
16

HeM3D: Heterogeneous Manycore Architecture Based on

Monolithic 3D Vertical Integration

AQEEB IQBAL ARKA and BIRESH KUMAR JOARDAR, Washington State University,

Pullman, WA

RYAN GARY KIM, Colorado State University, Fort Collins, CO

DAE HYUN KIM, JANARDHAN RAO DOPPA, and PARTHA PRATIM PANDE,

Washington State University, Pullman, WA

Heterogeneous manycore architectures are the key to efficiently execute compute- and data-intensive appli-

cations. Through-silicon-via (TSV)-based 3D manycore system is a promising solution in this direction as it

enables the integration of disparate computing cores on a single system. Recent industry trends show the

viability of 3D integration in real products (e.g., Intel Lakefield SoC Architecture, the AMD Radeon R9 Fury

X graphics card, and Xilinx Virtex-7 2000T/H580T, etc.). However, the achievable performance of conven-

tional TSV-based 3D systems is ultimately bottlenecked by the horizontal wires (wires in each planar die).

Moreover, current TSV 3D architectures suffer from thermal limitations. Hence, TSV-based architectures do

not realize the full potential of 3D integration. Monolithic 3D (M3D) integration, a breakthrough technology

to achieve “More Moore and More Than Moore,” opens up the possibility of designing cores and associated

network routers using multiple layers by utilizing monolithic inter-tier vias (MIVs) and hence, reducing the

effective wire length. Compared to TSV-based 3D integrated circuits (ICs), M3D offers the “true” benefits of

vertical dimension for system integration: the size of an MIV used in M3D is over 100 × smaller than a TSV.

This dramatic reduction in via size and the resulting increase in density opens up numerous opportunities for

design optimizations in 3D manycore systems: designers can use up to millions of MIVs for ultra-fine-grained

3D optimization, where individual cores and routers can be spread across multiple tiers for extreme power

and performance optimization. In this work, we demonstrate how M3D-enabled vertical core and uncore el-

ements offer significant performance and thermal improvements in manycore heterogeneous architectures

compared to its TSV-based counterpart. To overcome the difficult optimization challenges due to the large

design space and complex interactions among the heterogeneous components (CPU, GPU, Last Level Cache,

etc.) in a M3D-based manycore chip, we leverage novel design-space exploration algorithms to trade off

different objectives. The proposed M3D-enabled heterogeneous architecture, called HeM3D, outperforms its

state-of-the-art TSV-equivalent counterpart by up to 18.3% in execution time while being up to 19°C cooler.

This work was supported in part by the U.S. National Science Foundation (NSF) grants no. CNS-1955353 and no. CNS-

1564014 and U.S.A. Army Research Office grant no. W911NF-17-1-0485.

Authors’ addresses: A. I. Arka and B. K. Joardar, Washington State University, 355 NE Spokane St, Pullman, WA 99163;

emails: {aqeebiqbal.arka, biresh.joardar}@wsu.edu; R. G. Kim, Colorado State University, Engineering C201G, 1373 Campus

Delivery, Fort Collins, CO, 80524; email: ryan.g.kim@colostate.edu; D. H. Kim, J. R. Doppa, and P. P. Pande, Washington

State University, 355 NE Spokane St, Pullman, WA 99163; emails: {daehyun.kim, jana.doppa, pande}@wsu.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2021 Association for Computing Machinery.

1084-4309/2021/01-ART16 $15.00

https://doi.org/10.1145/3424239

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

mailto:permissions@acm.org
https://doi.org/10.1145/3424239

16:2 A. I. Arka et al.

CCS Concepts: • Computer systems organization → Architectures; Other architectures; Heteroge-

neous (hybrid) systems;

Additional Key Words and Phrases: Heterogeneous manycore, NoC, M3D, performance, execution time, tem-

perature, multi-tier

ACM Reference format:

Aqeeb Iqbal Arka, Biresh Kumar Joardar, Ryan Gary Kim, Dae Hyun Kim, Janardhan Rao Doppa, and Partha

Pratim Pande. 2021. HeM3D: Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Inte-

gration. ACM Trans. Des. Autom. Electron. Syst. 26, 2, Article 16 (January 2021), 21 pages.

https://doi.org/10.1145/3424239

1 INTRODUCTION

Heterogeneous manycore systems that integrate multiple CPU and GPU cores on a single chip
are widely used as enablers of data- and compute-intensive applications [1, 2]. Through-silicon-
via (TSV)-based 3D ICs enable the design of high-performance and energy-efficient single-chip
heterogeneous systems [3]. However, the relatively large dimensions of TSVs (∼μm) present some
fundamental limitations in high-performance, low-power manycore architecture design: (a) fine-
grained partitioning of logic blocks across multiple tiers is not possible [4], forcing only planar
implementations of cores and their associated logic elements; (b) thick bonding material introduces
heat dissipation challenges [5]; and (c) TSVs add non-negligible area and power overheads. Overall,
TSV-based 3D designs cannot achieve the full potential of vertical integration. This can lead to poor
performance-thermal tradeoffs in 3D CPU/GPU-based heterogeneous manycore design.

Meanwhile, monolithic 3D (M3D) has emerged as a promising technology for fine-grained ver-
tical integration. In M3D, two or more tiers of devices are fabricated sequentially, one on top of
another. This eliminates the need for any die alignment, which enables considerably smaller via
sizes [4]. M3D integration uses nano-scale monolithic inter-tier vias (MIVs; with diameter of ∼50
nm) to connect the vertical device layers. MIVs are similar to regular metal-layer vias and can be
used to design hardware logic over multiple tiers [4]. This results in significantly higher integra-
tion density than that of TSV-based 3D integrated circuits (ICs). In addition, this leads to better
performance and energy efficiency. For instance, an M3D-enabled adder spanning two tiers out-
performs conventional designs by 33% [6]. In a homogeneous manycore setting, M3D has been
used to design high-performance network-on-chip (NoC) architectures that outperform its TSV-
based counterpart by 28% [7]. However, a CPU/GPU-based heterogeneous manycore architecture
using M3D integration is significantly more complex and remains unexplored.

A typical CPU/GPU-based manycore architecture principally consists of cores (CPU and GPU)
that are connected using an NoC [8]. Designing the cores and the uncores (NoC and cache) using
M3D reduces both area footprint and critical path length, thereby leading to better performance.
Design of M3D-based CPU cores and caches has been proposed [9, 10]. However, to the best of
our knowledge, a GPU design utilizing the benefits of M3D integration has not been undertaken.
Moreover, the possibility of multi-tier logic blocks enables the design of high-performance and
energy-efficient NoC architectures [7]. The MIVs act as long-range shortcuts that bring processing
elements (PEs) logically closer together, thereby leading to further performance improvements [7].
We utilize this feature to design a suitable high-performance NoC that augments the proposed
CPU/GPU-based heterogeneous manycore architecture: HeM3D.

In addition, M3D provides better heat dissipation than TSV-based designs. Due to better thermal
conductivity and extremely thin interlayer dielectric (ILD) [5], heat is easily dissipated leading to
reduced thermal hotspots. This is important as the dense circuit integration in 3D ICs gives rise
to thermal hotspots that need to be addressed [5]. Furthermore, designing a 3D heterogeneous

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

https://doi.org/10.1145/3424239

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:3

manycore architecture involves additional challenges: (a) the disparate nature of CPU and GPU
architectures introduces conflicting design requirements that need to be satisfied simultaneously
[8]; and (b) these architectures exhibit many-to-few-to-many communication patterns leading to
on-chip communication bottlenecks [11]. Addressing these challenges is essential when designing
a high-performance yet energy-efficient heterogeneous architecture.

Overall, M3D integration offers several performance benefits over TSV, which can significantly
improve the performance of CPU/GPU-based heterogeneous manycore architectures. Our princi-
pal contributions in this work are as follows:

(1) We design an M3D-enabled vertical (3D) GPU core that outperforms conventional planar
designs in terms of both performance and energy. The designed 3D GPU core is used in
the proposed HeM3D architecture.

(2) We present a design and optimization methodology that considers intrinsic M3D-related
physical parameters to design and optimize the proposed HeM3D architecture.

(3) We experimentally demonstrate that HeM3D simultaneously achieves better performance
and lower temperature compared to its TSV-based counterpart for several well-known
Rodinia [12] benchmarks.

The rest of the article is organized as follows: Section 2 presents the relevant prior work. In
Section 3, we discuss how M3D enables the design of various logic components over multiple tiers
and present the overview of the proposed HeM3D architecture. Section 4 discusses the design and
optimization strategy for the HeM3D architecture. Next, Section 5 presents the experimental results
and analysis. Finally, in Section 6, we conclude the article by summarizing the salient features of
this work and discussing possible future research directions.

