
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020 1165

Construction of All Rectilinear Steiner Minimum
Trees on the Hanan Grid and Its

Applications to VLSI Design
Sheng-En David Lin, Student Member, IEEE, and Dae Hyun Kim , Member, IEEE

Abstract—A rectilinear Steiner minimum tree (RSMT) is a
rectilinear Steiner tree connecting a given set of pins with
the shortest wirelength. RSMT construction is one of the most
frequently used algorithms in the physical design automation,
including floorplanning, placement, routing, and interconnect
estimation and optimization. Thus, efficient algorithms to con-
struct RSMTs have been developed for many years in academia
and industry. Unfortunately, RSMT construction is an NP-hard
problem, so even a fast RSMT construction algorithm, such as
GeoSteiner is too slow to use in physical design automation tools.
FLUTE, a fast lookup-table-based RSMT construction algorithm,
builds and uses a routing topology database to quickly con-
struct RSMTs. In this paper, we present an algorithm to build
a database (ARSMT DB) to construct all RSMTs on the Hanan
grid for a given set of pins. ARSMT DB constructs all RSMTs
in almost no time, so numerous applications could use it for var-
ious purposes. We apply the ARSMT DB to two applications,
timing-driven RSMT construction and congestion-aware global
routing, and show that the ARSMT DB can help reduce source-
to-critical-sink lengths, source-to-critical-sink delays, and routing
congestion significantly. Since the size of the original ARSMT DB
is too large, we present techniques to reduce the database size.

Index Terms—Congestion, rectilinear Steiner minimum tree
(RSMT), routing, wirelength.

I. INTRODUCTION

THE RECTILINEAR Steiner minimum tree (RSMT)
construction problem is finding an rectilinear Steiner

tree (RST) having the minimum length. Since there could be
infinitely many RSMTs for a given set of pin locations, the
RSMT construction problem is generally limited to finding
an RSMT on the Hanan grid [3]. RSMT or RST construc-
tion is heavily used in many computer-aided design (CAD)
tools. For example, floorplanning and placement use RSMTs
and RSTs to estimate the total wirelength and routing conges-
tion. Routing uses RSMTs and RSTs to find routing topologies
minimizing the total wirelength, routing congestion, and the

Manuscript received June 15, 2018; revised November 22, 2018; accepted
March 21, 2019. Date of publication May 20, 2019; date of current version
May 22, 2020. This work was supported in part by the Defense Advanced
Research Projects Agency Young Faculty Award under Grant D16AP00119,
and in part by Washington State University New Faculty Seed under Grant
125679-002. This paper was recommended by Associate Editors I. Bustany
and B. Chu. (Corresponding author: Dae Hyun Kim.)

The authors are with the School of Electrical Engineering and Computer
Science, Washington State University, Pullman, WA 99164 USA (e-mail:
dl23ee.lin@wsu.edu; daehyun@eecs.wsu.edu).

Digital Object Identifier 10.1109/TCAD.2019.2917896

critical path delay. Interconnect optimization, such as buffer
insertion also uses RSMTs and RSTs to optimize timing
and reduce dynamic power consumption. Thus, several fast
algorithms have been proposed in the literature to construct
an RSMT for a given set of pin locations [1], [2], [4]–[6].
However, the RSMT construction problem is NP-hard [7],
so several papers also proposed rectilinear minimum span-
ning tree (RMST) or RST construction algorithms for practical
use [1], [8]–[12].

FLUTE, a lookup-table-based RSMT construction algo-
rithm, builds a database composed of potentially optimal
wirelength vectors (POWVs) and potentially optimal Steiner
trees (POSTs) and constructs an RSMT in no time for a given
set of pin locations using the database for up to nine pins.
Among five RSMT and one RMST construction algorithms,
FLUTE achieves the shortest wirelength on average for all the
18 IBM benchmarks in [2]. In addition, its runtime is 5.56×
to 64.92× shorter than the runtime of all the other RSMT
algorithms compared in [2].

One of the applications heavily using RSMT construc-
tion is global routing in which RSMTs are used for routing
topologies. For example, BoxRouter [13], DpRouter [14],
Archer [15], MaizeRouter [16], FastRoute [17], GRIP [18],
and NTHU-Route [19] use FLUTE for routing topology gen-
eration. However, FLUTE constructs only one RSMT for a
net. In this paper, we propose an efficient algorithm to con-
struct all RSMTs on the Hanan grid for given pin locations.
The algorithm builds a database (called ARSMT DB) of all
POSTs on the Hanan grid for each POWV so that applica-
tions can quickly obtain all RSMTs from the ARSMT DB.
We perform sequential congestion-aware global routing using
FLUTE and the ARSMT DB and show that the ARSMT DB
can help reduce routing congestion significantly without run-
time overhead. We also use the ARSMT DB to minimize the
source-to-critical-sink length (SCSL) and source-to-critical-
sink delay (SCSD) of a given net. Minimizing the length
and delay from the source to a specific sink of a net with-
out degrading the total length of the net is very crucial for
timing closure and optimization. The simulation results show
that using the ARSMT DB significantly outperforms using
the FLUTE for the SCSL and SCSD minimization. We also
present techniques to reduce the database size.

The rest of this paper is organized as follows. We
review the RSMT construction algorithm used in FLUTE
in Section II. In Section III, we propose an algorithm
to build the ARSMT DB. Section IV shows simulation
results and detailed analysis for the database generation.

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8275-5949

1166 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

Fig. 1. Four pins on the Hanan grid, their position sequence (3142), and an
RSMT constructed on the Hanan grid.

In Section V, we present timing-driven RSMT construction
and congestion-aware global routing using the ARSMT DB.
Section VI explains techniques for the database size reduction
and we conclude in Section VII.

II. ALGORITHM OF FLUTE

In this section, we briefly review the idea of FLUTE [2].

A. Position Sequence

Let P = {p1, . . . , pn} be a set of n pins and assume that
all the pins have distinct x- and y-coordinates. In other words,
if the location of pi is (xpi , ypi), xpi �= xpj and ypi �= ypj for
any i and j (i �= j). Then, the Hanan grid constructed for
the n pins has n horizontal lines and n vertical lines. Let xi
be the x-coordinate of the ith vertical line from the left and yi
be the y-coordinate of the ith horizontal line from the bottom
on the Hanan grid as shown in Fig. 1. Then, we can character-
ize the distribution of the pins using a position sequence as fol-
lows. Suppose the x-coordinate of the pin whose y-coordinate
is yi is xsi . Then, the distribution of the pins has a position
sequence (s1s2 . . . sn). Fig. 1 shows four pins, the Hanan grid
constructed for them, and its position sequence (3142). Notice
that the position sequence is based on not the actual x- and
y-coordinates, but the relative locations of the pins. Thus, any
set of pin locations can be mapped into one of the n! position
sequences for n pins.

