
53

Design Automation Algorithms for the NP-Separate VLSI

Design Methodology

MONZURUL ISLAM DEWAN and DAE HYUN KIM, Washington State University

The NP-Separate design methodology for very-large-scale integration (VLSI) design fine-controls the sizes

of transistors, thereby achieving significant power, performance, and area improvement compared to the

conventional standard-cell-based design methodology. NP-Separate uses NP cells formed by merging and

routing N and P cells having only NFETs and PFETs, respectively. The NP cell formation, however, should

be automated to design large circuits using the NP-Separate design methodology. In this paper, we propose

design automation algorithms to create NP cells automatically. Simulation results show that the automated

NP-Separate reduces the design time significantly, decreases the coupling capacitance by 13%, the critical path

delay by 6%, and the power consumption by 10% on average compared to the manual NP-Separate designs. We

also propose a detailed placement algorithm to generate more compact VLSI layouts with a little wirelength

overhead. The combined effect reduces the coupling capacitance by 10%, the critical path delay by 5%, and

the power consumption by 10% on average compared to the manual NP-Separate designs.

CCS Concepts: • Hardware→ Standard cell libraries; Physical design (EDA);

Additional Key Words and Phrases: NP-Separate, N cell, P cell, design automation algorithms, cell overlapping,

detailed placement, cell-level routing

ACM Reference format:

Monzurul Islam Dewan and Dae Hyun Kim. 2022. Design Automation Algorithms for the NP-Separate VLSI

Design Methodology. ACM Trans. Des. Autom. Electron. Syst. 27, 5, Article 53 (June 2022), 20 pages.

https://doi.org/10.1145/3508375

1 INTRODUCTION

In the very-large-scale integration (VLSI) design world, the standard-cell-based design method-
ology has vast popularity for efficient layout design [6]. The standard-cell-based design method-
ology uses standard cells and standard cell libraries for logic synthesis and physical layout
design to optimize power, performance, and area with shorter design time and less human ef-
fort [7, 11–13, 23, 26]. Standard cells are optimized to minimize the cell area and satisfy given
constraints such as equal rise and fall delays. However, a standard cell can be optimized further by
designing its NFETs and PFETs separately in an N cell and a P cell, respectively, and merging them
into a single cell. This introduced a new VLSI design methodology, NP-Separate, which reduced the
chip area further and showed significant power and performance improvement over the standard-
cell-based design methodology [3]. Figure 1 shows a simplified NP-Separate based VLSI layout.

Authors’ address: M. I. Dewan and D. H. Kim, Washington State University, School of Electrical Engineering and Computer

Science, 355 NE Spokane St, Pullman, WA, 99164; emails: {monzurulislam.dewan, daehyun.kim}@wsu.edu.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

1084-4309/2022/06-ART53 $15.00

https://doi.org/10.1145/3508375

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

https://orcid.org/0000-0001-8275-5949
https://doi.org/10.1145/3508375
mailto:permissions@acm.org
https://doi.org/10.1145/3508375
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3508375&domain=pdf&date_stamp=2022-06-06

53:2 M. I. Dewan and D. H. Kim

Fig. 1. A simplified NP-Separate based VLSI layout.

Briefly speaking, suppose the optimal sizes of the NFETs and PFETs of a standard cell instance are
n ·wmin andp ·wmin, respectively (wmin is the minimum transistor width). If the standard cell library
does not have the cell having the optimal transistor sizes, however, physical design software will
use a substitutive standard cell, which will over-optimize the paths going through the instance.
NP-Separate, however, creates an NP cell by creating and merging an N cell having NFETs of the
optimal size n · wmin and a P cell having PFETs of the optimal size p · wmin, thereby avoiding the
over-optimization of the design.

However, the NP-Separate design methodology is highly manual tangled with the following
issues. First, manual NP-Separate creates NP cells from N and P cells, which requires placing N-P
pairs, routing their input and output ports with poly and metal 1 (M1) layers, and creating input and
output pins to create design-rule check (DRC) and layout-versus-schematic (LVS) clean NP
cells. All these design steps are very time-consuming and error-prone. Second, the manual routing
of the input and output ports and creation of the input and output pins cannot assure effective use
of the given routing resources, which will increase the coupling capacitance. Finally, NP-Separate
allows cell overlapping by which NP cells are overlapped to generate more compact designs. This
necessitates design automation algorithms for both the NP cell placement and routing.

In this paper, we propose design automation algorithms, namely Auto-NP-Separate, to automate
the manual NP-Separate design methodology. The algorithms automate all the design steps (rout-
ing of input and output ports, creation of input pins, and detailed placement) in NP-Separate.
Noticeably, Auto-NP-Separate can generate more optimized design layouts in terms of power,

performance, and area (PPA) compared to the Manual-NP designs. Moreover, since the con-
ventional placement tools do not allow cell overlapping, we also propose a detailed placement
algorithm, namely Auto-NP-Separate-P, to generate more compact layouts with a small wirelength
overhead. This automation facilitates overlapping instances and routing overlapped cells in order
to reduce the chip area further, which could not be performed manually for larger circuits. We use
the same set of benchmarks reported in [3] for the evaluation of the algorithms and show that
Auto-NP-Separate reduces the total coupling capacitance by 13%, the critical path delay by 6%, the
power consumption by 10%, the power-delay product by 15%, and the energy-delay product by 20%
on average compared to the manual NP-Separate design methodology. Notice that expert layout
designers might be able to obtain similar PPA after spending an excessively high amount of time
and effort, so we expect that they could also use Auto-NP-Separate to generate highly-optimized
NP-Separate layouts by Auto-NP-Separate and then manually optimize them further. The target
technology node is the conventional transistor technology such as 22nm and earlier (28nm, 45nm,
etc.), but that could be extended to advanced technology with appropriate modifications in the
future.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:3

Table 1. Notations and Terminologies Used in This Paper

kμ Electron to hole mobility ratio
wmin Minimum transistor width
Rn Resistance of an NFET whose width is wmin

N cell A cell composed of NFETs only
P cell A cell composed of PFETs only

NP cell A fully-functional cell composed of an N and a P cells
N-P pair An N cell merged to a P cell

Fig. 2. (a) Three layouts for two-input NOR cells. (b) An example of NP cells: NOR2_N_4W_P_4W and

NAND4_N_4W_P_7W.

The rest of the paper is arranged in the following sequence. In Section 2, we discuss and compare
the conventional standard-cell-based design methodology with the manual NP-Separate design
methodology and show the motivation for the design automation algorithms. In Section 3 and 4, we
explain in detail the design automation and placement algorithms, respectively. Section 5 compares
all the results of the Auto-NP-Separate and Auto-NP-Separate-P with the manual NP-Separate and
standard-cell-based design methodologies. In Section 6, we discuss limitations of the NP-Separate
design methodology and generalize the proposed methodology for advanced technology nodes.
Finally, we summarize the proposed algorithms and conclude in Section 7.

2 THE NP-SEPARATE VLSI DESIGN METHODOLOGY

In this section, we briefly review the NP-Separate design methodology for physical VLSI layout
design. Table 1 shows the notations and terminologies used in this paper.

2.1 Standard-Cell-Based Layout Design

The standard-cell-based design methodology uses standard cells and standard cell libraries con-
taining physical, timing, and power information of the cells and the interconnect information
of the technology. Figure 2(a) shows NOR2 standard cells having all the PFETs on the upper

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:4 M. I. Dewan and D. H. Kim

Fig. 3. Standard-cell-, manual NP-Separate, Auto-NP-Separate, and Auto-NP-Separate-P based VLSI

design flows.

portion and all the NFETs on the lower portion of the cells. The sizes and shapes of the transis-
tors are optimized for several objectives such as matching the rise and fall delays. A cell type (e.g.,
two-input NOR) has multiple cells having different input capacitance and output resistance val-
ues. For example, Figure 2(a) shows three candidates of the NOR2 type. NOR2_X2 and NOR2_X4
have transistors 2× and 4× as large as those of NOR2_X1, thereby having 2× and 4× lower output
resistances, respectively. Physical layout design of the standard-cell-based design methodology
consists of netlist synthesis and placement and routing (P&R) in which various steps such as
placement, clock-tree synthesis, routing, and layout optimization are performed. Figure 3 shows a
simplified standard-cell-based design methodology.