2 PRIOR WORKS

In this section, we present the relevant prior work for M3D-based integration and heterogeneous
manycore architecture design.

2.1 Hardware Design Using M3D

TSV is the most popular integration methodology for 3D circuits and systems [3]. However, as dis-
cussed earlier, TSV-enabled architectures have several limitations, which affect performance, such
as the lack of fine-grained partitioning and thermal bottlenecks [5]. Emerging M3D-based designs
have the potential to address these challenges [4, 13]. In [13], the authors study the advantages
of M3D integration by implementing transistor/gate-level partitioning and cell-on-cell stacking
design. The speed and power benefits provided by M3D-enabled ICs have been investigated [14,
15].

In [16], the authors have presented the design of high-performance memory architectures us-
ing M3D. M3D-based high-speed cache was demonstrated to outperform state-of-the-art planar
implementations [10]. A M3D-based CPU core with logic and memory partitioned in two tiers
is demonstrated in [9]. High-performance M3D-based NoC design using multi-tier routers is ex-
plored in [7]. So far, the prior works have studied how M3D benefits individual components of a
heterogeneous manycore architecture, namely, cache, CPU, and NoC [7, 9, 10]. However, to the
best of our knowledge, an M3D-enabled GPU design (similar to the 3D-CPU design of [9]) has not
been undertaken previously and is necessary to design the HeM3D architecture. In addition, the
performance gains of individual components do not translate fully to the overall performance ben-
efits in a manycore architecture. Hence, a holistic design approach that simultaneously considers
vertical core and uncore components in a heterogeneous manycore system is necessary.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:4 A. I. Arka et al.

2.2 CPU/GPU-Based Heterogeneous Architecture Design

CPU/GPU-based single-chip heterogeneous systems are well-suited for data- and compute-
intensive applications [2]. However, due to their architectural differences, they tend to have
conflicting design requirements, i.e., CPUs require low latency while GPUs demand high through-
put [8]. This makes the design process challenging as these objectives need to be addressed
simultaneously. In addition, CPU/GPU-based architectures exhibit an unbalanced many-to-few-to-
many traffic pattern, which complicates the design further [11, 17]. Moreover, the power-hungry
nature of GPU leads to thermal hotspots, which needs to be addressed as well [18, 19, 20].

A TSV-based 3D heterogeneous architecture can significantly boost performance but exacer-
bates the temperature problem. This happens due to the poor conductivity of the bonding mate-
rial between planar layers [5], which does not allow heat to flow easily toward the heat sink. Prior
works have tried to address these challenges in different ways [18, 21, 22]. However, as discussed
earlier, M3D-enabled architectures have inherently better thermal profiles than their TSV-based
counterparts. This property can be utilized to undertake aggressive performance optimizations
that would be impossible using TSVs.

Altogether, in this work, we advance the state-of-the-art in heterogeneous manycore design
by proposing HeM3D, which has the following features: (a) both core (CPU and GPU) and uncore
(NoC and cache) components are designed vertically using M3D integration; (b) an optimized NoC
that can handle the traffic hotspots caused by the many-to-few-to-many communication; (c) a ma-
chine learning-based multi-objective optimization (MOO) strategy that incorporates the features
of M3D to quickly find suitable tradeoffs between different design objectives; and (d) aggressive
performance optimization to achieve high performance without creating thermal hotspots.

3 M3D-ENABLED HEM3D DESIGN

In this section, we discuss the design of the M3D-enabled core (CPU, GPU) and uncore (NoC, cache,
etc.) components of HeM3D and the overall HeM3D architecture. Figure 1(a) shows the HeM3D ar-
chitecture where all CPU, GPU, and last level caches (LLC) tiles are multi-tier elements with logic
and memory spread across two tiers with all tiles evenly placed across the four tiers. However, it
should be noted that we only consider two-tier partitioning for the logic and memory blocks to
simplify the design complexity and focus on the HeM3D architecture creation and optimization. To
highlight the salient features of HeM3D, Figure 1(b) shows a regular TSV-based 3D heterogeneous
manycore design (the equivalent of HeM3D using TSV). The TSV-enabled design (Figure 1(b)) uti-
lize planar core and uncore components that are stacked on top of each other to create the 3D ar-
chitecture. Hence, in a TSV-based design the main performance benefits arise from better network
connectivity using the vertical links, not from improvements to the core and uncore elements.

M3D integration is enabled by fabricating two or more silicon layers sequentially on the
same substrate and interconnecting the layers using small MIVs, allowing ultra-high-density fine-
grained vertical integration [13]. This is fundamentally different from 3D integration using TSVs
to interconnect separately fabricated dies [3]. Depending on the granularity with which devices
are partitioned across multiple tiers, M3D-based architectures can be grouped into three main cat-
egories: (a) transistor-level or N/P partitioning: the nFETs and pFETs of a gate are placed on two
separate tiers and connected via intra-gate MIVs [23]; (b) gate-level partitioning: planar gates are
placed in different tiers and connected using inter-gate MIVs [24]; and (c) block-level partitioning:
intellectual property (IP), functional, and memory blocks are placed in different tiers and connected
using MIVs [25]. Among these different partitioning techniques, gate-level partitioning results in
the highest amount of footprint reduction and subsequent performance improvement [24]. By
placing different logic gates across multiple tiers, i.e., in 3D, the overall wirelength is reduced sig-
nificantly. This leads to higher clock frequencies due to lower latency along the critical paths and

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:5

Fig. 1. Illustration of heterogeneous manycore architectures using (a) M3D (HeM3D) and (b) TSV. Tile and

link placements are not optimized for any parameter; the figure is for illustration purposes only.

Fig. 2. Illustration of (a) planar core (GPU is demonstrated as an example) and (b) multi-tier core enabled by

M3D-based gate-level partitioning. The width and length of the multi-tier core is substantially smaller than

its planar counterpart. This is for illustration purposes only; it does not implement any specific logic.

a simplified and more energy-efficient clock tree and power delivery network [24]. Therefore, we
adopt gate-level partitioning for HeM3D and discuss how each component in HeM3D benefits from
using M3D next.

Figure 2(a) shows the planar cores used in TSV-based heterogeneous manycore systems.
Figure 2(b) illustrates the design of such cores using M3D-enabled gate-level partitioning in two
tiers. These cores are paired with routers, and the combination of a core and the associated router
is referred to as a tile in Figure 1. The gates spread across different tiers are connected using MIVs.
Here, the dimensions of the multi-tier tiles are considerably smaller than those of the planar tiles,
so the critical paths of the multi-tier tiles are similarly shorter as well.

3.1 Vertical Core Design Using M3D

HeM3D (Figure 1(a)) includes two types of cores: CPUs and GPUs. Next, we elaborate on the design
of each type of core.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:6 A. I. Arka et al.

Fig. 3. Basic execution pipeline of a GPU core.

3.1.1 3D-CPU Design using M3D. M3D integration has been utilized to design high-
performance yet energy-efficient 3D CPU cores [9]. The M3D CPU design in [9] is based on a
typical pipelined, x86 architecture. By considering different stages of the CPU execution pipeline,
we can identify critical paths and explore different design strategies to improve them. The various
stages of the pipeline are then vertically partitioned across two tiers for best performance. Over-
all, compared to a conventional planar CPU, the M3D CPU improves critical path delay by 14%,
which results in an average performance improvement of 14% and 26% in a single- and multi-core
(4-cores) setting, respectively. We use the above-mentioned M3D CPU design [9] in the HeM3D

architecture.

3.1.2 3D-GPU Design Using M3D. To the best of our knowledge, a GPU design using M3D has
not been undertaken. It is well known that CPU and GPU architectures are fundamentally different.
Therefore, it is not possible to predict the performance of an M3D-enabled GPU by following the
M3D CPU design methodology. However, without M3D GPU cores, performance evaluation of the
HeM3D architecture will be incomplete/speculative. Hence, it is imperative to first design an M3D
GPU core.

A GPU core in HeM3D is analogous to a streaming multiprocessor (SM) in Nvidia terminology
or a Compute Unit (CU) in AMD architecture. In this work, we use the open source MIAOW GPU
[26] for designing the M3D GPU. To the best of our knowledge, MIAOW is the only open source
RTL implementation available for a GPU core. However, please note that other GPU architectures
can also be used to design the M3D GPU. The GPU core is made up of several blocks that operate
in a pipelined fashion (as shown in Figure 3): (a) fetch; (b) wavepool; (c) decode; (d) issue; (e)
execution blocks including scalar ALU, vector ALU (Single Instruction Multiple Data (a.k.a. SIMD)
and Single Instruction Multiple Floating-Point (a.k.a. SIMF)), and load-store unit (LSU); and (f)
registers (scalar and vector general purpose registers). Next, we discuss the design of the 3D GPU
core using M3D integration.