B. Potentially Optimal Wirelength Vector

The Hanan grid constructed for a position sequence can
be decomposed into horizontal and vertical edges as shown in
Fig. 1. The length of the horizontal edge whose end points are
(xi, yj) and (xi+1, yj) is hi = xi+1 − xi. Similarly, the length of
the vertical edge whose end points are (xk, ym) and (xk, ym+1)

is vm = ym+1 − ym. Then, we can express the wirelength of
any RST constructed on the Hanan grid using the lengths of
the horizontal and vertical edges. For example, the wirelength
of the RSMT shown in Fig. 1 is

L = 1 · h1 + 1 · h2 + 1 · h3 + 1 · v1 + 2 · v2 + 1 · v3 (1)

which can also be expressed as a dot product between
(1, 1, 1, 1, 2, 1) and (h1, h2, h3, v1, v2, v3). We call
(h1, h2, h3, v1, v2, v3) the edge length vector of the given set
of pin locations. The edge length vector is dependent on the
actual pin locations, but the coefficient vector (1, 1, 1, 1, 2, 1)

is dependent only on the RSMT topology. When two coef-
ficient vectors A = (a1, . . . , an) and B = (b1, . . . , bn) are

Fig. 2. RSMT construction from two POSTs.

Fig. 3. Overview of the FLUTE database.

given, if ai < bi holds for at least one i = 1, . . . , n and
aj ≤ bj holds for all the other j = 1, . . . , n, the dot product
A • H between A and an edge length vector H is always less
than B • H. However, if ai < bi holds for some i and aj > bj
holds for some j, A•H is greater or less than B•H depending
on H. We denote this relation by A ↔ B. FLUTE finds the
set of all coefficient vectors C for each position sequence
such that any two coefficient vectors ci and cj in C are in the
ci ↔ cj relation. Each element in C is called a POWV.

FLUTE builds a database of all POWVs for each position
sequence. Then, when the locations of pins are given, FLUTE
finds the position sequence of the pins and obtains all the
POWVs from the database. For each POWV, FLUTE computes
the dot product between the POWV and the edge length vector
and finds a POWV having the shortest wirelength.

C. Potentially Optimal Steiner Tree

Since FLUTE returns an RSMT for a given set of pin loca-
tions, FLUTE has to construct an actual RSMT. Thus, FLUTE
also stores a topology corresponding to each POWV in the
database. A topology stored for each POWV is called a POST.
Fig. 2 shows an example. For the four pins located at (1, 2),
(3, 4), (5, 1), and (8, 3), FLUTE obtains the position sequence
(3142) and two POWVs (1, 2, 1, 1, 1, 1) and (1, 1, 1, 1, 2, 1)

belonging to the position sequence. The POSTs correspond-
ing to the POWVs are also shown in the figure. Then, FLUTE
computes the wirelength for each POWV and returns the POST
corresponding to the POWV having the minimum wirelength.
We refer readers to [2] for the details of the FLUTE database
construction.

Fig. 3 shows an overview of the FLUTE database. It stores
all position sequences for n pins (n = 2, 3, . . . , 9). Each posi-
tion sequence has one or several POWVs. Each POWV has a
POST in the database.

III. CONSTRUCTION OF ALL RSMTS

A POST becomes an RSMT if the POWV of the POST
has the minimum wirelength for given pin locations. Thus,

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

LIN AND KIM: CONSTRUCTION OF ALL RSMTs ON HANAN GRID AND ITS APPLICATIONS TO VLSI DESIGN 1167

Fig. 4. Hanan grid for n pins.

constructing all RSMTs on the Hanan grid means constructing
all POSTs for all POWVs so that we can return all POSTs of
all POWVs having the minimum wirelength for the given pin
locations. In this section, we explain our algorithm to construct
all POSTs on the Hanan grid for a given set of pin locations.

A. Terminologies and Notations

Fig. 4 shows the Hanan grid constructed for n pins. There
exist n(n − 1) horizontal edges, n(n − 1) vertical edges, and
n2 vertices. If a vertex is a pin, we call the vertex a pin ver-
tex. We call the edges connected to a vertex the neighboring
edges of the vertex and denote the set of all the neighboring
edges of vertex d by NE(d). If edge ei connects vertices dj
and dk, we call {NE(dj) ∪ NE(dk)} − {ei} the set of the neigh-
boring edges of edge ei and denote it by NE(ei). In Fig. 4,
NE(d) is {e1, e2, e3, e4} and NE(e1) is {e2, e3, e4, e5, e6, e7}.
We denote the left and right vertices of horizontal edge ei
by VL(ei) and VR(ei), respectively. Similarly, we denote the
top and the bottom vertices of vertical edge ei by VT(ei) and
VB(ei), respectively. Thus, for example, NE(VL(ei)) is the set
of all the neighboring edges connected to the left vertex of
horizontal edge ei. We denote each horizontal edge by eh(i, j)
and each vertical edge by ev(i, j), where i and j are the indices
to locate the edge. The indices are shown in Fig. 4. If a vertex
of an edge is not a pin vertex and is not connected to any
other edges, the edge is dangling. If an edge is dangling, it
cannot be a part of a POST.

An edge on the Hanan grid can be available, used, or
removed. An available edge is an edge that is not used nor
removed, but we will decide to use or remove it to con-
struct a POST. e1 and e2 in Fig. 4 are available edges. A
used (or removed) edge is an edge that we have decided
to use (or remove) to construct a POST. e8 is a used edge
and e9 is a removed edge in Fig. 4. powv(e) for given edge
e is the POWV element corresponding to e. If a POWV
is (q1, q2, . . . , r1, r2, . . . ,), where qk is for the horizontal
edges and rk is for the vertical edges, powv(eh(i, j)) is qi+1
and powv(ev(i, j)) is ri+1. We also denote the set of all
edges whose POWV element is k by PE(k). For example,
PE(powv(eh(0, 0))) is {eh(0, 0), . . . , eh(0, n − 1)}.

B. Binary Tree-Based POST Construction

We construct a rectilinear graph G on the Hanan grid using
a binary tree B to find all POSTs for a given position sequence
and a POWV as follows. An internal node in B corresponds

Fig. 5. Rectilinear graph G constructed on the Hanan grid and a binary tree
B corresponding to G. The red path shows a decision sequence. e2 is removed
in G because the red path traverses through the right arrow of e2. O and X
mean the edge is used or removed in G, respectively.

Fig. 6. Must-use and must-remove edges.

to an edge in the Hanan grid. The left and right arrows of
an internal node means that we decide to use or remove the
edge in G, respectively. Fig. 5 shows an example. When we
traverse B starting from the root node e1, we decide to use or
remove e1 in G. When we reach a leaf node, we evaluate the
graph G, i.e., we check whether all the pins in G are connected
through the used edges. We use the breadth-first search (BFS)
algorithm to check the connectivity.

An exhaustive POST construction algorithm using B uses
the in-order traversal to traverse B and evaluates each graph
G constructed by B whenever it reaches a leaf node. However,
the exhaustive POST construction algorithm is too slow. The
Hanan grid constructed for n pins has 2n(n − 1) edges, so the
total number of leaf nodes in the complete binary tree con-
structed for the n pins has 22n(n−1) leaf nodes. Since we use
the BFS algorithm for the connectivity check of G and there
are 2n(n−1) edges, the complexity to check the connectivity is
O(n2). Thus, the complexity of the exhaustive POST construc-
tion algorithm is O(n2 · 22n(n−1)). When we find all POSTs,
however, we apply several pruning algorithms as follows to
reduce the search space.

