
17

Construction of All Multilayer Monolithic RSMTs and Its

Application to Monolithic 3D IC Routing

MONZURUL ISLAM DEWAN, Washington State University

SHENG-EN DAVID LIN, Cadence Design Systems Inc.

DAE HYUN KIM, Washington State University

Monolithic three-dimensional (M3D) integration allows ultra-thin silicon tier stacking in a single package.

The high-density stacking is acquiring interest and is becoming more popular for smaller footprint areas,

shorter wirelength, higher performance, and lower power consumption than the conventional planar

fabrication technologies. The physical design of M3D integrated circuits requires several design steps, such

as three-dimensional (3D) placement, 3D clock-tree synthesis, 3D routing, and 3D optimization. Among

these, 3D routing is significantly time consuming due to countless routing blockages. Therefore, 3D routers

proposed in the literature insert monolithic interlayer vias (MIVs) and perform tier-by-tier routing in

two substeps. In this article, we propose an algorithm to build a routing topology database (DB) used to

construct all multilayer monolithic rectilinear Steiner minimum trees on the 3D Hanan grid. To demonstrate

the effectiveness of the DB in various applications, we use the DB to construct timing-driven 3D routing

topologies and perform congestion-aware global routing on 3D designs. We anticipate that the algorithm

and the DB will help 3D routers reduce the runtime of the MIV insertion step and improve the quality of the

3D routing.
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1 INTRODUCTION

Monolithic Three-Dimensional (M3D) integration stacks very thin silicon tiers and electrically
connects transistors in different tiers by Monolithic Interlayer Vias (MIVs). Unlike through-
silicon vias, MIVs are tiny in width, shorter in vertical length (z-directional), and presumed to
have insignificant parasitic Resistance and Capacitance (RC). The dimensions of MIVs are
even smaller than those of top-level interlayer vias and comparable with those of lower-level
interlayer vias (even smaller than 100 nm in diameter). As a result, the use of MIVs is considered
to have almost negligible area and capacitance overheads in the M3D Integrated Circuit (IC)

layout design. Moreover, M3D ICs are favorable choices in terms of power, performance, and area
for advanced technology nodes and future transistor architectures over their through-silicon-
via-based counterparts [22]. In addition, designing vertical processors using M3D showed power,
performance, and thermal efficiency [3]. However, profusely inserting MIVs into an M3D IC layout
increases routing congestion since planar wires are connected to the MIVs, and routing of the
planar wires requires much larger area than the MIV area. Therefore, M3D IC layout design gen-
erally tries to minimize the number of MIVs inserted into a layout [1, 11, 20], which necessitates
the Three-Dimensional (3D) routing to reduce the number of MIVs and routing congestion.

Algorithms for 3D routing could route both Two-Dimensional (2D) and 3D nets of a design
separately or concurrently.1 For example, the routing methodology used in previous work [4]
routes 3D nets first and routes 2D nets after that. On the contrary, Panth et al. [19] route 2D
and 3D nets simultaneously by using the modified library files into a commercial tool. However,
the latter has some drawbacks compared to the former. According to our routing simulations
using modified library files, the runtime of the simultaneous routing of 2D and 3D nets increases
significantly as the complexity (the average net degree, the net counts, the number of tiers,
the number of instances, and most importantly the number of routing blockages representing
MIVs) of a design goes up. On the contrary, if the 3D nets are routed first, 2D nets can be routed
separately in each tier (routing tier by tier or simultaneously but separately in each tier). Thus,
the 3D-net-first routing methodology has been used extensively in the literature [4, 6, 20, 21].

Figure 1 illustrates the 3D-net-first routing methodology that finds MIV locations for each 3D
net first, then inserts MIVs into the locations and decomposes the 3D net into multiple 2D nets,
and finally routes all the 2D nets separately in each tier. In Figure 1(a), eight pins are spread out
in two tiers with one 3D net connecting all four a pins and two 2D nets connecting two b and two
c pins. In Figure 1(b), a 3D routing topology using two z-directional edges is constructed for the
3D net. The z-directional edges are replaced by MIVs, and the 3D net is decomposed into three
2D nets, n1, n2, and n3 in Figure 1(c). Decomposing the 3D net into three 2D nets and the MIV
locations, the 3D net routing is converted into the routing of three 2D nets, two in the bottom tier
with one in the top tier. Finally, the 2D nets are routed in each tier in Figure 1(d).