Designing the 3D-GPU: To design the M3D GPU, we first synthesize a conventional planar
GPU using Cadence Genus and a 45 nm Nangate process. Then, we design (place, route, and opti-
mize) a planar layout using the synthesized netlist and Cadence Innovus. Next, we use the planar
GPU layout and the M3D IC performance prediction model proposed in [14] to get the perfor-
mance of the M3D GPU. For this work, we made two modifications to the model proposed in
[14] for placement and repeater optimization to showcase the potential of using M3D integration
to improve the performance of existing GPU architectures: (a) Two consecutive inverters can be

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:7

removed after 3D placement (uniform scaling of the instance locations) if the removal improves
timing, and two consecutive inverters (without any branch point between them) can be consid-
ered a buffer and safely removed without altering the functionality of the netlist; and (b) the second
modification is that a non-timing-critical branch with large load capacitance could be off-loaded
from a timing-critical path by inserting a small buffer on the branch, thereby improving the timing
characteristics of the path in the M3D design.

The M3D IC performance prediction model works as follows. For a given planar layout, it first
scales down all of the gate locations by a uniform factor, reducing the length of each net ideally by
1/
√
NT , where NT is the number of tiers [14]. After the scaling, the model finds an ideal repeater

insertion solution for each path to find a minimum delay for the path. As length of nets is reduced,
a path that has repeaters in the planar layout has fewer repeaters or does not have any repeaters
in the M3D design. Overall, the delay of a path in the M3D design decreases from dд + dr + dw

to dд + d
′
r + d

′
w where dд is the sum of the delays of functional gates, dr and d ′r are the sums of

the repeater delays in the planar and 3D designs, respectively, and dw and d ′w are the sums of
the net delays in the planar and 3D designs, respectively. Here, please note that the delays of the
functional gates remain the same because they are not affected by the M3D design due to gate-level
partitioning which designs individual gates in 2D. To increase the accuracy of the performance
analysis, we obtain very detailed information such as the pin capacitance, wire capacitance, and
wire length of the planar layout from Innovus and apply the model in [14] to obtain the critical
path delay of the M3D GPU. Overall, this leads to significant improvement of the critical path delay,
which enables us to operate the GPU core at higher frequencies compared to its planar counterpart.
In addition, the use of MIVs and a smaller number of buffers leads to a considerable amount of
energy saving. Figure 2(a) and (b) show the structural difference between a conventional planar
GPU core and the M3D GPU in HeM3D. We show the efficacy of the M3D GPU core in Section 5.

3.2 Vertical Uncore Design Using M3D

Apart from the cores, HeM3D consists of uncore elements, cache and NoC, which also benefit from
M3D integration. We discuss the design of these uncore components next.

3.2.1 3D-Cache Design using M3D. In addition to the many cores, HeM3D includes a few (LLCs.
Although smaller in number, these LLCs play a key role in determining the overall system per-
formance. Memory accesses to and from LLCs (which also contain the main memory controllers)
cause many-to-few-to-many traffic patterns that bottleneck the NoC [18]. A slow LLC response
can lead to delays in LLC-bound data packets/requests, creating performance bottlenecks. CPU
performance can be particularly affected due to CPU’s higher latency sensitivity. Hence, faster
caches are desirable in a CPU/GPU-based manycore architecture. The dense M3D integration al-
lows high-performance cache designs as shown in [10]. By investigating different types of parti-
tioning for caches, such as bank stacking, bit line partitioning and word line partitioning in two
tiers, the cache architecture proposed in [10] achieves up to 23.3% reduction in access latency. For
a single core system, the faster M3D cache is able to improve the overall performance by 9.9%. We
use this high-performance 3D-Cache in HeM3D.

3.2.2 3D-NoC Design Using M3D. In a manycore architecture like HeM3D, the NoC can have
a large influence on the overall performance. The multi-hop nature of conventional NoCs, e.g.,
mesh, introduces high communication latency, which can lead to performance bottlenecks. Hence,
improving only the performance of the core and cache will not improve the performance of the
whole heterogeneous manycore system. In addition, conventional NoCs are sub-optimal for the
many-to-few-to-many traffic pattern observed in CPU-GPU–based manycore architectures [11].
By adding few long-range links, small-world NoC (SWNoC) can significantly outperform mesh

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:8 A. I. Arka et al.

under many-to-few-to-many traffic patterns [18]. Moreover, M3D enables the design of (a) multi-
tier routers which act as virtual long-range shortcuts in the SWNoC, and (b) physically shorter
links due to the reduction of the physical dimensions of cores and caches as shown in Figure 1(a).
Overall, an M3D-enabled SWNoC is a suitable choice as the communication backbone of HeM3D.
We elaborate the design and optimization strategy for the NoC in more details in the next section.

3.3 Overall HeM3D Architecture

Altogether, HeM3D (Figure 1(a)) incorporates the M3D enabled core and uncore designs discussed
so far. The CPU, GPU, and LLC tiles are extended vertically across two tiers in HeM3D. Each of
these two-tier components is then distributed among four tiers to get the overall 3D structure as
shown in Figure 1(a). Each tile is connected to an NoC router for communication. The routers
are connected to each other via an optimized SWNoC topology. Overall, by vertically partitioning
cores and uncores across multiple tiers in M3D, HeM3D lowers critical path delay leading to better
performance. In addition, the vertical partitioning of cores and uncores result in lower power
consumption due to the reduced wirelength and fewer repeaters. The improved power-efficiency
results in an inherent reduction of on-chip temperature, which is otherwise a serious problem in
TSV-based 3D designs. Hence, HeM3D achieves better performance and thermal characteristics
than its TSV equivalent as demonstrated later in Section 5.

4 LEARNING-BASED OPTIMIZATION FOR HEM3D DESIGN

In this section, we present a machine learning–based design and optimization strategy to establish
suitable performance-thermal tradeoffs in HeM3D.

4.1 Design Optimization in HeM3D

To design a suitable HeM3D architecture, we first profile the application characteristics (fi j (t)),
which is a function of time and represents the temporally varying communication frequency (the
number of messages divided by the execution time in cycles) between tile i and tile j. This is done
offline (only once) using detailed Gem5-GPU simulations by creating checkpoints [27] after specific
intervals of the application execution. This divides the entire application into N smaller windows
(periods of time) which allows us to observe and include dynamic application characteristics, in
the HeM3D optimization process.

To optimize HeM3D, we consider the placement of tiles (CPUs, GPUs, and LLCs) within a grid
and links between tiles, since they have a huge impact on the performance of HeM3D. Next, we
discuss the different design objectives that need to be simultaneously satisfied to obtain an appro-
priate HeM3D architecture followed by the overall optimization process.

CPU: Due to their use of instruction-level parallelism, CPUs are latency sensitive. Hence, they
need to be placed closer to the LLCs for faster access to main memory. For C CPUs and M LLCs,
we approximate the latency of a HeM3D design d as

Lat (d) = avд
t

⎧⎪⎪⎨⎪⎪⎩
1

C ∗M

C∑
i=1

M∑
j=1

(r · hi j + di j) · fi j (t)
⎫⎪⎪⎬⎪⎪⎭
, (1)

where r is the number of router stages, hi j is the number of hops from tile i to tile j (CPU-LLC and
vice versa), and di j indicates the total link delay due to the physical separation (Euclidean distance
based on the Cartesian coordinates of the source and destination). Overall, we consider the average
latency across all the N number of fi j (t) instances of an application for the optimization purpose.

Multi-tier M3D routers change the hop count (hi j) compared to a planar router [7]. The CPU-
LLC latency in (1) reliably captures the effects of multi-tier routers enabled by M3D integration.

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:9

M3D also allows partitioning of both core and uncore elements across multiple tiers. This reduces
the physical dimension of each tile, hence, shorter wires, leading to lower effective link delay (di j)
as shown in Figure 1. As a result, messages have to traverse less physical distance. Overall, hi j and
di j capture the effect of M3D in Equation (1). In addition, as discussed in Section 3.1, M3D core
and uncore components are faster than planar designs. This results in lower execution time, the
effect of which is captured by fi j (t) in the form of lower execution cycles.