1) Pruning by Zero POWV Elements: When element q in a
POWV becomes zero, we can remove all the available edges
in PE(q) from graph G. For example, if the position sequence
for four pins is (3142) as shown in Fig. 1 and a given POWV
is (1, 2, 1, 1, 1, 1), taking the left arrow of node eh(0, 0) in
B uses the edge in G and decreases the first element of the
POWV by 1, so the POWV becomes (0, 2, 1, 1, 1, 1). Since
the first element of the POWV is zero, eh(0, 1), eh(0, 2), and
eh(0, 3) in Fig. 1 should be removed from G.

2) Pruning by Must-Use and Must-Remove Edges: When
an edge on the Hanan grid is used or removed, there might
be edges that should also be used or removed. We call the
edges that should be used must-use edges and the edges that
should be removed must-remove edges. The reason that there
exist must-use and must-remove edges are as follows. First,
using an edge causes another edge to be a must-use edge.
For example, suppose we decide to use edge e1 in Fig. 6. If

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

1168 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

Algorithm 1: Construction of All POSTs for Given Pin
Locations and a POWV

input: Pin locations and a POWV (powv).
1: Ordered set E = (eh(0, 0), ..., ev(n − 2, n − 1));
2: R = {};
3: Call recursive_construction (powv, E, R, 0);
4: Return R;

function: recursive_construction (powv, E, R, index)
5: if powv == 0 or index == E.size then
6: if Current graph G connects all the pins then
7: Insert G into R;
8: end if
9: return;

10: end if
11: e = E[index];
12: if e is a used or removed edge then
13: Call recursive_construction (powv, E, R, index+1);
14: return;
15: end if
16: if powv(e) > 0 then
17: Call use_or_remove_and_prune (e, NULL, powv);
18: if # must-use and must-remove edges ≥ threshold then
19: if Current graph G connects all the pins then
20: recursive_construction (powv, E, R, index+1);
21: end if
22: else
23: recursive_construction (powv, E, R, index+1);
24: end if
25: Roll back the must-use and must-remove edges.
26: end if
27: Call use_or_remove_and_prune (NULL, e, powv);
28: if # must-use and must-remove edges ≥ threshold then
29: if Current graph G connects all the pins then
30: recursive_construction (powv, E, R, index+1);
31: end if
32: else
33: recursive_construction (powv, E, R, index+1);
34: end if
35: Roll back the must-use and must-remove edges.

NL(e1) is not a pin vertex, we should use e2 too, otherwise
e1 becomes a dangling edge. Thus, e2 becomes a must-use
edge. Second, removing an edge causes another edge to be a
must-remove edge. For example, suppose we decide to remove
e1 in Fig. 6, which causes e2 to be dangling. As a result,
e2 becomes a must-remove edge. If we remove e2, e3 also
becomes a must-remove edge, so we should remove e3 too. We
can remove multiple edges consecutively in this way. Third,
using or removing an edge can cause some of its neighboring
edges to be must-remove or must-use edges, respectively. For
example, if powv(e1) is 1 and we use e1 in Fig. 6, e6 and e7
become must-remove edges. On the other hand, if we remove
e4, e5 becomes a must-use edge because e5 is the only edge
connecting pin p1.

3) Intermediate Connectivity Check: In many cases, using
or removing edges occurs consecutively as explained above.
Using edges decreases the POWV elements corresponding to
them, so some of the POWV elements might become zero
during pruning. If some POWV elements become zero, all the
available edges corresponding to the POWV elements become
must-remove edges, so we remove them. If many edges are
removed, G is highly likely to be disconnected. Thus, we also
check whether all the pins are still connected through the used

and available edges in G during the pruning if the number of
used and removed edges at a pruning step is greater than a
predetermined threshold value.1

Evaluation of G checks whether G connects all the pins.
However, evaluating graphs too often increases the runtime
meaninglessly. Thus, we evaluate G only when: 1) the current
POWV becomes a zero vector or 2) we reach a leaf node in
B. We construct B for given pin locations and POWV as fol-
lows. The root node (at level 0) is eh(0, 0) and the two child
nodes (at level 1) of the root node are eh(0, 1). In general, the
nodes at level k are eh(�k/n	, k mod n) if k < n(n − 1) and
ev(�k/n	 − (n − 1), k mod n) if k >= n(n − 1). Although we
used a binary tree above to explain the proposed algorithm,
we implemented the algorithm using a recursive function call
without explicitly constructing a binary tree to reduce the
memory usage as shown in the next section.

C. Overall Algorithm

Algorithm 1 shows the overall algorithm for construct-
ing all POSTs for given pin locations and a POWV.
We first prepare an ordered set (array) E of all the
edges (line 1). The edges are sorted in the traversal order,
so E is (eh(0, 0), eh(0, 1), . . . , eh(1, 0), . . . , eh(n − 2, n −
1), ev(0, 0), ev(0, 1), . . . , ev(n−2, n−1)). Array R will contain
all the POSTs for the given pin locations and POWV (line 2).
Then, we call function recursive_construction with the current
POWV, E, R, and the edge index 0 (line 3). Once the recursive
function call finishes, we return R (line 4).

At the beginning of function recursive_construction, we
check whether the current POWV is equal to the zero vec-
tor or the edge index has reached the end of E (line 5). If
the condition is true, we check whether the current graph G
connects all the pins by performing a BFS starting from a
pin only through the used edges (line 6). If G is connected,
it is a POST, so we insert G into R (line 7) and finish the
current function call because there is no reason to explore
using/removing edges further (if the POWV is zero) or there
is no more edge to process (if the current node is a leaf node).

If the POWV is not equal to the zero vector and there are
remaining edges to process (line 11), we keep constructing
POSTs as follows. If the current edge e is a used or removed
edge (line 12), we move on to the next edge (line 13). If e
is an available edge, we check whether powv(e) is greater
than zero (line 16). If it is greater than zero, we try using e
and prune additional edges (line 17). Notice that we also try
removing e from G and prune additional edges later (line 27).
Once the pruning is done, we perform an intermediate connec-
tivity check (lines 18 and 19) if the number of must-use and
must-remove edges is greater or equal to a threshold number.
In this case, if we can reach all the pins in G through the used
and available edges, we call function recursive_construction
to continue to construct POSTs. If the number of must-use and
must-remove edges is less than the threshold number, we just
call function recursive_construction to move on to the next
edge. Then, we roll back all the changes by restoring G to
its previous state (line 25). Lines 27–35 try removing edge e
from G.

1We use the number of pins for the threshold.

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

LIN AND KIM: CONSTRUCTION OF ALL RSMTs ON HANAN GRID AND ITS APPLICATIONS TO VLSI DESIGN 1169

Algorithm 2: Use or Remove a Given Edge and Process
Must-Use and Must-Remove Edges

function: Use_or_remove_and_prune (u, m, powv)
input: Edge u to use, Edge m to remove, a POWV (powv).