2.2 NP-Cell-Based Layout Design

Figure 3 also shows a design flow for NP-Separate. The design process starts with synthesizing a
standard-cell-based netlist. At this stage, the netlist consists of standard cell instances optimized for
given constraints and objectives. Then, NP-Separate re-optimizes the sizes of the NFETs and PFETs
of the instances separately (denoted by “TR sizing” in the figure). For example, when an instance
in the netlist is INV_X8 whose NFET and PFET widths are 8× and 8kμ×, respectively, the NFET
could be upsized to 16×while the PFET is downsized to 2kμ×. The goal of the re-optimization is to
reduce the power consumption and the area further. Then, N and P cells are created and merged
to form NP cells, and all the standard cell instances in the netlist are replaced by NP cell instances.

An N cell has only NFETs, a P cell has only PFETs, and an NP cell is composed of an N cell and
a P cell. Figure 2(b) shows an example for a NOR2 cell. The NOR2_N_4W_P_4W NP cell is formed
by combining a NOR2_N_4W N cell and a NOR2_P_4W P cell. NOR2_X_YW (X is N or P and Y is
an integer) means that the cell is an X -type cell and the width of the transistors is Y ·wmin. The “N
and P cell creation” step in Figure 3 creates all the N and P cells required in the re-optimized netlist.
The “NP cell creation” step creates all the NP cells used in the netlist by merging the layouts of the
N and P cells and routing their input and output ports. Once all the NP cells have been created, a
new NP cell library is created for the NP cells. The NP cells are very similar to the standard cells

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:5

Fig. 4. Cell creation, routing (input and output ports), and abstraction of an NP cell. (a) Standard cell

NOR2_X4. (b) NP cell creation of NOR2_N_7W_P_10W. (c) The input and output ports are routed and then

input pins are created. (d) The pins and obstructions are abstracted.

from an abstract point of view, so layout designers can use the NP cells as if they are standard cells.
The following explains the design steps used in NP-Separate in more detail.

2.2.1 Transistor Sizing. NP-Separate can use any algorithms for the transistor sizing. For ex-
ample, the formula used in [3] minimizes the total transistor width and satisfies given timing
constraints, which is solved by a nonlinearly-constrained optimization solver [2]. The layout con-
straint used in the paper is that all the NFETs (or PFETs) in an N (or P) cell have the same width.
Although the size of each transistor can be optimized separately, this layout constraint provides
various benefits such as the regularity of the cell layouts and the reduction of the number of cell
layouts.

2.2.2 NP Cells. The transistor sizing step generates a new netlist from a given synthesized
netlist. The instances in the new netlist are NP cell instances such as NOR2_N_4W_P_2W. Thus,
the next step is to create all N and P cells used in the new netlist. Although this step is executed
for each design, we can design the N and P cells once and reuse them for other designs if neces-
sary. Designing (drawing a layout and performing DRC, LVS, and RC extraction) an N or P cell is
performed manually in [3]. Once all the N and P cells have been designed, NP cells are created by
merging the N and P cells in the NP cell creation step. The creation of an NP cell requires routing
the input and output ports of the N and P cells merged for the NP cell and creating input pins.
We use ports for the input poly and output M1 wires and pins for the actual wires accessible by
routing tools. The routing was performed manually in [3], so it was a serious design bottleneck in
NP-Separate. The routing of the input and output ports is followed by DRC and LVS to generate
DRC- and LVS-clean NP cells. Then, all the pin and obstruction information is abstracted from the
NP cell layouts to create a new physical library for the NP cells.

Figure 4 shows an example of the NP cell creation step. Figure 4(a) shows a layout of a
NOR2_X4. If this is to be replaced by NOR2_N_7W_P_10W after transistor sizing, we manually
design NOR2_N_7W and NOR2_P_10W in Figure 4(b), the input and output ports of the N and P
cells are routed in Figure 4(c), and the input and output ports and obstructions are abstracted in
Figure 4(d).

2.3 Motivation

The manual creation of NP cells is very time-consuming and error-prone. For the designs used
in [3], for example, almost 140 different NP cells were created manually and we predict that
larger designs will require much more various NP cells. Thus, the NP cell creation step should
be automated for the adoption of the NP-Separate design methodology for VLSI design. Coupling

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:6 M. I. Dewan and D. H. Kim

Fig. 5. Demonstration of cell overlapping in the NP-Separate design methodology. (a) Two NP cell instances

placed without overlapping. (b) Cell overlapping.

capacitance minimization is also an important factor for the automation of the NP cell creation
step. The internal capacitance of an NP cell is strongly dependent on the routing pattern of the
input and output ports of the N and P cells constituting the NP cell. In addition, input and output
pin creation is also an important step because non-optimized input and output pin locations would
lead to routing failure during P&R. Thus, the internal capacitance and I/O pin locations should be
optimized simultaneously. In this paper, we aim to automate the NP cell creation step optimizing
given objectives. Obviously, the N and P cell creation step could also be automated. However, we
design N and P cells manually because it is much easier than creating all NP cells as shown in
Figure 4 and we can reuse the N and P cells.

We also propose a detailed placement algorithm to overlap NP cell instances to reduce the chip
area further. For example, Figure 5(a) shows two NP cell instances NAND4_N_5W_P_5W and
NAND2_N_10W_P_7W placed side by side. The dotted lines show the cell boundaries and place-
ment tools do not allow the instances to overlap. In Figure 5(b), however, NAND2_N_10W_P_7W
is shifted to the left to make the design more compact. Figure 5(b) also shows how the top-level
routing is performed without violating design rules. These necessitate a detailed placement algo-
rithm for the instance overlapping and an automatic routing algorithm for cell-level routing after
detailed placement.

3 DESIGN AUTOMATION ALGORITHMS FOR NP-SEPARATE

In this section, we propose design automation algorithms for NP-separate, namely Auto-NP-

Separate. We also propose a detailed placement algorithm along with the design automation al-
gorithms, namely Auto-NP-Separate-P, for further area reduction.

3.1 Overview

Figure 3 shows the design flows of the manual NP-Separate, Auto-NP-Separate, and Auto-NP-
Separate-P design methodologies. All the design processes begin with netlist synthesis. After the
transistor sizing step (netlist re-optimization), the N and P cells used in the re-optimized netlist are
created manually. Notice again that the N and P cells can be reused once they have been created.
Then, NP cells are automatically created in both Auto-NP-Separate and Auto-NP-Separate-P and
an NP cell library is created from the NP cells. A commercial tool is used for the placement of the
NP cell instances in a given design. Auto-NP-Separate-P performs an additional detailed placement
for further area optimization. The new placement result requires the NP cell creation step one more
time, which is followed by the clock tree synthesis (CTS), routing, and RC extraction steps.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:7

Fig. 6. A portion of SLEF.

3.2 Physical Libraries for N and P Cells

In order to automate the routing and generation of the LEF file for NP cells, we create a special
type of LEF file, namely SLEF, having the physical cell information of all the N and P cells. Each cell
represents either an N cell or a P cell and includes its power and ground ports, input and output
ports, and obstacle geometries. The input and output ports of an N or P cell are the poly and M1
wire pieces that will be connected to the input and output pins of the NP cell formed from the cell.
Figure 6 shows an example of an SLEF file.

3.3 Input and Output Ports Routing

An NP cell is formed by merging an N and a P cells. Each N (or P) cell could be simple or folded. A
simple N or P cell has only one input port for an input pin, whereas a folded cell has multiple input
ports for an input pin. In Figure 7(a), for example, the NAND4_N_5W cell has one input port for
each input pin, so it is a simple N cell. On the contrary, the NAND3_N_10W cell in Figure 7(f) has
two input ports (denoted by A2 and A2_1) for input pin A2, so it is a folded N cell. The multiple
input ports for the same pin are routed during the NP cell creation. An NP cell is simple (or folded)
if both of its N and P cells are simple (or folded). Otherwise, the cell is mixed. We assume that the
locations of the N and P cells are given (the center lines of the cells are aligned in general).1

For a given NP cell (an N cell, a P cell, and their relative locations), we first route the input ports
using the poly layer only. Then, we route the output ports using the M1 layer and finally create
input pins. Notice that the output ports are on the M1 layer and routed using the same layer, so
we do not need to create output pins. The order between the routing of the output port and the
creation of the input pins is closely related to the routability of the input and output ports and the
feasibility of the creation of input pins. In our algorithm, we find all minimum-cost routing results
for input and output ports, then find the best routing solution as detailed below.

