that we did
not apply NP-Separate to more complex combinational and
sequential cells is as follows. First, the simple cells have very
regular, symmetric layout patterns. Thus, all the NFETs of an
N cell (or PFETs of a P cell) can have the same width, thereby
reducing the runtime for transistor sizing. In addition, since the
transistors of an N or P cell have the same width, the number
of N or P cells to create for a simple cell such as NAND2
is not too many. For example, the smallest and largest widths
of the two-input NAND cells used in the 11 benchmarks are
1× and 16×, respectively. Thus, there are total 16 different N
cells for two-input NAND. However, suppose the N cell of a
complex cell has n different widths for the NFETs in the cell.
If each of the widths can be 1× to m×, the total number of
N cells that should be generated for the complex cell is m · n
in the worst case. In addition, the layout of the N cell might
become very irregular.

VII. CONCLUSION

In this article, we have proposed a new VLSI design
methodology, NP-Separate, to optimize area, power, and
performance of a VLSI layout. NP-Separate uses N and P
cells to incorporate optimal transistor sizes in the VLSI lay-
out generation. The simulation results for all the benchmarks
show that NP-Separate reduces the layout area by 9%, power
consumption by 10%, PDP by 18%, and EDP by 26%. We
also discussed future work to apply the NP-Separate design
methodology to larger circuits. We believe that this article will
initiate research and development of new, effective algorithms

for NP-Separate to optimize area, power, and performance
further.

REFERENCES

[1] T. Mitsuhashi and E. S. Kuh, “Power and ground network topology
optimization for cell based VLSIs,” in Proc. ACM Design Autom. Conf.,
Anaheim, CA, USA, 1992, pp. 524–529.

[2] X. Wu, C. Qiao, and X. Hong, “Design and optimization of
power/ground network for cell-based VLSIs with macro cells,” in
Proc. Asia South Pac. Design Autom. Conf., Hong Kong, 1999,
pp. 21–24.

[3] G.-J. Nam and J. J. Cong, Modern Circuit Placement: Best Practices
and Results. New York, NY, USA: Springer, 2007.

[4] J. Lu et al., “ePlace: Electrostatics-based placement using fast Fourier
transform and Nesterov’s method,” ACM Trans. Design Autom. Electron.
Syst., vol. 20, no. 2, pp. 1–34, Mar. 2015.

[5] Z. Zhu, J. Chen, Z. Peng, W. Zhu, and Y.-W. Chang, “Generalized aug-
mented Lagrangian and its applications to VLSI global placement,” in
Proc. ACM Design Autom. Conf., Jun. 2018, pp. 1–6.

[6] L. P. P. P. van Ginneken, “Buffer placement in distributed RC-tree
networks for minimal Elmore delay,” in Proc. IEEE Int. Symp. Circuits
Syst., Vancouver, BC, Canada, May 1990, pp. 865–868.

[7] J. Cong, J. Lee, and L. Vandenberghe, “Robust gate sizing via mean
excess delay minimization,” in Proc. Int. Symp. Phys. Design, Apr. 2008,
pp. 10–14.

[8] Y.-M. Jiang, A. Krstic, K.-T. Cheng, and M. Marek-Sadowska, “Post-
layout logic restructuring for performance optimization,” in Proc. ACM
Design Autom. Conf., Jun. 1997, pp. 662–665.

[9] S.-H. Baek, H.-Y. Kim, Y.-K. Lee, D.-Y. Jin, S.-C. Park, and J.-D. Cho,
“Ultra-high density standard cell library using multi-height cell struc-
ture,” in Proc. SPIE, vol. 7268, 2008, pp. 1–8.

[10] S. Dobre, A. B. Kahng, and J. Li, “Mixed cell-height implementation for
improved design quality in advanced nodes,” in Proc. IEEE Int. Conf.
Comput.-Aided Design, Austin, TX, USA, Nov. 2015, pp. 854–860.

[11] C.-H. Wang et al., “An effective legalization algorithm for mixed-cell-
height standard cells,” in Proc. Asia South Pac. Design Autom. Conf.,
2017, pp. 450–455.