1: U = {u};
2: M = {m};
3: while U.size + M.size > 0 do
4: while U.size > 0 do
5: for each e ∈ U do
6: if e is a removed edge or powv(e) == 0 then
7: return invalid_topology;
8: end if
9: Use e in G; Remove e from U;

10: powv(e) = powv(e) - 1;
11: if powv(e) == 0 then
12: Insert all available edges in PE(powv(e)) into M;
13: end if
14: Insert all must-use edges in NE(e) into U.
15: end for
16: end while
17: while M.size > 0 do
18: for each e ∈ M do
19: if e is a used edge then
20: return invalid_topology;
21: end if
22: Remove e from G; Remove e from M;
23: Insert all dangling edges in NE(e) into M;
24: Insert all must-use edges in NE(e) into U;
25: end for
26: end while
27: end while

Algorithm 2 shows the proposed algorithm for pruning
must-use and must-remove edges after using or removing a
given edge. First, insert given edge u into set U (line 1)
and insert given edge m into set M (line 2). Then, we keep
repeating processing must-use edges (from lines 4–16) and
must-remove edges (from lines 17–26). For each edge e in
U, we check whether e is a removed edge or powv(e) is
zero (line 6). If e is a removed edge or powv(e) is zero, we
cannot use e in G because it is contradictory, so the current
graph G cannot be a POST. Thus, if any of the two con-
ditions is true, we stop processing the must-use edge and
return invalid_topology (line 7). Otherwise, we use e in G and
remove e from U (line 9) and decrease powv(e) by 1 (line 10).
If powv(e) becomes zero, we insert all the available edges
in PE(powv(e)) into M so that we can remove the edges
later (line 12). If any of the edges in NE(e) are must-use
edges, we insert them into U (line 14) so that we can process
them later.

Once we process all the must-use edges in U, we move
on to the must-remove edges in M (line 17). If e in M is
a used edge (line 19), removing e from G leads to a con-
tradiction. Thus, we stop processing the must-remove edge
and return invalid_topology (line 20). Otherwise, we remove
e from G and U (line 22). Then, we insert all dangling edges
and must-use edges in NE(e) into M (line 23) and U (line 24),
respectively, to process them later.

D. Example

Fig. 7 shows an example. In Fig. 7(a), four pins, their
position sequence (4123), and a POWV (121111) are given.

Starting with edge e1, powv(e1) is 1, so we try using it first by
marking it used and reducing powv(e1) by 1 in Fig. 7(b). In
this case, e1 will be a dangling edge if e13 is not used, so e13
becomes a must-use edge. In addition, e2, e3, and e4 become
must-remove edges because the POWV element correspond-
ing to the edges is zero. In Fig. 7(c), we use e13 in G, decrease
powv(e13) by 1, and remove e2, e3, and e4. Since powv(e13)

becomes zero, e16, e19, and e22 become must-remove edges.
At the same time, e15 is a dangling edge. If we remove e15,
e14 becomes a dangling edge. Thus, we remove e14, e15, e16,
e19, and e22 in Fig. 7(d). e13 is not dangling because the top
vertex of e13 is a pin vertex.

When we remove e16 in Fig. 7(d), e5 becomes a must-use
edge because e1 will be dangling if e5 is not used. For the same
reason, e9 becomes a must-use edge. Thus, we use these two
edges and decrease powv(e5) and powv(e9) by 1 in Fig. 7(e).
Since the third element of the POWV is zero, e10, e11, and
e12 become must-remove edges. If we remove them, e23 and
e24 become dangling, so we remove them too in Fig. 7(f),
which shows the final result of using e1. Since the total num-
ber of must-use and must-remove edges at this step is 16,
which is greater than the total number of pins (four), we per-
form the intermediate connectivity check. Since the pins are
disconnected, using e1 will not generate POSTs. Thus, we roll
back all the used and removed edges and try removing e1 in
Fig. 7(g). e13 becomes dangling in this case, so we remove
e13 in Fig. 7(h). Then, we move on to e2.

IV. STATISTICS OF THE DATABASE GENERATION

In this section, we present several results obtained from
the ARSMT DB construction. We implemented the algorithm
using C/C++ and ran all simulations in a 3.3-GHz Intel Core
i5-3550 system with 32-GB memory. We used only one core
to build the database.

A. # POWVs, # POSTs, and DB Construction Time

Table I shows some statistics of the ARSMT DB construc-
tion. First, the total number of POSTs and the average number
of POSTs per POWV increase exponentially. The construction
time is almost negligible for up to five pins, but it increases
exponentially as the pin count goes up. We also show the
construction efficiency measured by the total number POSTs
divided by the construction time in seconds. As the table
shows, the construction efficiency goes down exponentially as
the pin count increases. Thus, constructing the ARSMT DB
for more than nine pins might be practically impossible.

B. Statistics of POSTs

In this simulation, we investigate how many times each edge
is used in all POSTs for given pin locations. The simulation
methodology is as follows. We first select a position sequence.
The position sequence can be an exact sequence, such as
(1234567) or include some don’t-cares (X). For example, posi-
tion sequence (12345XX) includes two position sequences
(1234567) and (1234576). Then, we search the ARSMT DB
to find all POSTs matching the position sequence and count
how many times each edge is used in the POSTs. This statis-
tics help estimate whether we can route a given net through

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

1170 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 7. Example of edge pruning.

TABLE I
STATISTICS OF THE CONSTRUCTION OF ALL POSTS. “CON. TIME” IS THE CONSTRUCTION TIME FOR ALL THE POSTS FOR EACH PIN COUNT AND

“CON. EFF.” IS THE CONSTRUCTION EFFICIENCY MEASURED BY THE NUMBER OF TOTAL POSTS OVER THE CONSTRUCTION TIME (IN SECONDS)

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 8. Statistics of POSTs for seven pins. The red edges are not used at all in any POSTs. Thicker edges are used in more POSTs than thinner edges. Green
rectangles are pins. Position sequences are as follows. (a) (1XXXXXX), (b) (X1XXXXX), (c) (XX1XXXX), (d) (XXX1XXX), (e) (X47X16X), (f) (3561724),
(g) (2514736), which is a position sequence having the fewest POSTs, and (h) (1734652), which is a position sequence having the most POSTs. X is a
don’t-care.

noncongested area. If an edge is used in most of the POSTs
for given pin locations, for example, it would be hard to route
the net without using the edge.

Fig. 8 shows eight examples for seven pins. In the figures,
the thickness of a black edge is proportional to the number of
times it is used. Red edges are not used at all. Green rectan-
gles are pins. First, Fig. 8(a) shows the usage of the edges for
(1XXXXXX), i.e., one of the pins is located at (0, 0). The two

edges adjacent to vertex (0, 0) are heavily used in the POSTs
and the edges in the center area are also used in many POSTs.
Thus, it would not be possible to route a net through the cen-
ter area if the position sequence of the net is (1XXXXXX).
Fig. 8(b) shows the edge usage for (X1XXXXX). In this case,
none of the POSTs uses edges eh(0, 0), ev(0, 0), eh(0, 6),
and ev(5, 0) no matter where the other six pins are located.
Similarly, position sequences (XX1XXXX) and (XXX1XXX)

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

LIN AND KIM: CONSTRUCTION OF ALL RSMTs ON HANAN GRID AND ITS APPLICATIONS TO VLSI DESIGN 1171

TABLE II
EFFECTIVENESS (RUNTIME IN SECONDS) OF THE PRUNING ALGORITHMS.