Notice that we should consider all the design rules in the routing. In this work, we use all the
design rules related to the active, contact, poly, and M1 layers since those layers are related to
the cell-level routing. The rules include the minimum width, minimum spacing, extension and
overlap in between layers or the same layer, and minimum area. However, we do not use the
parallel run length, step height, and end-of-line spacing rules. There are options to include these
advanced rules if necessary since our algorithms enumerate all combinations, it will be able to find

1We observed that center-aligned NP cells have better routability than left- or right-aligned NP cells in general.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:8 M. I. Dewan and D. H. Kim

Fig. 7. Automatic cell-level routing of simple, folded, and mixed NP cells. (a) Placement result of simple

N cell and P cell. (b) Input poly routing. (c) Output M1 routing before input pin creation. (d) Input pin creation.

(e) Placement result of folded N cell and P cell. (f) Input poly routing. (g) Output M1 routing before input pin

creation indicates circuit violation. (h) Input pin creation before output M1 routing. (i) Output M1 routing.

(j) Placement result of simple N cell and folded P cell, introducing mixed N-P pair. (k) Input poly routing.

(l) Virtual pin candidates of unrouted poly ports. (m) Input pin creation before output M1 routing. (n) Output

M1 routing.

a solution if any. However, the standard-cell-based and Manual-NP-based designs in [3, 8] did not
use the parallel run length, step height, or end-of-line spacing rules and since the outcome as well
as the routability depend on the design rules, we do not use those rules either for the Auto-NP and
the Auto-NP-P designs for a fair comparison.

3.3.1 Input Port Routing. The route_input function in Algorithm 1 shows the algorithm for
the routing of the input ports of a given NP cell. The algorithm finds multiple paths using maze
routing [9] for each input port pair of the N and P cells and selects the best combination of the paths
that has the minimum coupling capacitance and no design rule violation. In Line 1, we initialize
routedPaths and f inalPaths (the former will have routing paths for each input and the latter will
have final routing paths for all inputs). Then, we perform maze routing for each input i (Line 2
to 12). First, we insert all input ports of i in the N and P cells of the given NP cell into pN and
pP , respectively (Line 3, 4). For example, pN = {A1,A2,A3} and pP = {A1,A2,A2_1,A3,A3_1} in
Figure 7(k). Then, we obtain pPairs from pN and pP (Line 5). Notice that some input ports are not
paired even if they belong to the same input. For example, inputA2 in Figure 7(k) has one portA2 in
the N cell and two portsA2 and A2_1 in the P cell. However, only the A2 ports are paired and A2_1

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:9

ALGORITHM 1: Input port routing

Require: route_input (c: NP cell)

1: routedPaths = {{}}; f inalPaths = {};

2: for each input i of c do

3: pN = {All input ports of i in the N cell of c};

4: pP = {All input ports of i in the P cell of c};

5: pPairs = pairs of the input ports from pN and pP ;

6: for each p ∈ pPairs do

7: Initialize a maze-routing grid G for p.

8: maze_filling (p[N], p[P], G);

9: Paths = trace_parent (p[P], G);

10: Insert Paths into routedPaths[i].
11: end for

12: end for

13: for each input i of c that has unrouted secondary ports do

14: pP = {All pin locations on the primary port of i};
15: for each unrouted port p do

16: pm = Extend p vertically and maximally.

17: pS = {All pin locations in pm};

18: comPins = {(r , s) : r ∈ pP , s ∈ pS };
19: for each cp ∈ comPins do

20: Initialize a maze-routing grid G for cp.

21: maze_filling (cp[0], cp[1], G);

22: Paths = trace_parent (cp[1], G);

23: Insert Paths into routedPaths[i].
24: end for

25: end for

26: end for

27: allPaths = All combinations of the paths in routedPaths .
28: for each path combination p ∈ allPaths do

29: Perform DRC and estimate the cost.

30: if DRC-clean and the cost < threshold then

31: Insert p into f inalPaths .
32: end if

33: end for

is left unpaired and will be routed later. On the contrary, both the N and P cells have A2 and A2_1
ports in Figure 7(f). Thus, theA2 ports are paired, so are theA2_1 ports. The next step is to perform
maze routing for each port pair p (Line 6 to 11). The maze_filling function is the filling function
from one of the ports to the other and the trace_parent function is the back-propagation function.
We find all low-cost paths from the maze routing and insert them into routedPaths[i] for input
i (Line 10). The cost is a weighted sum of the total wirelength and the number of bends. Notice that
a path for input i and a path for input j might have design rule violations. Nonetheless, we find
all minimum-cost paths for each input because we want to find all the DRC-clean combinations
of the paths of all the inputs.

If the given NP cell is mixed or folded, it might have unrouted secondary ports as shown in
Figure 7(k). In this case, we route each of the unrouted secondary ports to its primary port (Line 13
to 26). We first insert all pin locations on the primary port of input i into pP (Line 14). Some
examples of the pin locations are shown in Figure 7(k). Then, we extend each unrouted port p
vertically and maximally and assign the geometry to pm as shown in Figure 7(l). The extension

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:10 M. I. Dewan and D. H. Kim

could be more sophisticated to include various shapes such as L and Z shapes, but we found that
the vertical extension was enough for successful routing. Then, we insert all pin locations in pm
into pS (Line 17) and find all combinations of the pin locations of pP and pS (Line 18). For each
pin location combination, we perform maze routing and find all low-cost paths (Line 19 to 24).
Notice that this routing strategy allows detours, which sacrifices the routing cost for routability
in case we need some detours later to route output ports. This process completes the routing of all
unrouted secondary ports, so now all the inputs have completely routed paths in routedPaths .

The next step is to find all DRC-clean, low-cost combinations of the paths. For this, we enumerate
all combinations of the paths and insert them into allPaths (Line 27). For each combination, we
perform DRC and estimate the cost (Line 29 to 32). At this time, the cost function is a weighted sum
of the total coupling capacitance and the number of bends. We estimate the coupling capacitance
between two adjacent wires by the reciprocal of their distance. If the combination is DRC-clean
and its cost is less than a pre-determined threshold value, we insert it into f inalPaths (Line 31).
Finally, f inalPaths has all the combinations of the routing paths of the inputs.

Notice that maze routing has also been used for fully automatic cell-level routing for standard
cell libraries [4]. The Boolean satisfiability (SAT) solver along with the maze routing has been used
in [18] to generate all possible legal routing solutions for standard cell libraries. However, both the
articles did not select the best routing solutions considering the intra-cell coupling capacitance.
Moreover, the satisfiability modulo theory (SMT) and the integer linear programming (ILP)

based simultaneous placement and intra-cell routing of the FETs using multiple metal layers with
conditional design rules for advanced technology nodes like sub-10nm were performed in [10,
15, 16]. However, fully automatic cell-level placement and routing lacks both in performance and
optimality compared to the placement and routing obtained from the skillful manual effort [17].
In the Auto-NP-Separate design methodology, therefore, we try to balance the scale by placing
NFETs (or PFETs) in N (or P) cells, routing N (or P) cells manually and elaborately, and merging
the N and P cells to complete the cell-level routing automatically for better-optimized cell layouts.

3.3.2 Output Port Routing and Input Pin Creation. Algorithm 2 shows the proposed algorithm
to route the output port of a given NP cell and create its input pins. inPaths in Line 1 is the
set f inalPaths of all routed paths of the inputs of c found in Algorithm 1. Pins in Line 2 is the
set of potential locations of the input pins of c . Then, we find possible pin locations on the path
p in inPaths of each input i (Line 3 to 7). The black dots in Figure 7(f) show an example of the
possible pin locations. When we find possible pin locations on path p, we use a pre-determined
step distance (e.g., 30nm) so that we can find a proper number of possible locations to check. If we
fail to create input pins for c , we reduce the step distance and try the input pin creation process
again. Then, we create a set comPins for all the DRC-clean combinations of the pin locations of
all the pins of c (Line 8). Since an NP cell is small, the total number of elements of comPins is
not many, so we try all of them. Before we create input pins, we route the output port because
the input pin locations have a greater degree of flexibility than the feasible paths of the output
port. For this, we first prepare two sets yN and yP of connection points on the output port of the
N and P cells of c , respectively (Line 9, 10). The connection points are similar to the possible pin
locations for the inputs, but they are created on the output ports of the N and P cells. Then, for
each combination of the elements of yN and yP , we perform maze routing and find all low-cost
paths (Line 14 to 16). These routing paths might overlap with the input pin locations in comPins , so
we check overlaps among them. If there is any violation, we try to slightly adjust the locations of
the pins violating the design rules to remove the violations (Line 19). Function adjust_locations

checks the design rules and returns cp if there is no violation or adjusted pin locations if cp and
p have violations. The adjustment is creating horizontal exit paths from the original pin location

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:11

ALGORITHM 2: Output port routing and input pin creation

Require: route_out (c: NP cell)

1: inPaths = {All routed paths of the inputs of c};

2: Pins = {{}};

3: for each input i of c do

4: for each path p of i do

5: Pins[i] = {Possible pin locations on p};

6: end for

7: end for

8: comPins = {All DRC-clean combinations of the pin locations in Pins};
9: yN = {Connection points on the output port of the N cell of c};

10: yP = {Connection points on the output port of the P cell of c};

11: yNP = {(n,p) : n ∈ yN ,p ∈ yP };

12: best_cost = ∞;

13: for each y ∈ yNP do

14: Initialize a maze-routing grid G for y.