As mentioned earlier, 3D routing should minimize the number of MIVs used to route 3D nets
and evenly distribute the MIVs as well as the planar wires over the entire layout area for routing
congestion minimization. The MIV insertion methodologies used in the literature, however, do
not control the MIV count, MIV locations, and planar wires of 3D nets effectively. For example,
the 3D Rectilinear Steiner Tree (RST) algorithms used in other works [5, 6, 20, 21] do not
guarantee the minimization of the MIV count. The MIV insertion algorithm used in previous
work [4] minimizes the MIV count but fails to minimize the planar wirelength. Multilayer

Obstacle-Avoiding Rectilinear Steiner Tree (MLOARST) construction algorithms can
minimize both the MIV count and the planar wirelength [8, 14]. However, they do not generate
multiple routing topologies that have different MIV locations and planar wire distributions.

1A 2D (3D) net is a net connecting instances placed in a single tier (different tiers).
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Fig. 1. 3D-net-first routing. (a) Three nets to route. (b) 3D routing topology generation for the 3D net. (c) MIV
insertion. (d) Tier-by-tier routing.

In our preliminary work [10], we proposed an algorithm to build a routing topology Data-

base (DB) for the construction of All Multilayer Monolithic Rectilinear Steiner Minimum

Trees (AMM-RSMTs) on the 3D Hanan grid for a set of pin locations for up to six-pin nets and
four tiers. Multilayer Monolithic Rectilinear Steiner Minimum Trees (MMRSMTs) have the
shortest planar wirelength with the minimum number of MIVs, so MIV insertion algorithms can
use the DB to effectively optimize MIV locations and planar wires of 3D nets. We also proposed
DB size reduction techniques for practical use of the DB in previous work [10]. This article is an
extension of that previous work [10]. In this article, we include the algorithm to construct all the
3D Potentially Optimal Steiner Trees (POSTs) and show the generation and techniques to re-
duce the size of the DB from our previous work [10]. We present two applications using the DB:
timing-driven 3D routing topology generation and congestion-aware 3D global routing. We also
propose a 3D optimal net-breaking technique for the congestion-aware 3D global routing. Our
core contributions in this article are listed as follows:

• We apply the AMM-RSMT DB from the previous work to construct timing-driven MMRSMTs
considering several objectives and compare the outcomes with a FLUTE-like Brute-Force

(BF) approach.
• In addition, we apply the AMM-RSMT DB (ARD) to congestion-aware global routing of

3D designs aiming to minimize the total overflow of both planar and 3D global routing
edges.
• We propose a hybrid 3D net-breaking technique for the higher-degree nets and introduce

an optimal 3D net-breaking technique as a part of that for the congestion-aware 3D global
routing.
• We also present Position Sequence (PS) algebra to aid readers in applying congruent rules

to generate 2D and 3D POSTs at the very end.

The rest of this article is organized as follows. In Section 2, we discuss the terminologies used in
this work, review the Rectilinear Steiner Minimum Tree (RSMT) construction of FLUTE and
the necessity of generating POSTs in the 2D Hanan grid, and discuss the concept of MMRSMT. In
Sections 3 and 4, we present the algorithm to construct the ARD and show the outcomes obtained
from the construction of all the 3D POSTs in the 3D Hanan grid, and details of the DB generation
and size reduction from previous work [10]. Sections 5 and 6 demonstrate the applications of our
ARD to timing-driven 3D routing topology generation and congestion-aware global routing of
3D designs, respectively, and compare a FLUTE-like BF approach with ours showing the detailed
results for several two-, three-, and four-tier 3D designs. Finally, we summarize and conclude in
Section 7.

2 PRELIMINARIES

In this section, we explain terminologies used in this article, review two papers on the construction
of RSMTs [2, 9], and formulate the problem we solve in this work.
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Fig. 2. 2D and 3D Hanan grids.