ALL: ENABLING ALL PRUNING ALGORITHMS. THE OTHER FOUR

COLUMNS ARE DISABLING: 1) ZERO POWV ELEMENTS; 2) MUST-USE

EDGES; 3) MUST-REMOVE EDGES; AND 4) INTERMEDIATE

CONNECTIVITY CHECK

do not use the same four edges and heavily use the right edge
of the pin vertex and the edges in the center of the grid as
shown in Fig. 8(c) and (d). Fig. 8(e) shows the usage for
position sequence (X47X16X), which we picked randomly.
For this position sequence, some edges, such as eh(1, 3),
eh(4, 2), and ev(4, 5) around the middle of the grid are used in
many POSTs. Fig. 8(f) shows the usage of an exact position
sequence (3561724). Since the pins are distributed around the
boundaries of the grid, the edges in the center area are used in
many POSTs. Fig. 8(g) shows the usage for (2514736), which
is a position sequence having the fewest POSTs and Fig. 8(h)
shows the usage for (1734652), which is a position sequence
having the most POSTs.

C. Effectiveness of the Pruning Algorithms

We use four pruning algorithms: 1) pruning by zero POWV
elements; 2) pruning by must-use edges; 3) pruning by must-
remove edges; and 4) intermediate connectivity check, to
reduce the POST construction time. Thus, we measured the
effectiveness of each algorithm by disabling each of them
while enabling all the other techniques. Table II shows that
pruning by must-use edges is the most effective technique.
However, the other three pruning techniques also help reduce
the runtime considerably.

D. POSTs Using/Not Using Specific Edges

A representative application of the proposed algorithm
is generating multiple routing topologies for global rout-
ing. Generating multiple RSMTs for each net can effectively
reduce routing overflows, minimize routing congestion, and
reduce the total coupling capacitance. In this section, we show
how to use the ARSMT DB to avoid nonpreferred (such as
congested) area and/or use preferred (such as noncongested)
area. Suppose a set of pin locations and nonpreferred region
are given. Then, we search the ARSMT DB to find all POWVs
belonging to the position sequence of the pin locations and
having the shortest wirelength. For each POST belonging to
the POWVs, we check whether the POST uses any edges in
the nonpreferred region. Finally, we return all the POSTs not
using any edges in the nonpreferred region. Fig. 9 shows an
example for position sequence (3561724) shown in Fig. 8(f).
We searched for POSTs not containing the removed edges
in Fig. 9. The POST in the figure shows one of the POSTs
satisfying the condition.

The search time consists of: 1) finding the position
sequence; 2) finding the set P all the POWVs belonging to
the position sequence and having the shortest wirelength; and
3) checking whether each POST in P contains specific edges.

Fig. 9. POST not using specific edges for position sequence (3561724).

(a) (b) (c) (d)

Fig. 10. Four RSMTs for position sequence (3142). (a) and (b) for POWV
121111 and (c) and (d) for POWV 111121.

The runtime of the first step is negligible and the complex-
ity of the second step is approximately O(n · 2n), where n is
the number of pins. The exponential term comes from the total
number of POWVs belonging to a position sequence as shown
in Table I and the multiplication factor n comes from the total
number of multiplications for the dot product computation.
The complexity of the third step is approximately O(k · 3n),
where n is the number of pins. The exponential term comes
from the total number of POSTs for a POWV and k is the
number of edges in the nonpreferred and/or preferred regions.

Notice that this does not solve the obstacle-avoiding RSMT
construction problem that finds RSTs having the minimum
wirelength for given pin locations and obstacles. Rather,
we return all POSTs (or RSMTs if their POWVs have the
minimum wirelength) that use and/or do not use specific edges.

E. Multiple RSTs for More Than Nine Pins

For high-degree nets having more than nine pins, it might
be inefficient or impossible (due to the large database size)
to build and use a POST database. However, the proposed
algorithm is not limited to constructing RSMTs. Rather, if pin
locations and a wirelength vector (WV) are given, the algo-
rithm can construct all RSTs belonging to the given WV. For
high-degree nets, therefore, we can run FLUTE to construct
an RST, obtain its WV, and run the proposed algorithm to
obtain multiple RSTs. In this experiment, we tried construct-
ing multiple RSTs using FLUTE for a few cases. Constructing
all RSTs for a 10-pin, an 11-pin, and a 12-pin cases (each with
one WV) found 324, 6390, and 870 RSTs in 10.9 s, 73.0 s,
and 7.9 s, respectively. The 12-pin case had a smaller search
space than the 10- and 11-pin cases, so it took only 7.9 s.

V. APPLICATIONS

In this section, we present two applications that can use
the ARSMT DB: 1) timing-driven RSMT construction and
2) congestion-aware global routing.

A. Timing-Driven RSMT Construction

The sinks of a net generally have different timing con-
straints. Thus, generating routing topologies that can minimize

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

1172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

TABLE III
COMPARISON OF THE FLUTE- AND ARSMT DB-BASED ROUTING FOR SCSL AND SCSD OPTIMIZATION. “AVG. DIFF.” AND “MAX. DIFF.” ARE THE

AVERAGE AND THE MAXIMUM OF THE SCSL AND SCSD DIFFERENCES, RESPECTIVELY. THE NUMBERS IN THE PARENTHESES ARE THE MAXIMUM

SCSL DIFFERENCES DIVIDED BY THE STANDARD CELL HEIGHT. “# D. NETS (%)” IS THE RATIO BETWEEN THE NUMBER OF NETS WHOSE SCSL OR

SCSD DIFFERENCES ARE NONZERO AND THE TOTAL NUMBER OF NETS. “AVG. DIFF. (D.)” IS THE AVERAGE OF THE SCSL (OR SCSD)
DIFFERENCES ONLY FOR THE NETS WHOSE SCSL (OR SCSD) DIFFERENCES ARE NONZERO

not only the total wirelength of the net but also the SCSL2

and SCSD is very important in the routing. However, apply-
ing only one RSMT to a net will not be able to optimize
the SCSL and SCSD of the net effectively. Fig. 10 shows an
example for the position sequence (3142). Fig. 10(a) and (b)
correspond to POWV (121111) and Fig. 10(c) and (d) corre-
spond to POWV (111121). Assuming all the edges have the
same length l, the four topologies have the same wirelength,
7l. Suppose the source pin is the one located at (2, 0) and the
critical sink pin is the one located at (3, 2). In this case, the
SCSLs of the topologies in Fig. 10(a)–(d) are 5l, 3l, 3l, and 3l,
respectively. Thus, the first topology gives the longest SCSL,
whereas the other three topologies give the shortest SCSL.
In addition, suppose each edge, each pin, and each internal
node are replaced by a resistor having resistance R, a capacitor
having capacitance CL, and a capacitor having capacitance Ci,
respectively. Then, the SCSDs (using the Elmore delay model)
of the four topologies in Fig. 10(a)–(d) are R(10CL + 10Ci),
R(6CL + 6Ci), R(5CL + 5Ci), and R(6L + 8Ci), respectively.
Thus, the topology in Fig. 10(c) has the shortest SCSL and
smallest SCSD.