15: maze_filling (y[0], y[1], G);

16: Paths = trace_parent (y[1], G);

17: for each p ∈ Paths do

18: for each cp ∈ comPins do

19: tp = adjust_locations (cp, p);

20: if tp == {} then

21: continue;

22: end if

23: cost = estimate_cost (tp, p);

24: if cost < best_cost then

25: best_cost = cost ;
26: end if

27: end for

28: end for

29: end for

30: route_extension(c);

31: Return the best layout.

as shown in Figure 7(d) where pin A1 has an extended poly wire to avoid the minimum spacing
rule in the M1 layer. However, the adjustment might fail if there is not enough space. In this case,
adjust_locations returns an empty object and we discard the combination of p and cp (Line 21). If
tp is not empty, we compute the cost of the layout, which is a weighted sum of the total capacitance
and the number of bends of tp (Line 23). The route_extension(c) function routes any unrouted
secondary ports of the inputs of c , which is actually extending them vertically to the selected
virtual pin locations. Finally, the algorithm returns the best layout minimizing the cost function.

The proposed algorithm does not guarantee that it will always be able to find a DRC-clean
layout. For example, if an NP cell requires complex detours for the routing of its input and output
ports, the algorithm will fail to find a DRC-clean layout. In that case, we can manually layout the
NP cell. In our simulation, however, the algorithm successfully found DRC-clean layouts for all
the NP cells although there were only two to four horizontal M1 routing tracks in the cells.

3.3.3 Complexity Analysis. In Algorithm 1, the complexity of the maze routing isO (w ·h) where
w andh are the width and height of a given cell, respectively. Notice that the number of grid points
is proportional to w · h. The complexity of the first FOR statement (Line 2 to 12) is O (p2 · w · h)

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:12 M. I. Dewan and D. H. Kim

where p is the number of input signal pins of the cell. Notice that p is generally small (maximum
four) and h is a constant because all the cells have the same height. The complexity of the second
FOR statement (Line 13 to 26) is O (h2 · w · h) = O (w · h3). The complexity of the third FOR
statement (Line 28 to 33) is dependent on the number of paths found and the number of design
rules. In fact, both numbers are small. In summary, the complexity of Algorithm 1 is O (w · h3).

In Algorithm 2, we can consider the number of paths found for each input as a constant c as
stated above. In addition, the paths have no or small detour, so the number of possible pin locations
on each path is O (c ·w · h). The complexity of the second FOR statement (Line 13 to 29) is O (h2 ·
(w · h + c ·w · h)) = O (w · h3). Thus, the complexity of the overall routing algorithm is O (w · h3).

4 DETAILED PLACEMENT

In this section, we propose a detailed placement algorithm for area compaction for Auto-NP-
Separate-P.

4.1 Overview

Auto-NP-Separate-P follows the steps similar to the Auto-NP-Separate methodology until the
placement step as shown in Figure 3. After that, we perform a detailed placement of the N and
P cells using the proposed placement algorithm to reduce the chip area further as shown in
Figure 5. The placement algorithm strictly satisfies two constraints. First, the wirelength overhead
caused by the detailed placement is less than a pre-determined threshold value. Second, the new
locations of the N and P cells of each NP cell will not change the width of the NP cell, otherwise
the top-level routing will be much more complicated or even the design might become unroutable.
Once the locations of the N and P cells are adjusted by the detailed placement, we route them to
create NP cells.

4.2 Placement Algorithm

Simulated annealing has been used for detailed placement in several papers [5, 19, 25]. Thus, we
use simulated annealing for the detailed placement of NP cells in this paper as mentioned in [3].
The input consists of a placement result and simulated annealing parameters such as initial and
final temperature values and a cooling rate. The cost function is the layout area. For the solu-
tion perturbation, we use instance swapping as shown in Algorithm 3. We first compute the d
value, which is the difference between the widths of the N and P cell instances, for each NP cell
instance (Line 1). If d is positive, the N cell has a larger width than the P cell. The rationale for the
use of d is that we can reduce the total area by placing two instances side by side and overlapping
them as shown in Figure 5 if they have opposite signs ofd . Then, we randomly pick two rows in the
layout L (Line 2). The rows should be the same row or adjacent rows. The first and the second rows
are called the p-row and the n-row, respectively. Then, we insert all NP cell instances in the p-row
and the n-row whose d values are positive and negative into set P and N , respectively (Line 3, 4).
If P or N is empty, the perturbation returns the current layout (Line 6). Otherwise, we randomly
pick an instance IP from P and an instance IN from N (Line 8, 9). Then, we move IP (or IN) to the
left or right of IN (or IP) or swap IP and IN (Line 10). Then, we compute the wirelength and revert
the perturbation if the wirelength overhead is greater than the threshold value maxW (Line 12).
Finally, we return L (Line 14).

Once the simulated annealing finishes, we adjust the locations of N and P cells as follows. For
the non-overlapping instances, we center-align the N and P cells inside the instance boundary (the
NAND4 and NAND2 instances in Figure 5(a)). For the overlapped instances, for each overlapped-
instance pair, we left-align the N and P cells of the left instance (the NAND4 instance in Figure 5(b))
and right-align the N and P cells of the right instance (the NAND2 instance in Figure 5(b)) to ensure

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:13

Table 2. The Number of Instances Used in the Benchmarks

Instance
RCA08 CLA08 BKA08 KSA08 BCD08 WT04 BKA32 CLA32 KSA32 MUL_B64 DES_PERF

type
DFF - - - - - - - - - 15623 9920
INV 10 15 22 30 25 16 42 31 58 12796 15705

NAND2 21 27 33 47 41 33 120 92 127 21868 37515
NAND3 - 7 3 5 9 - 7 16 19 532 6000
NAND4 - - - 1 - - 1 2 4 112 2800
NOR2 15 8 10 17 25 32 21 35 36 8176 24800
NOR3 1 - - 1 4 1 3 7 4 112 6640
NOR4 1 - - - - - 3 1 - - 1520
XOR2 1 6 3 1 3 3 31 34 30 2072 2970

XNOR2 15 16 8 10 17 15 32 53 27 12012 4205

ALGORITHM 3: Solution perturbation algorithm for simulated annealing

Require: solution_perturbation (L: layout,maxW)

1: (Compute d for each NP cell instance.)

2: Randomly pick two rows from L, same or adjacent.

3: P = {all the +d-value instances in the p-row};

4: N = {all the −d-value instances in the n-row};

5: if P .size == 0 or N .size == 0 then

6: Return L;

7: end if

8: IP = Randomly pick an instance from P .

9: IN = Randomly pick an instance from N .

10: Randomly pick an operation, either move IP to adjacent

location of IN or IN to adjacent location of IP or swap

IP with IN .

11: if
hpwl(Snew)

hpwl(S) > maxW then

12: Revert the perturbation.

13: end if

14: Return L;

the maximum spacing between the overlapped-instances to avoid routing congestion in their input
and output ports.