GPU: Unlike CPUs, GPUs rely on data-parallelism and require high throughput for high perfor-
mance. Therefore, GPU placement and NoC connectivity should accommodate the huge volumes
of data to/from the LLCs and the GPUs. The many-to-few-to-many traffic typically observed in
CPU-GPU–based architectures often lead to congestion in the NoC and poor performance. Hence,
the HeM3D architecture should be optimized to achieve high throughput under such a traffic pat-
tern. Load balancing is a popular way to address this problem [18]. Hence, we compare the degree
of achievable load balancing in the NoC of designs (d) with different GPU and link placements us-
ing the mean Ū (d) and standard deviation σ (d) of the traffic (load) on each link. These two metrics
are calculated by the following equations, where the expected utilization of the kth link (uk) is

uk =

C+M+G∑
i=1

C+M+G∑
j=1

(fi j (t) · qi jk), (2)

Ū (d, t) =
1

L
∗

L∑
k=1

uk , (3)

σ (d, t) =

√√√
1

L

L∑
k=1

(uk − Ū (d, t))
2
, (4)

where G represents the number of GPUs and L indicates the number of links in the overall ar-
chitecture. qi jk is a Boolean variable that indicates whether a link k is used for communication
between tile i and tile j.

qi jk =

{
1, i f cores i, j communicate along link k
0, otherwise.

Here, it should be noted that the parameter fi j (t) includes the M3D effects during the GPU place-
ment optimization by incorporating the reduced execution time, as discussed in the CPU section.
Additionally, fi j (t) includes the effects of the many-to-few-to-many traffic. In order to represent
the average throughput across all the timesteps, we take a time average of the parameters repre-
sented by Equations (3) and (4) above.

Ū (d) = avg
t

Ū (d, t), (5)

σ (d) = avg
t

σ (d, t), (6)

Minimizing the mean Ū (d) and standard deviation σ (d) of the traffic distribution leads to overall
higher throughput of the candidate HeM3D design.

Temperature: Next, it is well known that 3D integration has inherent temperature issues.
Hence, it is important to consider the peak temperature (T) during optimization. We predict the
maximum on-chip temperature using the following equation [19]:

T (d, t) = max
n,k

⎧⎪⎪⎨⎪⎪⎩
k∑

i=1

�
�Pn,i (t)

i∑
j=1

R j

�
� + Rb

k∑
i=1

Pn,i (t)
⎫⎪⎪⎬⎪⎪⎭
∗ TH . (7)

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:10 A. I. Arka et al.

Fig. 4. Illustration of physical structure and heat flow in (a) TSV two-tier cross-section; (b) M3D two-tier

cross-section.

Here, Pn,i (t) is the power consumption of a tile i tiers away from the sink in a vertical stackn and is
a function of application characteristics, i.e., time dependent, R j is the vertical thermal resistance,
Rb is the thermal resistance of the base layer on which the dies are placed, and k represents the
kth tier where the tile is located. For an accurate prediction, we also consider the effects of lateral
heat flowTH , which represents the maximum temperature difference among all layers. The values
of R j and Rb depend on the material properties, which we obtain from [5] and calibrate using
3D-ICE simulations [20]. The worst-case temperature is considered during the optimization and
is represented by the following equation:

T (d) = max
t
{T (d, t)}. (8)

Here, it is important to note that TSV and M3D systems have very different physical structures
which affect temperature (illustrated in Figure 4). TSV-based architectures include a layer of bond-
ing material between adjacent silicon tiers that has very poor thermal conductivity (Figure 4(a))
[5]. This prevents heat from easily flowing toward the heat sink. In addition, TSVs are much larger
than MIVs, resulting in thicker silicon layers and a longer path for heat flowing toward the sink.
Due to these reasons, a major portion of the heat spreads laterally rather than flowing vertically
toward the sink (as shown in Figure 4(a)). As a result of this gradual heat accumulation among the
layers, the overall temperature of the chip increases, which negatively affects the performance.
Hence, TSV-based 3D integration is not very effective in designing high-performance heteroge-
neous architectures as we show later.

On the other hand, unlike their TSV counterparts, M3D integration (shown in Figure 4(b)) in-
herently exhibits better thermal properties due to thinner tiers and the absence of any bonding
material [5]. The ILD in M3D is significantly thinner and has better thermal characteristics than
the equivalent “Bonding Layer” of TSV. This results in different effective thermal resistances for
M3D- and TSV-based systems (R j and Rb in (7)), which we obtain from [5] and 3D-ICE simulations
[20]. In addition, the power consumption (Pn,i) in (7) also varies between TSV and M3D integration.
M3D architectures are more power efficient than their TSV counterparts. Hence, by considering
these M3D-specific differences, we can accurately model the thermal profile in HeM3D. The lower
temperature in M3D enables us to apply more aggressive performance optimizations to the overall
architecture without having to worry about on-chip temperatures as we show later in this work.

Overall: Overall, we can formulate the CPU, GPU, LLC, and link placement problem to design
the overall HeM3D architecture as a MOO problem. To highlight the different nature of tradeoffs in
TSV and M3D, we consider two flavors of optimization in this work: performance-only (PO) and
joint performance-thermal (PT) optimization. PO involves aggressively optimizing (placing links

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:11

and tiles) for best performance, i.e., low CPU-LLC latency and high GPU-LLC throughput under a
many-to-few-to-many traffic pattern, without worrying about on-chip temperature. On the other
hand, the PT optimization is more conservative and attempts to mitigate thermal hotspots while
optimizing for performance. We show later that due to their physical differences, M3D- and TSV-
based architectures require prioritizing one optimization strategy over the other. We can represent
the two MOO formulations as follows:

D∗ =
⎧⎪⎨⎪⎩

MOO(OBJ =
{
Ū (d), σ (d), Lat (d)

}
), f or PO

MOO(OBJ =
{
Ū (d), σ (d), Lat (d), T (d)

}
), f or PT

, (9)

whereD∗ is the set of Pareto optimal designs. Here, our aim is to find the optimal placement of both
core and uncore elements such that the design requirements for all the elements are satisfied. We
use an ML-enabled MOO-solver, MOO-STAGE [18], which is shown to outperform conventional
search and optimization algorithms. We elaborate the details of MOO-STAGE in the next section.
Once we find D∗, we perform detailed full-system simulations using a cycle-accurate simulator
Gem5-GPU [27] to obtain accurate energy consumption and execution times for each design. Then,
we choose the solution that has the best EDP. We can formulate this using the following equations:

dbest =

{
argmind ∈D∗ET (d), f or PO
argmind ∈D∗ET (d), such that Temp(d) < Tth , f or PT

, (10)

where dbest is the chosen design that has the lowest execution time (ET) for PO or the lowest
ET within a temperature constraint (Tth) for PT among all solutions in the Pareto front D∗, and
Temp (d) is the max temperature of the candidate design that is obtained using 3D-ICE [20]. For
PT-based optimizations, Tt h was chosen to be 85°C so that it does not compromise the reliability
of the manycore system [28]; however, this can be chosen as per the designer’s goals.

4.2 ML-Enabled Design Optimization

For manycore design and optimization problems, several algorithms including traditional Simu-
lated Annealing-based AMOSA [29] and constrained combinatorial problems (CCPs) using SAT-
decoding have been proposed [30]. However, SA-based algorithms like AMOSA cannot explore
large design spaces efficiently and often require a significant amount of time to reach a good so-
lution [18]. On the other hand, SAT-decoding based methods are not able to work with non-linear
constraints (e.g., power-law–based connectivity in SWNoC) and cannot be used to design HeM3D.
Hence, there is a need for computationally efficient design optimization algorithms.

For efficient exploration of such large design spaces, data-driven search techniques are neces-
sary. Prior works including [18, 31] have shown that by utilizing prior knowledge gained from
exploring the search space, we can significantly reduce optimization time by focusing more on the
promising regions of the design space. In this work, we employ MOO-STAGE, a MOO algorithm
(introduced in [18]) which belongs to this class of data-driven search techniques, for the problem of
M3D-enabled HeM3D design. Due to the use of dense multi-tier core and uncore elements, HeM3D

design space is significantly larger than its TSV counterpart [7]. We show later that data-driven
algorithms (e.g., MOO-STAGE) are far more effective in these scenarios compared to traditional
algorithms.

Figure 5 illustrates the main steps of the MOO-STAGE algorithm. The key idea behind MOO-
STAGE is to intelligently explore the search space such that the MOO problem is solved efficiently
to uncover high-quality Pareto sets. It utilizes a supervised learning approach that leverages past
search experience (Local search) to learn an evaluation function. The evaluation function is then
used to estimate the outcome of performing a local search from any given state in the design space

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:12 A. I. Arka et al.

Fig. 5. Illustration of the two key steps of MOO-STAGE algorithm. Candidate designs (combinatorial struc-

tures) are represented using their cost values for ease of exposition.