To show the effectiveness of the ARSMT DB for timing-
driven RSMT construction, we compared two global rout-
ing approaches for the ISPD 2004 benchmarks [20]. The
experiment is as follows. We place the instances using
NTUPlace3 [21]. Then, for each global net whose degree
is greater than or equal to 4 and less than or equal to 8,
we randomly choose two pins, one for the source and the
other for the critical sink of the net. The first approach uses
only FLUTE to generate one RSMT for the net. The second
approach searches the ARSMT DB to find the best RSMT min-
imizing the SCSL (or SCSD) of the net. Then, we compute
the difference between the SCSL (or SCSD) values obtained
from the two approaches. Notice that the SCSLs and SCSDs

2The critical sink of a net is the sink having the smallest slack in the net.

of the RSMTs obtained from the ARSMT DB-based approach
are always smaller than or equal to those obtained from the
FLUTE-based approach.

Table III compares the FLUTE- and the ARSMT DB-based
approaches. The average SCSL difference is computed by

Avg. Diff. =
∑

n∈N(SCSLF(n) − SCSLA(n))

|N| (2)

where N is the set of all the nets whose degree is in the range
of [4, 8], |N| the size of N, SCSLF(n) the SCSL obtained
from FLUTE for net n, and SCSLA(n) the minimum SCSL
obtained from the ARSMT DB for net n. The average SCSL
differences are relatively small (the height of a cell is 16), but it
is because the FLUTE- and the ARSMT DB-based approaches
produce the same SCSL for most of the nets in N. In fact, the
ratio (“# d. nets” in the table) between the number of nets
having different SCSLs for the two approaches and the total
number of nets in N is approximately 11.1%. Thus, 88.9% of
the nets in N obtain the same SCSL from the FLUTE- and
ARSMT DB-based approaches. If we calculate the average
SCSL differences only for the nets having different SCSLs,
the average value increases to 45.0 on average as shown in
the table.

However, the maximum SCSL differences between the two
approaches are very large as shown in the third column of
Table III. The numbers in the parentheses are the maximum
SCSL differences divided by the standard cell height (16).
As the table shows, the maximum SCSL differences in the
relatively small benchmarks, such as ibm01 and ibm02 are
between 14 and 50 rows, but those in the large benchmarks,
such as ibm15 and ibm17 are greater than 160 rows. Thus,
this comparison study shows that we can effectively minimize
the SCSL by an exhaustive search of the ARSMT DB. The
runtime overhead for the exhaustive search is negligible.

Fig. 11 shows several representative cases that have the
maximum SCSL differences between two pins. In Fig. 11(a),

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

LIN AND KIM: CONSTRUCTION OF ALL RSMTs ON HANAN GRID AND ITS APPLICATIONS TO VLSI DESIGN 1173

(a) (b)

(c)

(d)

(e)

Fig. 11. Two RSMTs having the maximum SCSL difference between two red
pins for each position sequence. (a) Four-pin net. (b) Five-pin net. (c) Six-pin
net. (d) Seven-pin net. (e) Eight-pin net.

for example, the lengths between the two red pins are 2 and 4
on the left- and right-hand sides, respectively, so the difference
is 2. Similarly, the differences in Fig. 11(b)–(e) are 2, 4, 6,
and 10, respectively. Thus, the ARSMT DB could help timing-
driven global routers find one or multiple RSMTs minimizing
the SCSL for a given net.

Table III also compares the FLUTE- and the ARSMT DB-
based approaches for SCSD optimization. We used the Elmore
delay model to calculate the delay values. The output resis-
tance of a driver is 100 �, the unit wire resistance and
capacitance are 2 � per length and 0.4 fF per length, respec-
tively, and the capacitance of each pin is 5 fF. The average
SCSD difference between the two approaches is 3.7 ps, which
is almost negligible. In addition, the average SCSD differ-
ence for the nets having difference SCSDs is only 9.8%.
However, the maximum SCSD differences are very large. For
example, the maximum SCSD differences in the ibm15 and
ibm17 benchmarks are greater than 8 ns. Overall, the ARSMT
DB can help find RSMTs having the minimum SCSD effi-
ciently. Notice that buffer insertion along the RSMTs will
reduce the SCSD differences between the two approaches,
but the ARSMT DB can still help find minimum-SCSL and
minimum-SCSD RSMTs.

B. Congestion-Aware Global Routing

Another representative application of the ARSMT DB is
the congestion-aware (routability-driven) global routing. Many
global routing algorithms use RSMTs to find high-quality rout-
ing topologies [13]–[19]. However, all the RSMT generators

Fig. 12. Example for congestion cost computation.

generate only one RSMT for a net, which could result in
serious routing congestion. In this experiment, we perform
global routing using the ARSMT DB to reduce the congestion
without wirelength overhead.

The experiment is as follows. First, we place instances using
NTUPlace3 [21] and build a global routing data structure (bins,
edges, etc.). Then, for each global net, we generate a routing
topology using FLUTE and proceed to the next net in the
FLUTE-based global routing. In the ARSMT DB-based global
routing, we obtain all RSMTs for each global net, compute the
congestion cost for each RSMT, and obtain the best RSMT that
has the lowest cost. We use the amount of overflows for the
congestion cost, which is defined as follows:

gi =
∑

e∈Ei

(de − ce)u[de − ce] (3)

where gi is the congestion cost of net i, Ei the set of all the
global routing edges that net i goes through, de the number
of nets going through e, ce the maximum capacity of e, and
u[x] is the unit-step function. Fig. 12 shows an example for
a two-pin net. The maximum capacity of each edge in the
grid is 5. The numbers in the figure show the numbers of nets
going through the global routing edges. The congestion cost
for topology A is (5+1−5)+(5+1−5)+0+0 = 2, whereas
that for topology B is (6+1−5)+(6+1−5)+0+0 = 4, so we
choose topology A to minimize the total overflow. For high-
degree nets, we use FLUTE to get an RST for both FLUTE-
and ARSMT DB-based global routing.

Table IV shows the global routing result for the ISPD 2004,
2005, and 2006 benchmark suites [22], [23]. “# g. nets” is the
number of global nets. Since we use the ARSMT DB only for
low-degree nets, the number of nets routed using the ARSMT
DB (“# r. nets” in the table) is slightly less than the total
number of global nets. However, most of the global nets are
low-degree nets, so they can show the effectiveness of the
ARSMT DB. Notice that they have the same total wirelength
because both of them use RSMTs for low-degree nets and the
same RSTs for high-degree nets.