5 SIMULATION RESULTS

In this section, we use the same set of benchmarks used in [3], which were picked based on different
characteristics including design complexity, logic depth, and routing pattern. We designed five
8-bit adders, three 32-bit adders, a 4-bit multiplier, a 64-bit pipelined multiplier [20], and a data

encryption standard (DES) core using Auto-NP-Separate and Auto-NP-Separate-P and compare
the results with the standard-cell-based (Std) and manual NP-Separate (Manual-NP) design
methodologies from [3] to show the effectiveness of the proposed algorithms. Table 2 shows the
number of instances used in the benchmarks. The details of the benchmark circuits can be found
in [3]

We used the same netlists used in [3] for a fair comparison. The netlists were synthesized using a
22nm standard cell library and Cadence Genus. The 22nm standard cell library used an aspect ratio
of 1.8, placement site width of 0.1um, and used 0.9um single-height cells for all the instances (0.4um
and 0.5um for the NFET and PFET regions, respectively). Therefore, we also used the same

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:14 M. I. Dewan and D. H. Kim

Table 3. Average Routing Time Per Each Instance Type

Instance type Routing time

AND(OR): 2/3/4 0.34s/2.10s/15.40s

AOI(OAI): 21/22/211/221/222/33 0.74s/7.23s/7.78s/10.73s/1m10s/1m13s

BUF/INV 0.04s/0.01s

HA 1m6s

MUX2 19.72s

NAND(NOR): 2/3/4 0.12s/1.73s/7.30s

XOR(XNOR): 2 0.4s

dimensions (0.9um, 0.4um, and 0.5um for the heights of the NP cells, N cells, and P cells, respec-
tively) for the NP cells. Table III of [8] lists the existing 22nm standard cells with the corresponding
cell sizes. The minimum width and pitch of poly are 26nm and 52nm, respectively, and those of M1
wires defined in the LEF file are 36nm and 90nm, respectively. The details of the 22nm standard
cell library used in this paper can be found in [8]. We used Cadence Innovus for the placement and
signal routing, Mentor Calibre for parasitic RC extraction, and Synopsys HSpice for post-layout
simulation with parasitic RC.

For the layout generation, we used the maximum initial core utilization, which was almost 100%
for most of the designs. The reason is as follows. One of the main benefits of NP-Separate is to
reduce the layout area (more precisely speaking, the area occupied by transistors). However, the
layout area of a design is determined at the beginning of the design process. Therefore, we need
to (1) use the maximum initial core utilization for each design or (2) use a certain initial core uti-
lization (e.g., 60%), but compare the actual area occupied by transistors. Since the actual transistor
areas of the Auto-NP designs are always less than or equal to those of the Manual-NP designs, we
decided to use the former approach (using the maximum initial core utilization) in this paper.

5.1 Design Time

Table 3 shows the average cell-level routing time for each instance type routed by the routing
algorithm we proposed. We used an Intel Xeon CPU E5-2650 v3 (2.30GHz) server for all the simu-
lations. We were able to route all the combinational logic instances except a sequential logic (DFF)
and a full adder logic in Table III of [8]. The factors governing the routing time include the num-
ber of input and output ports to be routed per cell (as we consider all possible combinations of
the routing paths), the available routing space in between the two diffusion regions along with
the cell width, and the N cell to P cell alignment of each instance. Note that we can decompose
some instances into smaller instances to reduce the routing time. However, it might compromise
the optimality of the routing. For example, decomposing a half adder into an XOR2 and an AND2
cell reduces the routing time from 66s to 0.74s (0.4s and 0.34s for the XOR2 and AND2 cells, re-
spectively) on average, but it might increase the power consumption slightly since the routing of
the half adder circuit optimizes the entire instance as a whole. Thus, instances with the higher
number of input and output ports can always be routed within a reasonable amount of time by the
instance decomposition at a cost of the reduced cell-level routing optimality.

Next, we compare the design times of Auto-NP-Separate and Auto-NP-Separate-P. Table 4 shows
the runtime for the NP cell creation (routing of the input and output ports) and detailed placement.
The NP cell instances were routed sequentially. Although some of the instances were identical (i.e.,
they were of the same type and the relative locations of their N and P cells were the same), we
routed all the instances individually assuming the worst case scenario. As the table shows, the
average routing time per instance varies from 0.1 second to 2.6 seconds. The DES_PERF design has

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:15

Table 4. Comparison of the Design Time for the NP Cell Routing and Detailed Placement

Benchmark Insts Design type Routing Routing per instance Detailed placement P&R

RCA08 64
Std - - -

4s

Auto-NP 26s 0.4s -
Auto-NP-P - - -

CLA08 79
Std - - -

Auto-NP 30s 0.4s -
Auto-NP-P 34s 0.4s 45s

BKA08 79
Std - - -

Auto-NP 14s 0.2s -
Auto-NP-P 19s 0.2s 47s

KSA08 112
Std - - -

Auto-NP 40s 0.4s -
Auto-NP-P 1m4s 0.6s 47s

BCD08 124
Std - - -

Auto-NP 56s 0.5s -
Auto-NP-P 1m11s 0.6s 55s

WT04 100
Std - - -

Auto-NP 14s 0.1s -
Auto-NP-P - - -

BKA32 260
Std - - -

Auto-NP 1m55s 0.4s -
Auto-NP-P 2m22s 0.5s 1m5s

CLA32 271
Std - - -

Auto-NP 2m29s 0.5s -
Auto-NP-P 3m10s 0.7s 1m17s

KSA32 305
Std - - -

Auto-NP 2m46s 0.5s -
Auto-NP-P 3m35s 0.7s 1m17s

MUL_B64 73303
Std - - -

20s

Auto-NP 2h24m 0.1s -
Auto-NP-P - - -

DES_PERF 112075
Std - - -

Auto-NP 66h40m 2.3s -
Auto-NP-P 72h30m 2.6s 11h20m

“P&R” denotes placement and routing of the standard-cell-based designs from [3].

many high fan-in instances such as NAND4 and NOR4 as shown in Table 2, so it has a much longer
routing time than the other designs. Notice that most of the instances can be routed in parallel, so
the actual routing time can be reduced significantly by parallel routing. In addition, the instances
can be reused for other designs, which will reduce the design time further. In fact, we were able
to route more than 800 different N-P cell pairs of the instance types reported in Table 2 within
12 minutes. Notice that routing a group of overlapped instances in the Auto-NP-Separate-P layouts
takes more time than routing a single instance. However, the groups of the overlapped instances
are independent of each other, so we can route the groups in parallel to reduce the routing
time.

The runtime for detailed placement is approximately a minute for small designs and more than
11 hours for the largest design. Notice that the detailed placement is an optional step for further
area reduction. Thus, if area reduction is crucial for a certain design, this runtime overhead is
sufficiently acceptable for trying the detailed placement. For RCA08, WT04, and MUL_B64, we
also designed them using Auto-NP-P. However, their Auto-NP designs were sufficiently compact,
so their Auto-NP-P designs did not obtain enough area reduction. Thus, we did not show the design
time for the routing and detailed placement of the designs in Table 4.

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:16 M. I. Dewan and D. H. Kim

Table 5. Comparison of the Area, Wirelength (WL), Parasitic Resistance (R), Parasitic Ground (C) and

Coupling Capacitances (Cc), Critical Path Delay (CPD), and Power Consumption of the Layouts Built

by the Conventional Standard-cell-based (denoted by Std), Manual NP-Separate (denoted by

Manual-NP), Auto-NP-Separate (denoted by Auto-NP), and Auto-NP-Separate-P

(denoted by Auto-NP-P) Design Methodologies

Benchmark Design type # Nets Area (μm2) WL (μm) R (kΩ) C (fF) Cc (fF) CPD (ps) Power (uW)

RCA08

Std

81

21.60 (1.09) 224 (1.01) 273 (1.03) 21 (1.05) 118 (1.27) 470 (1.24) 56 (1.27)
Manual-NP 19.80 (1.00) 221 (1.00) 265 (1.00) 20 (1.00) 93 (1.00) 380 (1.00) 44 (1.00)

Auto-NP 19.80 (1.00) 224 (1.01) 271 (1.02) 20 (1.00) 74 (0.80) 350 (0.92) 39 (0.89)
Auto-NP-P 19.80 (1.00) 224 (1.01) 271 (1.02) 20 (1.00) 74 (0.80) 350 (0.92) 39 (0.89)

CLA08

Std

96

28.35 (1.09) 281 (1.09) 351 (1.02) 24 (1.04) 135 (1.09) 310 (1.15) 68 (1.03)
Manual-NP 26.10 (1.00) 257 (1.00) 344 (1.00) 23 (1.00) 124 (1.00) 270 (1.00) 66 (1.00)

Auto-NP 26.10 (1.00) 257 (1.00) 351 (1.02) 23 (1.00) 111 (0.90) 275 (1.02) 60 (0.91)
Auto-NP-P 25.65 (0.98) 262 (1.02) 346 (1.01) 23 (1.00) 113 (0.91) 275 (1.02) 60 (0.91)

BKA08

Std

95

25.20 (1.12) 247 (1.07) 304 (1.01) 23 (1.10) 128 (1.17) 270 (1.02) 66 (1.14)
Manual-NP 22.50 (1.00) 230 (1.00) 300 (1.00) 21 (1.00) 109 (1.00) 265 (1.00) 58 (1.00)