(Meta search) to improve the accuracy of future searches in finding better solutions. As shown
in Figure 5, MOO-STAGE is an iterative two-step algorithm: (a) Local search and (b) Meta search.
During the first step, MOO-STAGE performs a conventional search procedure (e.g., hill-climbing)
from a given starting state guided by a heuristic function considering the different objectives
to reach the local optima. For instance, in Figure 5, if the search begins at point x11, the local
search process (assuming greedy heuristic) yields the local optima x14. Here, please note that hill-
climbing is used for the sake of simplicity only. More sophisticated search heuristics like IGOR [32]
can also be used instead. The sequence of designs uncovered during past local search trajectories
are used as training data for the next stage (a.k.a. Meta search). The Meta search step is responsible
for learning an evaluation function based on this input training data and attempts to predict the
behavior of the search procedure from different starting states without actually executing it. The
learned function predicts the potential (quantified using the quality of local optima, i.e., Pareto-
hyper volume or the cost) of performing a local search starting from a given state. As shown in
Figure 5, the learned function is able to correctly predict the region of the global minima (marked
in green) based on the input training data from the past four searches. This allows the algorithm
to discard bad starting states to reduce the number of local searches needed to find (near-) optimal
designs in the given design space. In other words, the evaluator identifies the most promising
areas for further evaluation over the next iterations. Here, it should be noted that Figure 5
illustrates a snapshot in time after four iterations of MOO-STAGE. As the iterations (both Local
and Meta Search) progress, the learned evaluation function changes dynamically and can predict
the output of search procedure with higher accuracy as more training data becomes available.

In this work, we use MOO-STAGE (after including the M3D-specific features discussed pre-
viously) as the MOO-solver for Equation (9). In the next section, we experimentally show that
AMOSA requires significantly more time to yield a good HeM3D design and is always outper-
formed by MOO-STAGE.

Algorithm 1 shows a high-level description of the design optimization strategy adopted in this
work. Overall, given C CPUs, G GPUs, M LLCs, and L links, the goal is to place all the tiles and
links in a way that achieves best performance and thermal tradeoff. For this purpose, we begin
the design-space exploration with a randomly chosen placement of the CPUs, GPUs, LLCs, and
Links (referred to as D_curr, Algorithm 1, line 2). As mentioned earlier, MOO-STAGE is a two-step
process repeated for MAX iterations (or until convergence). We begin the optimization algorithm
with the local search (Algorithm 1, lines 4–7). In this work, we use greedy search for this step due
to its deterministic nature, which is conducive to learning accurate evaluation function. Next, we

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:13

perturb the candidate design (D_curr) to get a better new design (D_next, Algorithm 1, line 5) quan-
tified using a cost function. Here, a valid Perturb is defined as one of the following: (a) swapping
the position of two tiles, or (b) moving an existing link to a different source and destination pair.
Each Perturb is followed by an evaluation phase that checks if the resulting design is valid based on
a set of physical design constraints. For instance, the new design must have a valid path between
any pair of source-destination tiles. This guarantees that resulting designs are practical. Each new
solution (D_next) is characterized using a Cost which is a function of throughput, latency, and
temperature of the new design (Algorithm 1, line 5). In this work, we calculate the cost using the
Pareto-Hyper Volume (PHV) metric as an example. Other cost functions such as weighted-average
formulation can also be used here. The newly visited design is then stored in the local Pareto set
based on general Pareto dominance conditions (Algorithm 1, line 7). In the next Meta search phase
of the MOO-STAGE algorithm (Algorithm 1, lines 8–12), the designs explored in the local search
and their costs are used as training data to learn the evaluation function (Algorithm 1, lines 9 and
10). In this work, we use a regression tree learner (Algorithm 1, line 10) for this purpose. Next,
we randomly generate N valid solutions as potential candidate starting points for the next Local
search (Algorithm 1, line 11). We use the learned model to predict the potential of yielding a good
solution for each of these candidate starting designs (Algorithm 1, line 12) without actually initiat-
ing a search process. The candidate with most potential (best predicted Cost) is used as a starting
point for the next Local search iteration. The global Pareto set is updated using the local Pareto
set after each MOO-STAGE iteration (Algorithm 1, line 13). Finally, after max iterations (or after
convergence) the designs from the global Pareto set, i.e., the set of non-dominated solutions, are
returned (Algorithm 1, line 14). Detailed full-system simulations are then performed for each can-
didate design in this set to pick one solution for further evaluation. For the PO optimization, the
solution with the lowest ET is chosen as the final solution, whereas for the PT variant, the solution
that has the lowest ET within a temperature constraint (Tth) is considered for further analysis.

ALGORITHM 1: HeM3D design using MOO-STAGE

Input: Number of CPU, GPU, LLC tiles and planar links; application characteristics (fij); other
design parameters like number of layers, how many tiles in each layer, etc.
Output: Optimized HeM3D design
MOO-STAGE Algorithm:

1 Initialization: Training-set [.]= {.}, Pareto-Set [.]={.},
D_curr = Non-optimized HeM3D design

2 Repeat until Convergence or MAX iterations:
3 Local-Pareto-set [.] = {.}
4 LOCAL SEARCH (Repeat until convergence)

5 D_next = Best neighboring design from D_curr according to Cost function (e.g., PHV)
6 D_curr = D_next

7 Update Local-Pareto-set [.] using D_next

8 META SEARCH

9 Add new training data from LOCAL SEARCH (input designs, cost pairs) to
Training-set [.]

10 Model = Learn (Training-set [.])
11 D_random [.] = N random valid designs
12 D_curr = Predict (Model, D_random [.]) with best Cost

13 Update Pareto-Set [.] using Local-Pareto-set [.]
14 return Pareto-Set [.]

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:14 A. I. Arka et al.

5 RESULTS AND ANALYSIS

In this section, we first present the experimental setup to evaluate the HeM3D architecture. Next,
we analyze the performance improvement of the M3D GPU core over its 2D counterpart. Then,
we present the efficacy of the MOO-STAGE algorithm for optimization of HeM3D and finally, we
evaluate the performance and thermal characteristics of the HeM3D architecture and compare it
with a TSV-based baseline.

5.1 Experimental Setup

We utilize Gem5-GPU [27], a heterogeneous full-system simulator to obtain processor- and NoC-
level information. The CPU cores in HeM3D are based on Intel x86 while the GPUs are based
on Nvidia Maxwell. As mentioned earlier, a GPU core in HeM3D is analogous to a SM in Nvidia
terminology. Each CPU and GPU core has a private L1 data and instruction cache of 32 KB. Each
LLC consists of a shared 256 KB slice of memory and a memory controller that provides access
to main memory. To implement different TSV- and M3D-enabled NoCs used in this work, we
modified the Garnet network [33] in Gem5-GPU. The memory system uses a MESI Two-Level
cache coherence protocol. The planar CPU and GPU cores (baseline core architectures) operate at a
frequency of 2.0 GHz and 0.7 GHz, respectively. The core power profiles have been extracted using
GPUWattch [34] and McPat [35]. The corresponding on-chip temperatures have been obtained
using the 3D-ICE simulator [20].

The TSV and M3D tiers are modeled in 3D-ICE using physical design parameters such as tier
thickness, thermal conductivity of each tier, and so forth, as listed in [5]. The M3D cache be-
havior incorporated in our full-system simulations is modeled following [10]. The M3D-specific
CPU-level improvements are obtained from [9] while GPU parameters are obtained from our syn-
thesized M3D GPU (discussed in Sec. III(B)). As mentioned in [9], the M3D-enabled CPUs can
operate at 14% higher frequency (2.28 GHz) than its planar counterpart. We also obtained the M3D
GPU core operating frequency to be 0.77 GHz (shown later) by following the design methodology
elaborated in Section 3.2. Table 1 shows the relevant TSV and M3D parameters that we consider in
this work. The inter-tier material (in Table 1) refers to the bonding layer in TSV-based integration
and ILD for M3D-based integration (Figure 4).

Overall, HeM3D is a 64-tile architecture with eight x86 CPUs, 16 LLCs, 40 GPUs, and 64 routers
(one per tile). The number of links in the SWNoC is the same as that of a mesh of same size. All
TSV- and M3D-based architectures consist of four physical logic tiers. For the TSV-based archi-
tectures, the individual tiles (CPU, GPU, and LLC) are distributed over four planar tiers. On the
other hand, M3D uses much smaller MIVs that enables vertical partitioning of logic blocks across
multiple tiers (as discussed earlier). Hence, for HeM3D, we assume that each tile is spread across
two tiers stacked on top of each other with equal area in both tiers as shown in Figure 1(a). Please
note that the above architecture is only considered as an example. The proposed design and opti-
mization methodology are generic and applicable for any system size/configuration. To evaluate
the performance of HeM3D, we use six applications from the Rodinia benchmarks [12], namely,
Backprop (BP), Needle (NW), Lava (LV), Lud (LUD), KNN, and Pathfinder (PF). We consider the
application ET obtained using full-system Gem5-GPU [27] simulations as the performance metric
and the maximum on-chip temperature obtained from 3D-ICE [20] as the thermal metric.