2.1 Terminologies

2.1.1 2D Hanan Grid. Suppose a finite set S of points is given in the 2D plane. Let XS =

{x1, . . . ,xL } (x1 ≤ · · · ≤ xL ) and YS = {y1, . . . ,yM } (y1 ≤ · · · ≤ yM ) be the sets of the x- and
y-coordinates of the points in S , respectively. Then, the 2D Hanan grid constructed for S is a graph
GS = (VS ,ES ), where VS and ES are defined as follows:

VS = {(x ,y) |x ∈ XS ,y ∈ YS },ES = ES,X ∪ ES,Y ,

ES,X = {(v1,v2) |v1 = (xi ,yj ) ∈ VS ,v2 = (xi+1,yj ) ∈ VS },
ES,Y = {(v1,v2) |v1 = (xi ,yj ) ∈ VS ,v2 = (xi ,yj+1) ∈ VS }.

Figure 2(a) shows the 2D Hanan grid constructed for the five points, {p1, . . . ,p5}.

2.1.2 3D Hanan Grid. Suppose a finite set T of points is given in the 3D space. Let XT =

{x1, . . . ,xL } (x1 ≤ · · · ≤ xL ), YT = {y1, . . . ,yM } (y1 ≤ · · · ≤ yM ), and ZT = {z1, . . . , zN } (z1 ≤
· · · ≤ zN ) be the sets of the x-, y-, and z-coordinates of the points in T , respectively. Then, the 3D

Hanan grid constructed for T is a graph GT = (VT ,ET ), where VT and ET are defined as follows:

VT = {(x ,y, z) |x ∈ XT ,y ∈ YT , z ∈ ZT },ET = ET ,X ∪ ET ,Y ∪ ET ,Z ,

ET ,X = {(v1,v2) |v1 = (xi ,yj , zk ) ∈ VT ,v2 = (xi+1,yj , zk ) ∈ VT },
ET ,Y = {(v1,v2) |v1 = (xi ,yj , zk ) ∈ VT ,v2 = (xi ,yj+1, zk ) ∈ VT },
ET ,Z = {(v1,v2) |v1 = (xi ,yj , zk ) ∈ VT ,v2 = (xi ,yj , zk+1) ∈ VT }.

Figure 2(b) shows the 3D Hanan grid constructed for the five points, {p6, . . . ,p10}.

2.1.3 Position Sequence. x+- and x−-directions are the directions along which x-coordinates
increase and decrease, respectively. y±- and z±-directions are defined similarly.

Suppose a finite set P = {p1, . . . ,pn } of n distinct pins2 is given. Let the x-coordinates of the y-
directional edges of the 2D Hanan gridGP be x1 to xn from the left and the y-coordinates of the x-
directional edges ofGP bey1 toyn from the bottom as shown in Figure 2(a). Then, we denote sorting
the pins in the increasing and decreasing order of their c-coordinates (c is x or y) by c+ and c−,
respectively. In Figure 2(a), for example, y+ sorting leads to the ordered list L1 = (p3,p1,p5,p4,p2).

Suppose we obtain an ordered list L = (l1, . . . , ln ) from c+ or c− sorting. Then, we can obtain
the indices of the c̄-coordinates (if c is x (or y), c̄ is y (or x )) of the pins in the c̄+- or c̄−-direction
from L. For example, we obtain (31542) and (35124) if we extract the x-coordinates of the pins
in L1 in the x+ and x− directions, respectively. The PS Γ(s,r ) for P is a sequence (k1k2...kn ) where
s ∈ {c+, c−}, r ∈ {c̄+, c̄−}, and ki is the index of the c̄-coordinate of the i-th pin in the r -direction

2If the coordinate of pi is (xpi , ypi ), xpi � xpj and ypi � ypj for any i and j (i � j ).
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Fig. 3. Two RSTs constructed on the 2D Hanan grid.

in the list of the pins sorted by s sorting. For example, assume that (s, r ) is (y+,x+) and P is the
set of pins in Figure 2(a). Then, we first sort the pins along the y+-direction, which leads to the
ordered list (p3,p1,p5,p4,p2), and obtain Γ(y+,x+ ) = (31542). Similarly, Γ(y+,x− ) is (35124), Γ(y−,x+ ) is
(24513), Γ(y−,x− ) is (42153), Γ(x+,y+ ) is (25143), Γ(x+,y− ) is (41523), Γ(x−,y+ ) is (34152), and Γ(x−,y− ) is
(32514).