The table shows that the FLUTE-based routing has much
more overflows than the ARSMT DB-based routing. On aver-
age, the ARSMT DB-based routing has 85.39% less overflows
than the FLUTE-based routing. In addition, the maximum
overflow of the ARSMT DB-based routing is less than that
of the FLUTE-based routing for all the benchmarks except
adaptec5. On average, the ARSMT DB-based routing has
83.71% lower maximum overflow than the FLUTE-based rout-
ing. The average overflow (the total overflow over the number
of edges) of the ARSMT DB-based routing is 83.89% less
than that of the FLUTE-based routing. Overall, the ARSMT
DB-based sequential global routing optimizes the total over-
flow, the number of overflow edges, the maximum overflow,

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

1174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

TABLE IV
SEQUENTIAL GLOBAL ROUTING RESULT. “# G. NETS” IS THE TOTAL NUMBER OF GLOBAL NETS. “# R. NETS” IS THE NUMBER OF GLOBAL NETS

ROUTED USING THE ARSMT DB. “# OV” IS THE TOTAL NUMBER OF OVERFLOWS. “(F)” AND “(O)” ARE THE FLUTE- AND THE ARSMT DB-BASED

ROUTING, RESPECTIVELY. “% OV IMP.” IS (# OV(O) - # OV(F)) * 100/# OV(F). “M. OV” IS THE MAXIMUM OVERFLOW.“A. OV” IS THE AVERAGE

OVERFLOW. “RT” IS THE RUNTIME (IN SECONDS) FOR GLOBAL ROUTING. GM: GEOMETRIC MEAN. AM: ARITHMETIC MEAN

and the average overflow much more effectively than the
FLUTE-based sequential global routing.

The runtime of the FLUTE-based routing is less than two
seconds for all the cases, whereas the runtime of the ARSMT
DB-based routing is less than 30 s. The runtime ratio between
the ARSMT DB- and FLUTE-based routing is 21.76 on aver-
age. However, the absolute runtime overhead is negligible as
the table shows.

VI. DATABASE SIZE REDUCTION

As shown in Section IV, the database size is prohibitively
large, especially when the pin count is nine. In this section,
therefore, we present several techniques to reduce the size of
the ARSMT DB, database loading time, and memory usage.

A. Raw Database

The raw ARSMT DB uses the database structure shown in
Fig. 13 to store the POST data. The database consists of posi-
tion sequence lines, POWV lines, and POST lines. A position
sequence line is “P seq,” where “P” denotes a new posi-
tion sequence and seq is its actual position sequence. All the
POWVs belonging to the position sequence appear between
the position sequence line and the next position sequence line
or the end of file. A POWV line is “V vec,” where “V” denotes

a new POWV and vec is its actual POWV. All the POSTs
belonging to the POWV appear between the POWV line and
the next POWV line or the next position sequence line or
the end of file. A POST line is “Hh_edgesVv_edges,” where
h_edges and v_edges are the coordinates of the horizontal and
vertical edges, respectively.

h_edges consists of uppercase and lowercase alphabets,
which are their x- and y-coordinates, respectively. The map-
ping between an alphabet and its coordinate is that “A” or
“a” corresponds to 0, “B” or “b” corresponds to 1, and the
other alphabets are mapped into integers in a similar way. For
example, “Ab” for a horizontal edge means eh(0, 1). To reduce
the number of characters, horizontal edges having the same x-
coordinate share the x-coordinate. Thus, “Abde” for horizontal
edges denote three edges eh(0, 1), eh(0, 3), and eh(0, 4). We
process v_edges in the same way. The database size shown in
the 12th column (raw data table size) in Table I is the size of
the database of the raw data.

B. Congruence and Difference Encoding

The input to the database generator is the raw database
explained in Fig. 13 and the output is an encoded database.
Users can open the database, decode the data, and load it into
their applications and use the raw data.

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

LIN AND KIM: CONSTRUCTION OF ALL RSMTs ON HANAN GRID AND ITS APPLICATIONS TO VLSI DESIGN 1175

Fig. 13. Raw database structure and the proposed encoding and decoding
flow for database size reduction.

Two techniques are used in [2] to reduce the database size of
FLUTE. The first technique is to use congruence. For exam-
ple, position sequences (12345) and (54321) have the same
set of POSTs, but the POSTs are symmetric about the y-axis.
Thus, we need to store POSTs only for one of them (called
a base position sequence). For the other position sequence,
we can obtain all POSTs using a transformation rule between
the position sequences. In Fig. 13, therefore, only one line “P
54321 P 12345 Y” suffices for storing all POSTs for posi-
tion sequence (54321), where “Y” denotes the transformation
rule (reflection over the y-axis). A congruence check between
two position sequences includes rotation of one of the position
sequences and the image of its reflection about the y-axis by
90◦, 180◦, and 270◦.

The second technique used in [2] for database size reduction
is to store only differences between two POSTs. As explained
in [2], many POSTs are similar to each other. Thus, FLUTE
stores full data for a few POSTs and difference data for all the
other POSTs. We apply a similar technique to the ARSMT DB
as follows. Suppose we encode the (i + 1)th POST by compar-
ing it with the ith POST. The format of the encoded POST is
still “Hh_edgesVv_edges.” If the (i+1)th POST has exactly the
same horizontal or vertical edges as the ith POST in column k
or row k, we skip them. Otherwise, we store the column or row
coordinate and the y- or x-coordinates of the edges used in the
column or row, respectively. For example, the raw data of the
POST in Fig. 14(a) is “HAaBbCbdDdVAbBdCdDe” and that
of the POST in Fig. 14(b) is “HAaBbCbdDeVAbBdCdDd.”
If we store only the differences, however, the latter becomes
“HDeVDd.”

C. Simulation Results

Table V shows statistics of database encoding and database
loading time. We used a 7200-RPM hard disk drive for the
simulation. The sizes of the raw and encoded database are the
same as the table sizes shown in Table I. As the table shows,

(a) (b)

Fig. 14. Difference encoding. (a) HAaBbCbdDdVAbBdCdDe. (b) HDeVDd
relative to (a). The coordinate systems in (a) and (b) are for the horizontal
and vertical edges, respectively.

TABLE V
STATISTICS OF DATABASE ENCODING AND DATABASE LOADING TIME

(FROM A 7200-RPM HDD). “R (C)” AND “R (D)” ARE THE DATABASE

SIZE REDUCTION RATIOS BY THE CONGRUENCE CHECK AND THE

DIFFERENCE ENCODING, RESPECTIVELY. THE LOADING TIME

INCLUDES THE RUNTIME FOR DIFFERENCE DECODING. MEMORY

USAGE IS THE SIZE OF THE MEMORY ALLOCATED TO

STORE THE POST DATABASE IN MEMORY

the size of the encoded database is much less than that of
the raw database. The database size reduction ratio (# gener-
ated POSTs divided by the total # POSTs) by the congruence
check is approximately 0.375 and 0.128 for the three- and
nine-pin cases, respectively, and varies between the two values
for the four- to eight-pin cases as shown in Table V. In the
best case, eight position sequences are congruent for which
the database size reduction ratio is 0.125. As the pin count
increases, more position sequences are congruent to each other,
so the database size reduction ratio approaches 0.125. The
database size reduction ratio by the difference encoding varies
between 0.29 and 0.88. Thus, both the congruence-based and
difference-encoding-based database size reduction techniques
are very effective.

Table V also shows database loading time and memory
usage, which is the “Load” process in Fig. 13. The loading
time is almost negligible for all the cases. Although the loading
time for the nine-pin case is approximately ten minutes, global
routing of large designs generally takes much longer time than
that [24], [25]. The maximum memory usage is 20 GB, which
is also acceptable for the design of large, complex layouts.
Notice that the loaded database is still difference-encoded.
Thus, processing a database query requires real-time con-
gruence check and difference decoding. However, the actual
runtime of the congruence check and difference decoding is
negligible .