5.2 Performance Analysis of 3D GPU Core

Before a full-system analysis of HeM3D, we first show the performance of the M3D GPU core
(discussed in Section 3.2) and compare it with a traditional planar GPU core. For the baseline
planar GPU core, we use Cadence Genus to synthesize the GPU using the Nangate 45 nm process

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:15

Fig. 6. Normalized pipeline stage latencies of the planar and M3D GPU core.

followed by a detailed placement and routing using Cadence Innovus. Next, we determine the
timing characteristics of each block/pipeline stage of the GPU core. Figure 6 shows the timing
characteristics of each pipeline stage normalized with respect to the clock period of the planar GPU
core. Here, “S-i” denotes the “ith” stage in the pipeline (Figure 3). S-1 is the first stage consisting
of the “Fetch” block. In a pipelined architecture, the overall delay is bottlenecked by the slowest
stage. From Figure 6, we can see that the pipeline stage delay (hence, the operating frequency) is
limited by two stages: SIMD and LSU.

Next, we analyze the M3D GPU core designed using the methodology discussed in Section 3.2.
As shown in Figure 6, M3D improves the timing characteristics of all the components in the GPU
by 8% to 14%. However, as mentioned earlier, the slowest stage determines the clock frequency of
the pipelined GPU. From Figure 6, we note that the SIMD stage has the highest delay in the M3D
GPU design. Compared to the planar design, the M3D SIMD stage has 10% lower delay. Hence,
we can operate the M3D GPU at 10% higher frequency without violating any timing constraints
compared to its planar counterpart (baseline GPU core). This helps us to improve the M3D GPU
core frequency to 0.77 GHz from 0.7 GHz in planar implementation. In addition, we observe 21%
lower energy consumption in the M3D GPU compared to its planar counterpart. We use this M3D
GPU core in HeM3D.

5.3 MOO-STAGE Enabled HeM3D Design

As discussed in Section 4, the optimization of HeM3D is a MOO problem defined by (9) that can be
solved using MOO-STAGE. Hence, in this section, we demonstrate the efficacy of the MOO-STAGE
algorithm for the design and optimization of the HeM3D architecture. To evaluate the performance
of MOO-STAGE, we consider the well-known MOO algorithm AMOSA as the baseline due to its
ability to achieve near optimal solutions [29]. We evaluate both algorithms based on their runtime
and quality of solutions. Given the set of Pareto optimal solutions D∗, we run detailed simulations
on each solution in D∗ to get accurate performance and temperature measurements. We use the
same HeM3D MOO formulation (9) to design the TSV-based baseline architecture. In other words,
we optimize the placement of CPUs, GPUs, LLCs, and planar links to improve latency, throughput,
and temperature using TSV-specific parameters [18]. All experiments have been run on an Intel®
Xeon® CPU E5-2630 @ 2.2 GHz machine with 252 GB RAM running CentOS 6.

Figure 7 shows the speed-up in convergence time achieved by MOO-STAGE compared to
AMOSA for designing HeM3D and its TSV equivalent for all considered benchmarks. Here, we
define convergence as the point of time beyond which the subsequent solutions vary in perfor-
mance by less than 2%. This analysis is done with the joint performance-thermal optimization
(PT) mentioned in Equation (9). For the TSV-based design, MOO-STAGE outperforms AMOSA by

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:16 A. I. Arka et al.

Fig. 7. Speed-up achieved by MOO-STAGE compared to AMOSA for designing HeM3D and its TSV-based

counterpart.

Fig. 8. (a) Maximum on-chip temperature, and (b) Full system execution time (normalized), comparison

between PO and PT optimized TSV-based architecture.

5.48× on average. This further increases to 7.38× on average for HeM3D design optimization. This
happens as the design space of M3D-enabled architectures is significantly larger than their TSV-
based counterpart [7]. Conventional search algorithms like AMOSA need to be annealed slowly
and do not scale with the size of the search space. In addition, critical parameters like annealing
temperature in AMOSA need to be tuned carefully for best results. Even then, AMOSA requires
a significant amount of time to yield a solution whose PT tradeoff is comparable to that obtained
using MOO-STAGE. On the other hand, by filtering out the promising regions of the HeM3D de-
sign space, MOO-STAGE virtually reduces the size of search space and hence the effort required to
explore it to uncover (near-) optimal designs. As a result, MOO-STAGE achieves higher speed-up
for HeM3D design.

5.4 Performance Evaluation of HeM3D

In this section, we analyze and compare the performance and thermal characteristics of HeM3D and
its TSV-based counterpart. Figure 8 shows the performance and thermal tradeoffs in TSV-based
3D heterogeneous manycore architectures. Here, we consider architectures designed following the
two optimization strategies discussed in Equation (9): (a) PO: These architectures have the lowest
ET for a given application, and (b) PT: These architectures have the lowest ET under a temperature
threshold (Tth).

Figure 8(a) shows the maximum on-chip temperatures for both these variants. As shown in
Figure 8(a), the on-chip temperature of the TSV-PO architecture can be as high as 105°C for some
benchmarks. Such high temperatures are not desirable as it can affect the overall performance and

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:17

Fig. 9. (a) Maximum on-chip temperature, and (b) full system execution time (normalized); comparison be-

tween TSV-BL, HeM3D-PO and HeM3D-PT.

reliability of the architecture. The poor thermal characteristics of the TSV-PO architectures arise
due to a combination of the following factors: (a) The TSV-PO optimization places LLCs and most
of the links in the middle two tiers [18]. This allows the LLCs to access the vertical links in both
directions, which reduces the average hop count to the other tiles. Also, the presence of more links
enables greater path diversity, which improves load balancing under many-to-few-to-many traffic
pattern (discussed earlier) leading to better performance. However, as a result, many power-hungry
GPU cores get placed away from the sink [18]. (b) The layer of bonding material in TSVs has poor
thermal conductivity (Figure 4(a)), preventing the heat to flow from these layers toward the sink;
and (c) the larger dimensions of TSVs result in lateral heat flow. This creates thermal hotspots as
is evident from Figure 8(a). It is important to note that TSVs have better thermal conductivity than
the bonding layer placed between two tiers. However, the total area occupied by the TSVs is much
smaller than the area occupied by the bonding material. Thus, the improved thermal conductivity
of TSV does not aid the heat flow [5].

On the other hand, TSV-PT lowers the temperature by up to 24°C and 17.6°C on average. This
is due to TSV-PT’s decision to place the power-hungry cores near the sink so that the generated
heat can be easily dissipated. However, it should be noted that the temperature depends on the
characteristics of the application. For applications with lower computational intensity (low IPC)
like NW and NN, the temperature is relatively low. Hence, for NW and NN, the PT optimization
ends up choosing the best performing option; in other words, the same design as PO. However, it is
clear from Figure 8(a) that the PT optimization is necessary for compute-intensive applications (BP,
LV, LUD, and PF). Please note that microfluid-based cooling [20] has been used for both PO and PT
optimized designs. Without liquid cooling, the temperatures in both cases become unmanageable.
To achieve these lower temperatures, the PT optimization ends up sacrificing some performance
as shown in Figure 8(b). The ET for PT is 2–3.5% higher than its PO counterpart. However, this
is a relatively small sacrifice to significantly reduce temperatures. This is important as higher
temperatures are detrimental to the performance and long-term sustainability of the system. Thus,
we can see that PT optimization with a thermal threshold constraint is necessary. In this work, we
use TSV-PT as the baseline TSV architecture (TSV-BL).

On the other hand, M3D provides lucrative thermal advantages over its TSV-based counter-
part, which we utilize to design HeM3D with better performance. Similar to TSVs, we explore
both PO and PT optimization for HeM3D, HeM3D-PO, and HeM3D-PT, respectively, to study the
performance-thermal tradeoffs. Figure 9 shows the thermal (maximum on-chip temperatures) and
performance characteristics of HeM3D for both PO and PT optimizations and compares it with the
TSV baseline (TSV-BL) discussed earlier. As shown in Figure 9(a), both HeM3D-PO and HeM3D-
PT have 18°C lower temperature than the TSV architecture on average. As shown in Figure 9(a),
there is no temperature difference between HeM3D-PO and HeM3D-PT. Both architectures have

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

16:18 A. I. Arka et al.

Fig. 10. (a) Maximum on-chip temperature, and (b) full system execution time (normalized); comparison

between HeM3D-PO and HeM3D-PT without any thermal constraint.

temperatures in the range of 55–65°C for all the chosen benchmarks, which is much lower than
the temperature threshold set for PT optimization. Due to this low maximum temperature, the
HeM3D-PT optimization chooses the best performing option, which is the same design as HeM3D-
PO. The lower temperature of M3D compared to TSV is due to lower ILD thickness and better
thermal conductivity. Since the ILD layers are extremely thin, virtually all the cores are near the
sink. Hence, HeM3D achieves even lower temperature than TSV-PT, without the use of any spe-
cialized cooling. This lower temperature will make the HeM3D architecture more sustainable than
its TSV-based counterpart.