2.1.4 Potentially Optimal Wirelength Vector and POST. The wirelength of an RST on the 2D
Hanan grid can be expressed as a linear combination of the x- and y-directional edge vectors
representing the tree as explained in the work of Chu and Wong [2]. For example, the wirelength
of the tree in Figure 3(a) is

L = 1 · h1 + 2 · h2 + 2 · h3 + 1 · h4 + 1 · v1 + 1 · v2 + 1 · v3 + 1 · v4, (1)

which can also be expressed as L = C · E, where C = (1, 2, 2, 1, 1, 1, 1, 1) and E =

(h1,h2,h3,h4,v1,v2,v3,v4).C is called a coefficient vector and E is called an edge length vector. The
edge length vector is a constant vector for given pins. However, the coefficient vector is depen-
dent on the RST. For example, the coefficient vector for the tree in Figure 3(b) is (1, 2, 1, 1, 1, 1, 2, 1).
Thus, the two trees in Figure 3 have the same edge length vector but different coefficient vectors.

For given pin locations, a coefficient vector C = (c1, . . . , ck ) becomes a Potentially Optimal

Wirelength Vector (POWV) if it satisfies the following conditions [2]:

• There exists an RST that connects all the pins and uses the edges specified in the coefficient
vector C on the Hanan grid constructed for the pins.
• There is no other coefficient vector C ′ = (c ′1, . . . , c

′
k

) satisfying c ′i ≤ ci for all i = 1, . . . ,k .

An RST corresponding to a POWV is called a potentially optimal Steiner tree (POST) [2]. The two
RSTs shown in Figure 3(a) and (b) are POSTs.

2.2 Construction of All RSMTs on the Hanan Grid

FLUTE constructs an RSMT by a lookup table [2]. The lookup table consists of all PSs, all POWVs
belonging to each PS, and one POST for each POWV. Whenever a set of pin locations is given,
FLUTE first finds the PS of the pin locations, compares the wirelengths of all the POWVs belonging
to the PS, and returns the POST of the POWV having the minimum wirelength. If multiple POWVs
have the same wirelength, FLUTE can return their POSTs. The returned POSTs are RSMTs for the
pin locations. However, FLUTE finds only one POST for each POWV, although a POWV can have
multiple POSTs. Thus, Lin generated a DB (called ARSMT DB) storing all POSTs for each POWV
in previous work [9, 12]. Figure 4 shows an overview of the ARSMT DB. The algorithm finding all
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Fig. 4. An overview of the lookup table of all POSTs in other works [9, 12].

POSTs for each POWV uses a binary decision tree with several speedup techniques to reduce the
DB construction time.

2.3 Multilayer Monolithic Rectilinear Steiner Minimum Trees

We first define three terminologies.

Definition 1. A 3D rectilinear tree is a tree having only x-, y-, and z-directional edges and con-
necting all given pins.

Definition 2. A 3D rectilinear Steiner tree (3D RST) is a 3D rectilinear tree with Steiner points. A
Steiner point is a nonpin vertex with more than two edges.

Definition 3. A 3D rectilinear Steiner minimum tree (3D RSMT) is a 3D RST having the minimum
wirelength.

The wirelength of a 3D rectilinear tree is computed by the sum of the lengths of all the edges
in the tree. In the M3D IC layout design, however, the area and capacitance overhead of an MIV is
negligible, so we can set the length of an MIV (the length of a z-directional edge) to zero during
3D routing. However, minimizing the number of MIVs inserted in the layout is still crucial. Thus,
we define an MMRSMT as follows.

Definition 4. A multilayer monolithic rectilinear Steiner minimum tree (MMRSMT) is a 3D RST
satisfying the following:

• Its planar wirelength is equal to the wirelength of a 2D RSMT constructed for the pins pro-
jected onto the 2D plane.
• The number of z-directional edges is minimal.