Auto-NP 22.50 (1.00) 230 (1.00) 287 (0.96) 21 (1.00) 88 (0.81) 255 (0.96) 52 (0.90)
Auto-NP-P 22.05 (0.98) 235 (1.02) 290 (0.97) 21 (1.00) 100 (0.92) 265 (1.00) 54 (0.93)

KSA08

Std

129

35.64 (1.15) 328 (1.04) 434 (0.99) 28 (1.08) 191 (1.22) 360 (1.24) 91 (1.14)
Manual-NP 31.05 (1.00) 314 (1.00) 440 (1.00) 26 (1.00) 157 (1.00) 290 (1.00) 80 (1.00)

Auto-NP 31.05 (1.00) 316 (1.01) 430 (0.98) 26 (1.00) 139 (0.89) 295 (1.02) 73 (0.91)
Auto-NP-P 30.15 (0.97) 324 (1.03) 427 (0.97) 26 (1.00) 141 (0.90) 290 (1.00) 74 (0.93)

BCD08

Std

141

42.84 (1.13) 355 (1.05) 520 (1.03) 31 (1.07) 224 (1.11) 455 (1.06) 127 (1.02)
Manual-NP 37.80 (1.00) 338 (1.00) 504 (1.00) 29 (1.00) 202 (1.00) 430 (1.00) 125 (1.00)

Auto-NP 37.80 (1.00) 340 (1.01) 520 (1.03) 29 (1.00) 165 (0.82) 375 (0.87) 101 (0.81)
Auto-NP-P 36.54 (0.97) 349 (1.03) 511 (1.01) 29 (1.00) 175 (0.87) 385 (0.90) 104 (0.83)

WT04

Std

108

32.85 (1.13) 279 (1.08) 434 (1.02) 26 (1.08) 156 (1.06) 325 (1.03) 78 (1.05)
Manual-NP 29.00 (1.00) 258 (1.00) 426 (1.00) 24 (1.00) 147 (1.00) 315 (1.00) 74 (1.00)

Auto-NP 29.00 (1.00) 257 (1.00) 412 (0.97) 24 (1.00) 123 (0.84) 295 (0.94) 63 (0.85)
Auto-NP-P 29.00 (1.00) 257 (1.00) 412 (0.97) 24 (1.00) 123 (0.84) 295 (0.94) 63 (0.85)

BKA32

Std

324

88.20 (1.09) 1082 (1.07) 1138 (1.01) 55 (1.06) 475 (0.94) 635 (1.18) 141 (1.07)
Manual-NP 81.00 (1.00) 1012 (1.00) 1126 (1.00) 52 (1.00) 505 (1.00) 540 (1.00) 132 (1.00)

Auto-NP 81.00 (1.00) 1031 (1.02) 1124 (1.00) 52 (1.00) 433 (0.86) 545 (1.01) 119 (0.90)
Auto-NP-P 80.10 (0.99) 1040 (1.03) 1143 (1.02) 52 (1.00) 452 (0.90) 540 (1.00) 124 (0.94)

CLA32

Std

336

102.96 (1.13) 1447 (1.36) 1334 (1.07) 62 (1.09) 630 (1.29) 710 (1.11) 140 (1.21)
Manual-NP 90.90 (1.00) 1061 (1.00) 1245 (1.00) 57 (1.00) 487 (1.00) 640 (1.00) 116 (1.00)

Auto-NP 90.90 (1.00) 1061 (1.00) 1250 (1.00) 57 (1.00) 449 (0.92) 585 (0.91) 110 (0.95)
Auto-NP-P 90.00 (0.99) 1092 (1.03) 1276 (1.02) 57 (1.00) 453 (0.93) 630 (0.98) 107 (0.92)

KSA32

Std

370

99.99 (1.09) 1309 (1.14) 1304 (1.01) 61 (1.05) 585 (1.07) 695 (1.01) 153 (1.08)
Manual-NP 91.80 (1.00) 1151 (1.00) 1292 (1.00) 58 (1.00) 549 (1.00) 690 (1.00) 142 (1.00)

Auto-NP 91.80 (1.00) 1170 (1.02) 1298 (1.00) 58 (1.00) 488 (0.89) 580 (0.84) 134 (0.94)
Auto-NP-P 90.90 (0.99) 1184 (1.03) 1289 (1.00) 58 (1.00) 521 (0.95) 655 (0.95) 131 (0.92)

MUL_B64

Std

90076

44428 (1.06) 202384 (1.02) 406084 (0.99) 17444 (1.03) 185808 (1.09) 973 (1.01) 75404 (1.07)
Manual-NP 41807 (1.00) 197484 (1.00) 411768 (1.00) 16884 (1.00) 170380 (1.00) 966 (1.00) 70392 (1.00)

Auto-NP 41807 (1.00) 200452 (1.02) 412300 (1.00) 16912 (1.00) 161784 (0.95) 812 (0.84) 61068 (0.87)
Auto-NP-P 41807 (1.00) 200452 (1.02) 412300 (1.00) 16912 (1.00) 161784 (0.95) 812 (0.84) 61068 (0.87)

DES_PERF

Std

122605

47580 (1.05) 990325 (1.36) 584245 (1.00) 18725 (1.06) 364015 (1.31) 350 (1.04) 57075 (1.17)
Manual-NP 45455 (1.00) 728510 (1.00) 584045 (1.00) 17588 (1.00) 278515 (1.00) 335 (1.00) 48905 (1.00)

Auto-NP 45455 (1.00) 739115 (1.01) 586540 (1.00) 17675 (1.00) 250995 (0.90) 340 (1.01) 45440 (0.93)
Auto-NP-P 45360 (1.00) 757215 (1.04) 598271 (1.02) 17604 (1.00) 264047 (0.95) 325 (0.97) 47120 (0.96)

Geo. mean (Std/Manual-NP) 1.10 1.11 1.02 1.06 1.14 1.10 1.11
Geo. mean (Auto-NP/Manual-NP) 1.00 1.01 1.00 1.00 0.87 0.94 0.90

Geo. mean (Auto-NP-P/Manual-NP) 0.99 1.02 1.00 1.00 0.90 0.95 0.90

The RC values include both the internal RC values of all instances and the RC values of the global interconnects.

5.2 Layout Area and Wirelength

Table 5 shows the layout area of all the benchmarks designed by the four design methodologies.
Notice that the layouts of the standard-cell- and manual-NP-based designs are from [3]. Since Auto-
NP-Separate automates the routing of the input and output ports, but does not alter the locations
of the NP cell instances, the Manual-NP and Auto-NP layouts have the same area and very similar
wirelength. The maximum wirelength overhead of Auto-NP compared to Manual-NP is only 2%.

The Auto-NP-P designs show area improvement up to 3% for KSA08 and BCD08 bench-
marks and 1% to 2% for most of the other benchmarks with 2% wirelength overhead on average

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:17

compared to the Manual-NP designs. Table 5 also shows that for RCA08, WT04, and MUL_B64,
the detailed placement has no area improvement because the Auto-NP layouts are already com-
pact enough. Furthermore, for some benchmarks, we can obtain more area improvement than
the reported cases with larger wirelength overhead. However, it will increase routing congestion
and the parasitic resistance and capacitance of the layouts, thereby degrading the overall perfor-
mance of the Auto-NP-P designs. Note that we implemented simulated annealing for the detailed
placement in this paper, but any other detailed placement algorithms such as linear programming,
instance-swapping, or linear placement-based algorithms [14, 24] can be applied to the Auto-NP-P
standalone or in addition to the simulated annealing.

5.3 Parasitic RC, Critical Path Delay, and Power Consumption

The Manual-NP, Auto-NP, and Auto-NP-P designs show similar parasitic resistance and ground
capacitance values because they are determined only by the routed length and all the designs
have similar routing paths. However, the Auto-NP designs reduce the coupling capacitance of the
layouts by 5% to 20% (13% on average) compared to the Manual-NP designs. The reason is that
the routing algorithm performs an exhaustive search for the routing paths of the input and output
ports to minimize the coupling capacitance. Table 5 also shows that the Auto-NP-P designs reduce
the coupling capacitance of the layouts by 5% to 20% (10% on average) compared to the Manual-NP
designs. Since they have more compact layouts than the Auto-NP designs, they have slightly larger
capacitance, but still 10% lower coupling capacitance on average than the Manual-NP designs.

The Auto-NP designs have 6% less critical path delay on average than the Manual-NP designs.
Especially, the Auto-NP designs of KSA32 and MUL_B64 show 16% critical path delay reduction.
However, the Auto-NP designs of CLA08, KSA08, BKA32, and DES_PERF show a 1% to 2% increase
in the critical path delay compared to the Manual-NP designs. This is because the resistance and
coupling capacitance in the critical paths of the Auto-NP designs are larger than those in the
Manual-NP designs although the former have less total resistance and coupling capacitance than
the latter. The Auto-NP-P designs have 5% less critical path delay on average compared to the
Manual-NP designs.