Figure 9(b) demonstrates the normalized ET for the three different architectures. From
Figure 9(a), we note that HeM3D-PO and HeM3D-PT architectures outperform TSV-based coun-
terparts by 14.2% on average. This happens as (a) M3D cores operate at higher frequencies than
planar cores (M3D CPU and GPU operate at 14% and 10% higher frequencies than their corre-
sponding baseline planar counterparts); (b) the M3D-enabled cache provide 23.3% faster cache
accesses (discussed in Section 3); and (c) the M3D routers and lower physical distance between
adjacent cores (as shown in Figure 1(c)) enables high-performance NoC designs that can easily
handle many-to-few-to-many traffic.

However, instead of choosing the design with the lowest ET under a temperature constraint
set up by Equation (10) for the HeM3D-PT architecture, if we choose the result with the lowest
ET-temperature product, we can improve the temperature of the architecture further as shown
in Figure 10(a). Figure 10(a) illustrates that the HeM3D-PT design improves the temperature by
1–2°C when compared to HeM3D-PO. On the other hand, Figure 10(b) shows that similar to TSVs,
the HeM3D-PT sacrifices 2–3.5% performance compared to HeM3D-PO. From both Figures 9 and
10, we note that due to the unique features of M3D integration, PT optimization without thermal
constraint does not bring significant benefits as it does for TSV designs [18]. HeM3D-PT loses up
to 3.5% performance for a mere 1–2°C improvement in temperature. Hence, we can conclude that
PT optimization is not necessary for HeM3D. Instead, M3D’s unique thermal advantages can be
utilized to push more aggressive performance optimizations that would otherwise be impossible
in TSVs. Hence, we should use HeM3D-PO, which enhances performances by up to 18.3% while
being 19°C cooler than a TSV counterpart.

6 CONCLUSION AND FUTURE RESEARCH DIRECTIONS

Emerging data- and compute-intensive applications require CPU/GPU-based heterogeneous
manycore architectures. 3D integration is an emerging technology that has the capability to pro-
vide high performance and energy efficiency. However, existing TSV-based 3D architectures have
thermal limitations and are insufficient to meet the performance and thermal requirements of these

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:19

emerging applications. M3D enables the design of true 3D circuits and systems that mitigates many
of the issues seen in TSVs. In this work, we utilize this feature to design a manycore heterogeneous
architecture with vertical core and uncore elements: HeM3D. HeM3D outperforms TSV-based ar-
chitectures in terms of both performance and temperature. More importantly, the superior thermal
properties of M3D allows the use of a more aggressive performance optimization that is otherwise
impossible with TSVs. Overall, the HeM3D architecture outperforms its TSV counterpart in terms
of ET by 18.3% while still being 19°C cooler.

However, it should be noted that M3D is an emerging technology with many unresolved chal-
lenges. Some notable examples include process-variation [36, 37] and electrostatic coupling among
the different layers in M3D-based architectures [38]. As shown in [36, 37] and [38], these effects
can lead to relatively sub-optimal performance for manycore architectures like HeM3D. A process-
variation and electrostatic coupling aware design methodology can largely mitigate these negative
effects and is the focus of our future work.

REFERENCES

[1] E. Danovaro, A. Clematis, A. Galizia, G. Ripepi, A. Quarati, and D. D’Agostino. 2014. Heterogeneous architectures

for computational intensive applications: A cost-effectiveness analysis. Journal of Computational and Applied Math-

ematics 270 (2014), 63–77. DOI:https://doi.org/10.1016/j.cam.2014.02.022

[2] M. Daga, A. M. Aji, and W. Feng. 2011. On the efficacy of a fused CPU+GPU processor (or APU) for parallel computing.

In 2011 Symposium on Application Accelerators in High-Performance Computing, 141–149. DOI:https://doi.org/10.1109/

SAAHPC.2011.29

[3] W. R. Davis et al. 2005. Demystifying 3D ICs: the pros and cons of going vertical. IEEE Design & Test of Computers 22

(2005), 498–510. DOI:https://doi.org/10.1109/MDT.2005.136

[4] S. K. Samal, D. Nayak, M. Ichihashi, S. Banna, and S. K. Lim. 2016. Monolithic 3D IC vs. TSV-based 3D IC in

14nm FinFET technology. In 2016 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), 1–2.

DOI:https://doi.org/10.1109/S3S.2016.7804405

[5] S. K. Samal, S. Panth, K. Samadi, M. Saedi, Y. Du, and S. K. Lim. 2014. Fast and accurate thermal modeling and

optimization for monolithic 3D ICs. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC’14), 1–6.

DOI:https://doi.org/10.1145/2593069.2593140

[6] S. Panth, K. Samadi, Y. Du, and S. K. Lim. 2013. High-density integration of functional modules using monolithic

3D-IC technology. In 2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC’13), 681–686. DOI:
https://doi.org/10.1109/ASPDAC.2013.6509679

[7] S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty. 2017. Monolithic 3D-enabled high performance and en-

ergy efficient network-on-chip. In 2017 IEEE International Conference on Computer Design (ICCD’17), 233–240. DOI:
https://doi.org/10.1109/ICCD.2017.43

[8] J. Hestness, S. W. Keckler, and D. A. Wood. 2015. GPU computing pipeline inefficiencies and optimization opportu-

nities in heterogeneous CPU-GPU processors. In 2015 IEEE International Symposium on Workload Characterization,

87–97. DOI:https://doi.org/10.1109/IISWC.2015.15

[9] B. Gopireddy and J. Torrellas. Designing vertical processors in monolithic 3D. In Proceedings of the 46th Interna-

tional Symposium on Computer Architecture (ISCA’19). Association for Computing Machinery, New York, NY. DOI:
https://doi.org/10.1145/3307650.3322233

[10] Y. Gong, J. Kong, and S. W. Chung. 2019. Quantifying the impact of monolithic 3D (M3D) integration on L1 caches.

IEEE Transactions on Emerging Topics in Computing 1 (2019). DOI:https://doi.org/10.1109/TETC.2019.2894982

[11] A. Bakhoda, J. Kim, and T. M. Aamodt. 2010. Throughput-effective on-chip networks for manycore accelerators.

In 2010 43rd Annual IEEE/ACM International Symposium on Microarchitecture, 421–432. DOI:https://doi.org/10.1109/

MICRO.2010.50

[12] S. Che et al. 2009. Rodinia: A benchmark suite for heterogeneous computing. In 2009 IEEE International Symposium

on Workload Characterization (IISWC’09), 44–54. DOI:https://doi.org/10.1109/IISWC.2009.5306797

[13] Y. Lee and S. K. Lim. 2013. Ultrahigh density logic designs using monolithic 3-D integration. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems 32 (2013), 1892–1905. DOI:https://doi.org/10.1109/TCAD.

2013.2273986

[14] I. Hong and D. H. Kim. 2018. Analysis of performance benefits of multitier gate-level monolithic 3-D integrated

circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37 (2018), 1614–1626. DOI:
https://doi.org/10.1109/TCAD.2017.2768427

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

https://doi.org/10.1016/j.cam.2014.02.022
https://doi.org/10.1109/SAAHPC.2011.29
https://doi.org/10.1109/SAAHPC.2011.29
https://doi.org/10.1109/MDT.2005.136
https://doi.org/10.1109/S3S.2016.7804405
https://doi.org/10.1145/2593069.2593140
https://doi.org/10.1109/ASPDAC.2013.6509679
https://doi.org/10.1109/ICCD.2017.43
https://doi.org/10.1109/IISWC.2015.15
https://doi.org/10.1145/3307650.3322233
https://doi.org/10.1109/TETC.2019.2894982
https://doi.org/10.1109/MICRO.2010.50
https://doi.org/10.1109/MICRO.2010.50
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1109/TCAD.2013.2273986
https://doi.org/10.1109/TCAD.2013.2273986
https://doi.org/10.1109/TCAD.2017.2768427

16:20 A. I. Arka et al.

[15] S. D. Lin and D. H. Kim. 2018. Detailed-placement-enabled dynamic power optimization of multitier gate-level mono-

lithic 3-D ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37 (2018), 845–854.

DOI:https://doi.org/10.1109/TCAD.2017.2729401

[16] Y. Yu and N. K. Jha. 2018. Energy-efficient monolithic three-dimensional on-chip memory architectures. IEEE Trans-

actions on Nanotechnology 17 (2018), 620–633. DOI:https://doi.org/10.1109/TNANO.2017.2731871

[17] H. Jand, J. Kim, P. Gratz, K. H. Yum, and E. J. Kim. 2015. Bandwidth-efficient on-chip interconnect designs for GPGPUs.