[12] C.-Y. Hung, P.-Y. Chou, and W.-K. Mak, “Mixed-cell-height stan-
dard cell placement legalization,” in Proc. Great Lakes Symp. VLSI,
May 2017, pp. 149–154.

[13] J. P. Fishburn and A. E. Dunlop, “TILOS: A posynomial programming
approach to transistor sizing,” in Proc. IEEE Int. Conf. Comput.-Aided
Design, 1985, pp. 326–328.

[14] M. A. Cirit, “Transistor sizing in CMOS circuits,” in Proc. ACM Design
Autom. Conf., 1987, pp. 121–124.

[15] J.-M. Shyu, A. Sangiovanni-Vincentelli, J. P. Fishburn, and
A. E. Dunlop, “Optimization-based transistor sizing,” IEEE J.
Solid-State Circuits, vol. JSSC-23, no. 2, pp. 400–409, Apr. 1988.

[16] B. A. Richman, J. E. Hansen, and K. Cameron, “A deterministic
algorithm for automatic CMOS transistor sizing,” IEEE J. Solid-State
Circuits, vol. JSSC-23, no. 2, pp. 522–526, Apr. 1988.

[17] A. R. Conn, P. K. Coulman, R. A. Haring, G. L. Morrill, and
C. Visweswariah, “Optimization of custom MOS circuits by transistor
sizing,” in Proc. IEEE Int. Conf. Comput.-Aided Design, San Jose, CA,
USA, 1996, pp. 174–180.

[18] V. Sundararajan, S. S. Sapatnekar, and K. K. Parhi, “Fast and exact
transistor sizing based on iterative relaxation,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 21, no. 5, pp. 568–581,
May 2002.

[19] J. Seo and D. H. Kim, “High-throughput multiplier architectures enabled
by intra-unit fast forwarding,” in Proc. IEEE Int. Symp. Comput.
Arithmetic, Jun. 2019, pp. 143–150.

[20] B. S. Anatolyevich, (2020). ALGLIB. [Online]. Available:
http://www.alglib.net

[21] A. Sridhar, A. Vincenzi, D. Atienza, and T. Brunschwiler, “3D-ICE:
A compact thermal model for early-stage design of liquid-cooled ICs,”
IEEE Trans. Comput., vol. 63, no. 10, pp. 2576–2589, Oct. 2014.

[22] S. Joshi and S. Boyd, “An efficient method for large-scale gate sizing,”
IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 55, no. 9, pp. 2760–2773,
Oct. 2008.

[23] S. Daboul, N. Hähnle, S. Held, and U. Schorr, “Provably
fast and near-optimum gate sizing,” IEEE Trans. Comput.-Aided
Design Integr. Circuits Syst., vol. 37, no. 12, pp. 3163–3176,
Dec. 2018.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

5122 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 12, DECEMBER 2020

Monzurul Islam Dewan received the B.Sc.
degree in electrical and electronic engineering
from the Bangladesh University of Engineering
and Technology, Dhaka, Bangladesh, in 2012. He
is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA,
USA.

He served as a Lecturer with the Department of
Electrical and Electronic Engineering, Ahsanullah
University of Science and Technology, Dhaka, from

2013 to 2015. His research interests include circuit optimization, design
automation and computer-aided design algorithms for very large-scale inte-
gration, and architecture for high-performance computing.

Dae Hyun Kim (Member, IEEE) received the
B.S. degree in electrical engineering from Seoul
National University, Seoul, South Korea, in 2002,
and the M.S. and Ph.D. degrees in electrical and
computer engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2007 and 2012,
respectively.

He is an Assistant Professor with the School
of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA, USA.
He worked on physical layout optimization with

Cadence Design Systems, Inc., San Jose, CA, USA, from 2012 to 2014. His
research interests include electronic design automation and computer-aided
design for VLSI, high-performance and/or low-power VLSI and computer
systems, and 3-D integrated circuits and systems.

Dr. Kim received the Defense Advanced Research Projects Agency Young
Faculty Award in 2016.

Authorized licensed use limited to: Washington State University. Downloaded on February 22,2021 at 20:53:07 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