Table 5 shows 10% power improvement on average for both the Auto-NP and Auto-NP-P designs
compared to the Manual-NP designs. The BCD08 benchmark shows a maximum 19% (or 17%)
power improvement due to the significantly reduced coupling capacitance in the Auto-NP (or
Auto-NP-P) design. For all the benchmarks except CLA32 and KSA32, the Auto-NP designs show
slightly lower or similar power consumption than that of the Auto-NP-P designs. Although for the
CLA32 and KSA32 benchmarks the Auto-NP-P designs have larger total coupling capacitance than
the Auto-NP designs, the latter consume slightly higher power. Moreover, the lower critical path
delay and power consumption of the Auto-NP and Auto-NP-P designs lead to improved power-
delay product (15% and 13%, respectively) and energy-delay product (20% and 14%, respectively)
compared to the Manual-NP designs.

6 DISCUSSION

In this section, we discuss several topics related to the NP-Separate design methodology.

6.1 Library Design and Reuse for NP-Separate

In all the NP-Separate methodologies shown in Figure 3, we perform RC extraction at the end of
the design flow. In fact, once NP cells are created in the NP cell creation step, we can build not
only a physical library but also a timing and power library for the NP cells. Then, we can use
the timing and power library for the rest of the steps for Manual-NP and Auto-NP designs, so we
will not need the full RC extraction step. Notice that library characterization is a highly-parallel

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

53:18 M. I. Dewan and D. H. Kim

task, so runtime for the library characterization will have a small impact on the total design time.
Notice also that the library for the characterized NP cells could be reused for future designs. For
Auto-NP-P designs, however, we cannot characterize an NP cell instance alone if it is overlapped
with another NP cell instance. In this case, we can group the overlapped instances, create a super
cell instance containing the instances, and characterize the super cell instance. This approach will
enable the traditional static timing analysis for all Manual-NP, Auto-NP, and Auto-NP-P designs.

6.2 Manual-NP vs. Auto-NP

Although the routing algorithm developed for Auto-NP-Separate in this paper was able to route
most of the NP cells, it does not guarantee 100% routability, which is why it could not route complex
NP cells such as D flip-flops and full adders. In this case, skillful layout engineers would be able
to route the cells manually. In addition, they would also be able to design more optimal NP cell
layouts than Auto-NP-Separate. However, the design time for Manual-NP designs is prohibitively
longer than that for Auto-NP. Thus, Auto-NP routes simple NP cells while layout engineers route
complex NP cells to generate more optimal NP-Separate layouts if highly-optimized layouts are to
be generated.

Additionally, the average routing time per each instance type increases with the higher fan-in/
out instances. In some cases, therefore, it may not be possible to enumerate all the combinations of
possible routing paths to route such instances within a reasonable amount of time. In this case, we
can group a portion of the NFETs and PFETs (decompose them into multiple sub-groups) and route
each group separately by the proposed routing algorithm. The time-consuming cell-level routing
of the high fan-in/out cells could be regulated this way at a cost of reduced optimality.

Notice also that the results shown in Table 5 do not mean that the routing algorithm of Auto-NP
can almost always generate better NP cell layouts than skillful layout engineers. Rather, it means
that the NP cell layouts obtained by the Auto-NP design methodology and algorithms could be
as good as those obtained by skillful layout engineers. In conclusion, the primary objective of
this work is to propose and implement algorithms to automate the design process and reduce the
runtime of the NP-Separate design methodology for the generation of highly-optimized designs
with minimal human effort.

6.3 Auto-NP-Separate to Advanced Technology Nodes

Our methodology and algorithms are proposed for 22nm technology node and earlier. However,
advanced technology nodes such as sub-10nm process nodes require conditional design rules and
sophisticated manufacturing-aware design challenges which can be included in our algorithms
since we are enumerating all possible cases. As mentioned earlier, the proposed algorithms suc-
cessfully generated DRC-clean layouts for most of the NP cells even with the limited routing tracks
(only two to four horizontal M1 routing tracks in the cells). For the advanced nodes with restricted
manufacturing-aware design challenges, we will also have to explore ILP- and SMT-based cell-level
routing for sub-10nm process nodes as mentioned in [10, 15, 16]. However, for all these, a design au-
tomation framework is inevitable, which in turn motivates this work even for earlier technology
nodes. Moreover, we can merge the concept of simultaneous place-and-route (SP&R) using
SMT from [10] with NP-Separate in the future to automate the N/P-cell formation along with NP
cell formation stage for advanced technology nodes.

6.4 NP-Separate to Other Transistor Architectures

FinFETs and gate-all-around (GAA) transistors have very high current density, faster switching
speed, minimized short channel effects, and controlled leakage current compared to the conven-
tional MOSFETs. The NP-Separate design methodology can be applied to FinFET based circuits as

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

Design Automation Algorithms for the NP-Separate VLSI Design Methodology 53:19

well. The FinFET widths can only be integer multiples of the minimum quantized fin-width. A Fin-
FET with a single fin has the minimum channel width of wfmin. Thus, the width will be N ·wfmin

for N -fins. We can discretize the resulting transistor widths in the transistor sizing step to the
nearest number of fins without significantly affecting the overall optimality [1, 22]. In the N/P-
cell formation step, optimized N and P cells can be constructed by skilled manual effort for the
multi-patterning and significantly constrained FinFET layouts. Moreover, SAT-based placement
adjustment of the FinFETs inside the unroutable NP cells can be explored by [21] if necessary. For
the NP cell formation step, we believe that a modified version of Auto-NP-Separate would be able
to generate better NP cells since our algorithms enumerate all possible routes and port locations.
However, as discussed in the previous subsection, advanced technology nodes require various rout-
ing layers and multiple pattern-supporting design rules for cell-level routing that can be explored
using ILP and SMT [10, 15, 16] or genetic algorithm and reinforcement learning [17] in the future.

7 CONCLUSION

In this paper, we proposed design automation algorithms to automate the creation of NP cells and
cell libraries, which reduced the design time and the coupling capacitance significantly. Along
with design automation, we also proposed a detailed placement algorithm to reduce the chip area
with a little wirelength overhead without compromising power and performance compared to the
manual NP-Separate designs. The Auto-NP-Separate methodology decreases the coupling capaci-
tance by 13%, critical path delay by 6%, power consumption by 10%, power-delay product by 15%,
and energy-delay product by 20% on average compared to the manual NP-Separate methodology.
The combined effect in Auto-NP-Separate-P shows an area improvement of 1% with 2% wirelength
overhead on average, reduces the coupling capacitance by 10%, critical path delay by 5%, power
consumption by 10%, power-delay product by 13%, and energy-delay product by 14% on average
compared to the manual NP-Separate methodology.

REFERENCES

[1] Massimo Alioto. 2011. Comparative evaluation of layout density in 3t, 4t, and MT FinFET standard cells. IEEE Trans.

Very Large Scale Integr. Syst. 19, 5 (May 2011), 751–762. https://doi.org/10.1109/tvlsi.2010.2040094

[2] Bochkanov Sergey Anatolyevich. 2018. ALGLIB. http://www.alglib.net.

[3] Monzurul Islam Dewan and Dae Hyun Kim. 2020. NP-Separate: A new VLSI design methodology for area, power, and

performance optimization. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 39, 12 (Dec. 2020),

5111–5122. https://doi.org/10.1109/TCAD.2020.2966551

[4] Mohan Guruswamy, Robert L. Maziasz, Daniel Dulitz, Srilata Raman, Venkat Chiluvuri, Andrea Fernandez, and

Larry G. Jones. 1997. CELLERITY: A fully automatic layout synthesis system for standard cell libraries. In Proc. ACM

Design Automation Conf. Association for Computing Machinery, New York, NY, USA, 327–332. https://doi.org/10.1145/

266021.266126

[5] Renato Hentschke, Guilherme Flach, Felipe Pinto, and Ricardo Reis. 2006. Quadratic placement for 3D circuits using

Z-Cell shifting, 3D iterative refinement and simulated annealing. In Proc. Annual Symposium on Integrated Circuits and

Systems Design. Association for Computing Machinery, New York, NY, USA, 220–225. https://doi.org/10.1145/1150343.