In 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC’15), 1–6. DOI:https://doi.org/10.1145/2744769.

2744803

[18] B. K. Joardar, R. G. Kim, J. R. Doppa, P. P. Pande, D. Marculescu, and R. Marculescu. 2019. Learning-based application-

agnostic 3D NoC design for heterogeneous manycore systems. IEEE Transactions on Computers 68 (2019), 852–866.

DOI:https://doi.org/10.1109/TC.2018.2889053

[19] J. Cong, J. Wei, and Y. Zhang. 2004. A thermal-driven floorplanning algorithm for 3D ICs. In IEEE/ACM International

Conference on Computer Aided Design (ICCAD’04), 306–313. DOI:https://doi.org/10.1109/ICCAD.2004.1382591

[20] A. Sridhar, A. Vincenzi, M. Ruggiero, T. Brunschwiler, and D. Atienza. 2010. 3D-ICE: Fast compact transient thermal

modeling for 3D ICs with inter-tier liquid cooling. In 2010 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD’10), 463–470. DOI:https://doi.org/10.1109/ICCAD.2010.5653749

[21] Y. Xiao, S. Nazarian, and P. Bogdan. 2019. Self-optimizing and self-programming computing systems: A combined

compiler, complex networks, and machine learning approach. IEEE Transactions on Very Large Scale Integration (VLSI)

Systems 27 (2019), 1416–1427. DOI:https://doi.org/10.1109/TVLSI.2019.2897650

[22] W. Choi et al. 2018. On-chip communication network for efficient training of deep convolutional networks on het-

erogeneous manycore systems. IEEE Transactions on Computers 67 (2018), 672–686. DOI:https://doi.org/10.1109/TC.

2017.2777863

[23] J. Shi et al. 2016. A 14 nm FinFET transistor-level 3D partitioning design to enable high-performance and low-cost

monolithic 3D IC. In 2016 IEEE International Electron Devices Meeting (IEDM’16), 2.5.1–2.5.4. DOI:https://doi.org/10.

1109/IEDM.2016.7838032

[24] C. Liu and S. K. Lim. 2012. A design tradeoff study with monolithic 3D integration. In 13th International Symposium

on Quality Electronic Design (ISQED’12), 529–536. DOI:https://doi.org/10.1109/ISQED.2012.6187545

[25] S. Panth, K. Samadi, Y. Du, and S. K. Lim. 2014. Power-performance study of block-level monolithic 3D-ICs consid-

ering inter-tier performance variations. In 2014 51st ACM/EDAC/IEEE Design Automation Conference (DAC’14), 1–6.

DOI:https://doi.org/10.1145/2593069.2593188

[26] R. Balasubramanian et al. 2015. MIAOW—An open source RTL implementation of a GPGPU. In 2015 IEEE Symposium

in Low-Power and High-Speed Chips (COOL CHIPS XVIII), 1–3. DOI:https://doi.org/10.1109/CoolChips.2015.7158663

[27] J. Power, J. Hestness, M. S. Orr, M. D. Hill, and D. A. Wood. 2015. gem5-gpu: A heterogeneous CPU-GPU Simulator.

IEEE Computer Architecture Letters 14 (2015), 34–36. DOI:https://doi.org/10.1109/LCA.2014.2299539

[28] M. Zapater, J. L. Ayala, J. M. Moya, K. Vaidyanathan, K. Gross, and A. K. Coskun. 2013. Leakage and temperature

aware server control for improving energy efficiency in data centers. In 2013 Design, Automation & Test in Europe

Conference & Exhibition (DATE’13), 266–269. DOI:https://doi.org/10.7873/DATE.2013.067

[29] S. Bandyopadhyay, S. Saha, U. Maulik, and K. Deb. 2008. A simulated annealing-based multiobjective optimization

algorithm: AMOSA. IEEE Transactions on Evolutionary Computation 12 (2008), 269–283. DOI:https://doi.org/10.1109/

TEVC.2007.900837

[30] M. Lukasiewycz, M. Glass, C. Haubelt, and J. Teich. 2007. SAT-decoding in evolutionary algorithms for discrete con-

strained optimization problems. In 2007 IEEE Congress on Evolutionary Computation, 935–942. DOI:https://doi.org/10.

1109/CEC.2007.4424570

[31] A. Deshwal, N. K. Jayakodi, B. K. Joardar, J. R. Doppa, and P. P. Pande. 2019. MOOS: A multi-objective design space

exploration and optimization framework for NoC enabled manycore systems. ACM Transactions on Embedded Com-

puting Systems (TECS) 18, 5s (2019), Article 77, 23 pages. DOI:https://doi.org/10.1145/3358206

[32] F. Smirnov, B. Pourmohseni, M. Glaß, and J. Teich. 2019. IGOR, get me the optimum! Prioritizing important design

decisions during the DSE of embedded systems. ACM Transactions on Embedded Computing Systems (TECS) 18, 5s

(2019), Article 78, 22 pages. DOI:https://doi.org/10.1145/3358204

[33] N. Agarwal, T. Krishna, L. Peh, and N. K. Jha. 2009. GARNET: A detailed on-chip network model inside a full-

system simulator. In 2009 IEEE International Symposium on Performance Analysis of Systems and Software, 33–42. DOI:
https://doi.org/10.1109/ISPASS.2009.4919636

[34] J. Leng, T. Hetherington, A. El Tantawy, S. Gilani, N. S. Kim, T. M. Aamodt, and V. J. Reddi. 2013. GPUWattch:

Enabling energy optimizations in GPGPUs. In Proceedings of the 40th Annual International Symposium on Computer

Architecture (ISCA’13). Association for Computing Machinery, New York, NY, 487–498. DOI:https://doi.org/10.1145/

2485922.2485964

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

https://doi.org/10.1109/TCAD.2017.2729401
https://doi.org/10.1109/TNANO.2017.2731871
https://doi.org/10.1145/2744769.2744803
https://doi.org/10.1145/2744769.2744803
https://doi.org/10.1109/TC.2018.2889053
https://doi.org/10.1109/ICCAD.2004.1382591
https://doi.org/10.1109/ICCAD.2010.5653749
https://doi.org/10.1109/TVLSI.2019.2897650
https://doi.org/10.1109/TC.2017.2777863
https://doi.org/10.1109/TC.2017.2777863
https://doi.org/10.1109/IEDM.2016.7838032
https://doi.org/10.1109/IEDM.2016.7838032
https://doi.org/10.1109/ISQED.2012.6187545
https://doi.org/10.1145/2593069.2593188
https://doi.org/10.1109/CoolChips.2015.7158663
https://doi.org/10.1109/LCA.2014.2299539
https://doi.org/10.7873/DATE.2013.067
https://doi.org/10.1109/TEVC.2007.900837
https://doi.org/10.1109/TEVC.2007.900837
https://doi.org/10.1109/CEC.2007.4424570
https://doi.org/10.1109/CEC.2007.4424570
https://doi.org/10.1145/3358206
https://doi.org/10.1145/3358204
https://doi.org/10.1109/ISPASS.2009.4919636
https://doi.org/10.1145/2485922.2485964
https://doi.org/10.1145/2485922.2485964

Heterogeneous Manycore Architecture Based on Monolithic 3D Vertical Integration 16:21

[35] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. 2009. McPAT: An integrated power,

area, and timing modeling framework for multicore and manycore architectures. In 2009 42nd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO’09), 469–480. DOI:https://doi.org/10.1145/1669112.1669172

[36] P. Batude et al. 2012. 3-D sequential integration: A key enabling technology for heterogeneous co-integration of

new function with CMOS. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2 (2012), 714–722.

DOI:https://doi.org/10.1109/JETCAS.2012.2223593

[37] B. Rajendran et al. 2007. Low thermal budget processing for sequential 3-D IC fabrication. IEEE Transactions on

Electron Devices 54 (2007), 707–714. DOI:https://doi.org/10.1109/TED.2007.891300

[38] D. Lee, S. Das, J. R. Doppa, P. P. Pande, and K. Chakrabarty. 2019. Impact of electrostatic coupling on monolithic

3D-enabled network on chip. ACM Transactions on Design Automation of Electronic Systems 24, 6 (2019), Article 62,

22 pages. DOI:https://doi.org/10.1145/3357158

Received June 2020; revised August 2020; accepted September 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 26, No. 2, Article 16. Pub. date: January 2021.

https://doi.org/10.1145/1669112.1669172
https://doi.org/10.1109/JETCAS.2012.2223593
https://doi.org/10.1109/TED.2007.891300
https://doi.org/10.1145/3357158