VII. CONCLUSION

In this paper, we proposed an efficient algorithm to create
a database for an efficient RSMT construction. The ARSMT
DB can return all the RSMTs for a given set of pins in no

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

1176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

time, so its application is numerous. We showed two repre-
sentative applications: 1) SCSL and 2) SCSD minimization
and congestion-aware global routing. Use of the ARSMT DB
helps minimize the SCSL and SCSD for a given net and also
minimize routing congestion during global routing effectively.
Since the size of the ARSMT DB is large, we proposed tech-
niques to reduce the size of the ARSMT DB. We believe that
the ARSMT DB can help all the electronic design automation
software improve the quality of layouts and reduce the runtime
for placement, routing, and various optimization.

REFERENCES

[1] GeoSteiner. Software for Computing Steiner Trees. Accessed: Jan. 2017.
[Online]. Available: http://www.geosteiner.com

[2] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilin-
ear Steiner minimal tree algorithm for VLSI design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83,
Jan. 2008.

[3] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM J.
Appl. Math., vol. 14, no. 2, pp. 255–265, Mar. 1966.

[4] J. L. Ganley and J. P. Cohoon, “Optimal rectilinear Steiner minimal
trees in O(n22.62n) time,” in Proc. Can. Conf. Comput. Geometry, 1994,
pp. 308–313.

[5] J. L. Ganley and J. P. Cohoon, “A faster dynamic programming algo-
rithm for exact rectilinear Steiner minimal trees,” in Proc. Great Lakes
Symp. VLSI, 1994, pp. 238–241.

[6] J. L. Ganley and J. P. Cohoon, “Improved computation of optimal rec-
tilinear Steiner minimal trees,” Int. J. Comput. Geometry Appl., vol. 7,
no. 5, pp. 457–472, Oct. 1997.

[7] M. R. Garey and D. S. Johnson, Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: Freeman,
1979.

[8] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang, “Closing the gap:
Near-optimal Steiner trees in polynomial time,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 13, no. 11, pp. 1351–1365,
Nov. 1994.

[9] M. Borah, R. M. Owens, and M. J. Irwin, “An edge-based heuristic
for Steiner routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 13, no. 12, pp. 1563–1568, Dec. 1994.

[10] I. I. Mandoiu, V. V. Vazirani, and J. L. Ganley, “A new heuristic for recti-
linear Steiner trees,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 19, no. 10, pp. 1129–1139, Oct. 2000.

[11] A. B. Kahng, I. I. Mandoiu, and A. Z. Zelikovsky, “Highly scalable
algorithms for rectilinear and octilinear Steiner trees,” in Proc. Asia
South Pac. Design Autom. Conf., Jan. 2003, pp. 827–833.

[12] H. Zhou, “Efficient Steiner tree construction based on spanning graphs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 5,
pp. 704–710, May 2004.

[13] M. Cho and D. Z. Pan, “BoxRouter: A new global router based on box
expansion and progressive ILP,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 26, no. 12, pp. 2130–2143, Dec. 2007.

[14] Z. Cao, T. Jing, J. Xiong, Y. Hu, L. He, and X. Hong, “DpRouter: A fast
and accurate dynamic-pattern-based global routing algorithm,” in Proc.
Asia South Pac. Design Autom. Conf., 2007, pp. 256–261.

[15] M. M. Ozdal and M. D. F. Wong, “Archer: A history-driven global rout-
ing algorithm,” in Proc. IEEE Int. Conf. Comput.-Aided Design, 2007,
pp. 488–495.

[16] M. D. Moffitt, “MaizeRouter: Engineering an effective global router,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 11,
pp. 2017–2026, Nov. 2008.

[17] Y. Xu, Y. Zhang, and C. Chu, “FastRoute 4.0: Global router with efficient
via minimization,” in Proc. Asia South Pac. Design Autom. Conf., 2009,
pp. 576–581.

[18] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Scalable 3D global
routing using integer programming,” in Proc. ACM Design Autom. Conf.,
2009, pp. 320–325.

[19] Y.-J. Chang, Y.-T. Lee, J.-R. Giao, P.-C. Wu, and T.-C. Wang,
“NTHU-Route 2.0: A robust global router for modern designs,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 29, no. 12,
pp. 1931–1944, Dec. 2010.

[20] N. Viswanathan and C. C.-N. Chu, “FastPlace: Efficient analytical place-
ment using cell shifting, iterative local refinement and a hybrid net
model,” in Proc. Int. Symp. Phys. Design, Mar. 2004, pp. 26–33.

[21] T.-C. Chen, Z.-W. Jiang, T.-C. Hsu, H.-C. Chen, and Y.-W. Chang,
“NTUplace3: An analytical placer for large-scale mixed-size designs
with preplaced blocks and density constraints,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 27, no. 7, pp. 1228–1240,
Jul. 2008.

[22] G.-J. Nam, C. J. Alpert, P. Villarrubia, B. Winter, and M. Yildiz, “The
ISPD2005 placement contest and benchmark suite,” in Proc. Int. Symp.
Phys. Design, 2005, pp. 216–220.

[23] G.-J. Nam, “The ISPD 2006 placement contest: Benchmark suite and
results,” in Proc. Int. Symp. Phys. Design, 2006, p. 167.

[24] T.-H. Wu, A. Davoodi, and J. T. Linderoth, “GRIP: Global routing
via integer programming,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 30, no. 1, pp. 72–84, Jan. 2011.

[25] K.-R. Dai, W.-H. Liu, and Y.-L. Li, “NCTU-GR: Efficient simulated
evolution-based rerouting and congestion-relaxed layer assignment on
3-D global routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 20, no. 3, pp. 459–472, Mar. 2012.

Sheng-En David Lin (S’16) received the B.S.
degree in electrical engineering from Washington
State University, Pullman, WA, USA, in 2014, where
he is currently pursuing the Ph.D. degree with the
Department of Electrical Engineering and Computer
Science.

His current research interests include modeling
for very large scale integration (VLSI) circuits and
systems and algorithms for VLSI CAD automa-
tion with current focus on designing of monolithic
3-D ICs.

Dae Hyun Kim (S’08–M’12) received the B.S.
degree in electrical engineering from Seoul National
University, Seoul, South Korea, in 2002, and the
M.S. and Ph.D. degrees in electrical and com-
puter engineering from the Georgia Institute of
Technology, Atlanta, GA, USA, in 2007 and 2012,
respectively.

He is an Assistant Professor with the School
of Electrical Engineering and Computer Science,
Washington State University, Pullman, WA, USA.
He researched on physical layout optimization with

Cadence Design Systems, Inc., San Jose, CA, USA, from 2012 to 2014. His
current research interests include electronic design automation and computer-
aided design for very large scale integration (VLSI), high-performance and/or
low-power VLSI and computer systems, and 3-D integrated circuits and
systems.

Dr. Kim was a recipient of the Defense Advanced Research Projects Agency
Young Faculty Award in 2016.

Authorized licensed use limited to: Washington State University. Downloaded on May 22,2020 at 23:40:48 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