1150399

[6] Andy J. Kessler and A. Ganesan. 1985. An introduction to standard-cell VLSI design: Very large scale integration (VLSI)

is becoming an important means of producing electronic circuits at low cost, on tight schedules, and with protection

for proprietary designs. IEEE Potentials 4, 3 (1985), 33–36. https://doi.org/10.1109/MP.1985.6500265

[7] Bernhard Kick, Ulrich Baur, Juergen Koehl, Thomas Ludwig, and Thomas Pflueger. 1997. Standard-cell-based design

methodology for high-performance support chips. IBM Journal of Research and Development 41, 4.5 (1997), 505–514.

https://doi.org/10.1147/rd.414.0505

[8] Dae Hyun Kim and Sung Kyu Lim. 2012. Design quality trade-off studies for 3-D ICs built with sub-micron TSVs

and future devices. IEEE Journal on Emerging and Selected Topics in Circuits and Systems 2, 2 (June 2012), 240–248.

https://doi.org/10.1109/JETCAS.2012.2193840

[9] C. Y. Lee. 1961. An algorithm for path connections and its applications. IRE Transactions on Electronic Computers EC-10,

3 (1961), 346–365. https://doi.org/10.1109/TEC.1961.5219222

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

https://doi.org/10.1109/tvlsi.2010.2040094
http://www.alglib.net
https://doi.org/10.1109/TCAD.2020.2966551
https://doi.org/10.1145/266021.266126
https://doi.org/10.1145/1150343.1150399
https://doi.org/10.1109/MP.1985.6500265
https://doi.org/10.1147/rd.414.0505
https://doi.org/10.1109/JETCAS.2012.2193840
https://doi.org/10.1109/TEC.1961.5219222

53:20 M. I. Dewan and D. H. Kim

[10] Daeyeal Lee, Dongwon Park, Chia-Tung Ho, Ilgweon Kang, Hayoung Kim, Sicun Gao, Bill Lin, and Chung-Kuan

Cheng. 2020. SP&R: SMT-based simultaneous place-&-route for standard cell synthesis of advanced nodes. IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems (Nov. 2020), 1–1. https://doi.org/10.1109/TCAD.

2020.3037885

[11] Jingwei Lu, Pengwen Chen, Chin-Chih Chang, Lu Sha, Dennis Jen-Hsin Huang, Chin-Chi Teng, and Chung-Kuan

Cheng. 2015. ePlace: Electrostatics-based placement using fast fourier transform and Nesterov’s method. ACM Trans.

on Design Automation of Electronics Systems 20, 2 (Feb. 2015), 17:1–17:34. https://doi.org/10.1145/2699873

[12] Takashi Mitsuhashi and Ernest S. Kuh. 1992. Power and ground network topology optimization for cell based VLSIs.

In Proc. ACM Design Automation Conf. IEEE Computer Society Press, Washington, DC, USA, 524–529. https://doi.org/

10.1109/DAC.1992.227748

[13] Gi-Joon Nam and Jingsheng Jason Cong. 2007. Modern Circuit Placement: Best Practices and Results. Springer, New

York, NY.

[14] Min Pan, Natarajan Viswanathan, and Chris Chu. 2005. An efficient and effective detailed placement algorithm. In

IEEE/ACM International Conference on Computer-Aided Design, Digest of Technical Papers (ICCAD’05). 48–55. https:

//doi.org/10.1109/ICCAD.2005.1560039

[15] Dongwon Park, Daeyeal Lee, Ilgweon Kang, Sicun Gao, Bill Lin, and Chung-Kuan Cheng. 2020. SP&R: Simultane-

ous placement and routing framework for standard cell synthesis in sub-7nm. In Proc. Asia and South Pacific Design

Automation Conf. Association for Computing Machinery, New York, NY, USA, 345–350. https://doi.org/10.1109/ASP-

DAC47756.2020.9045729

[16] Dongwon Park, Daeyeal Lee, Ilgweon Kang, Chester Holtz, Sicun Gao, Bill Lin, and Chung-Kuan Cheng. 2020. Grid-

based framework for routability analysis and diagnosis with conditional design rules. IEEE Trans. on Computer-Aided

Design of Integrated Circuits and Systems 39, 12 (Dec. 2020), 5097–5110. https://doi.org/10.1109/TCAD.2020.2977066

[17] Haoxing Ren and Matthew Fojtik. 2021. Standard cell routing with reinforcement learning and genetic algorithm in ad-

vanced technology nodes. In Proceedings of the 26th Asia and South Pacific Design Automation Conference (ASPDAC’21).

Association for Computing Machinery, New York, NY, USA, 684–689. https://doi.org/10.1145/3394885.3431569

[18] Nikolai Ryzhenko and Steven Burns. 2012. Standard cell routing via Boolean satisfiability. In Proc. ACM Design Au-

tomation Conf. Association for Computing Machinery, New York, NY, USA, 603–612. https://doi.org/10.1145/2228360.

2228470

[19] Carl Sechen. 1988. Chip-planning, placement, and global routing of macro/custom cell integrated circuits using sim-

ulated annealing. In Proc. ACM Design Automation Conf. IEEE, Washington, DC, USA, 73–81. https://doi.org/10.1109/

DAC.1988.14737

[20] Jihee Seo and Dae Hyun Kim. 2019. High-throughput multiplier architectures enabled by intra-unit fast forwarding.

In Proc. IEEE Int. Symp. on Computer Arithmetic. IEEE Computer Society, Los Alamitos, CA, USA, 143–150. https:

//doi.org/10.1109/ARITH.2019.00036

[21] Anton Sorokin and Nikolay Ryzhenko. 2019. SAT-based placement adjustment of FinFETs inside unroutable standard

cells targeting feasible DRC-clean routing. In Proceedings of the 2019 on Great Lakes Symposium on VLSI (GLSVLSI’19).

Association for Computing Machinery, New York, NY, USA, 159–164. https://doi.org/10.1145/3299874.3317965

[22] Brian Swahn and Soha Hassoun. 2006. Gate sizing: FinFETs vs 32nm bulk MOSFETs. In Proceedings of the 43rd Annual

Design Automation Conference (DAC’06). Association for Computing Machinery, New York, NY, USA, 528–531. https:

//doi.org/10.1145/1146909.1147047

[23] Xiaohai Wu, Changge Qiao, and Xianlong Hong. 1999. Design and optimization of power/ground network for cell-

based VLSIs with macro cells. In Proc. Asia and South Pacific Design Automation Conf. IEEE Computer Society, Los

Alamitos, CA, USA, 21–24. https://doi.org/10.1109/ASPDAC.1999.759700

[24] A. Zelikovsky, P. Tucker, and A. B. Kahng. 1999. Optimization of linear placements for wirelength minimization with

free sites. In Asia and South Pacific Design Automation Conference. IEEE Computer Society, Los Alamitos, CA, USA,

241. https://doi.org/10.1109/ASPDAC.1999.760005

[25] Lihong Zhang and Yingtao Jiang. 2005. Global-routing driven placement strategy in analog VLSI physical designs.

In Proc. IEEE Int. Midwest Symp. on Circuits and Systems. IEEE, Washington, DC, USA, 1239–1242. https://doi.org/10.

1109/MWSCAS.2005.1594332

[26] Ziran Zhu, Jianli Chen, Zheng Peng, Wenxing Zhu, and Yao-Wen Chang. 2018. Generalized augmented Lagrangian

and its applications to VLSI global placement. In Proc. ACM Design Automation Conf. Association for Computing

Machinery, New York, NY, USA, 1–6. https://doi.org/10.1145/3195970.3196057

Received March 2021; revised December 2021; accepted December 2021

ACM Transactions on Design Automation of Electronic Systems, Vol. 27, No. 5, Article 53. Pub. date: June 2022.

https://doi.org/10.1109/TCAD.2020.3037885
https://doi.org/10.1145/2699873
https://doi.org/10.1109/DAC.1992.227748
https://doi.org/10.1109/ICCAD.2005.1560039
https://doi.org/10.1109/ASP-DAC47756.2020.9045729
https://doi.org/10.1109/TCAD.2020.2977066
https://doi.org/10.1145/3394885.3431569
https://doi.org/10.1145/2228360.2228470
https://doi.org/10.1109/DAC.1988.14737
https://doi.org/10.1109/ARITH.2019.00036
https://doi.org/10.1145/3299874.3317965
https://doi.org/10.1145/1146909.1147047
https://doi.org/10.1109/ASPDAC.1999.759700
https://doi.org/10.1109/ASPDAC.1999.760005
https://doi.org/10.1109/MWSCAS.2005.1594332
https://doi.org/10.1145/3195970.3196057