If we project all the edges in an MMRSMT onto the xy plane, the projection becomes a 2D
RSMT. Thus, an MMRSMT can be constructed from a 2D RSMT by properly placing the x- and
y-directional edges of the 2D RSMT in a 3D grid and inserting z-directional edges. In addition, we
obtain 2D RSMTs from POSTs as mentioned in the previous section. Thus, we can construct an
MMRSMT from a POST. We define a 3D POST as follows.

Definition 5. Suppose a set of xy-distinct3 pin locations is given. Let the set be P =

{(x1,y1, z1), . . . , (xn ,yn , zn )}. Let the set of the projections of the pins onto the xy plane be
P ′ = {(x1,y1), . . . , (xn ,yn )}. Let a POST constructed for P ′ be G ′ = (V ′,E ′). Let the coordinate
of e ′ in E ′ be e ′(i, j ). A 3D potentially optimal Steiner tree (3D POST) is a treeT that connects all the
pins in P , uses the minimum number of z-directional edges in the 3D Hanan grid G = (V ,E) con-
structed from P , and uses one of the edges among e (i, j,k = 0, . . . , t − 1) ∈ E for each e ′(i, j ) ∈ E ′.
t in the definition is the number of tiers. From now on, we denote the POSTs in the ARSMT DB as
2D POSTs to distinguish them from 3D POSTs.

3If the coordinate of pi is (xpi , ypi , zpi ), xpi � xpj and ypi � ypj for any i and j (i � j ).
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Fig. 5. An n × n × t 3D grid, pin and nonpin vertices, and indices for x-, y-, and z-directional edges.

In summary, if we have a DB of all 3D POSTs, we can build all MMRSMTs for given pin locations
quickly. In this work, therefore, we build a DB of all 3D POSTs for all possible relative pin locations
in two, three, and four tiers. Note that in the case of pins without uniquex- ory-coordinates, we can
assume they have distinctive coordinates by slightly adjusting their locations to the left/right (for
x-coordinates) or up/down (for y-coordinates). Based on that, we generate PSs from their relative
positions knowing that the lengths of the newly evolved edges (tiny extensions) are zeros. This
would eventually revert the distinct coordinates to their actual nondistinct coordinates.

3 CONSTRUCTION OF ALL 3D POSTS

In this section, we present an algorithm to construct all 3D POSTs on the 3D Hanan grid. Figure 5
shows a 3D grid, pin and nonpin vertices, x-, y-, and z-directional edges, and notations used in
this article.

3.1 Construction of All 3D POSTs

The input to the algorithm is a set P of pin locations and a 2D POST, G2 = (V2,E2), constructed
from the projection of the pins onto the xy plane. For example, Figure 6(a) shows three pins in a
3D grid, the projection of the pins, and a 2D POST for them.

Algorithm 1 shows the proposed algorithm for constructing all 3D POSTs. We first set the visited

variables of all the edges in E2 to false (line 1). Then, we sort the edges and store the result in
an ordered set E ′2 (line 2). The sort_edges function chooses a pin vertex in G2 and performs the
breadth-first search starting from the vertex until all the pin vertices are reached. Whenever it
goes through an edge, the function inserts the edge into E ′2. This order reduces the runtime of the
algorithm. For example, the sort_edges function starts from the pin vertex p1 in Figure 6(a). Then,
E ′2 becomes (ex (0, 0), ey (0, 1), ex (1, 1), ey (1, 1)). Then, we construct a 3D grid G3 = (V3,E3) from
G2 and P (line 3). The construct_3D_grid function expands G2 to G3 as shown in Figure 6(b). Then,
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ALGORITHM 1: Construction of all 3D POSTs for given 3D pin locations and 2D POST.

Function: Construct all 3D POSTs for P and G2.

Input: Pin locations (P ) and a 2D POST G2 = (V2,E2).
1: e .visited = false for all e ∈ E2;

2: Ordered set E ′2 = sort_edges (G2);

3: G3 = (V3,E3) = construct_3D_grid (G2, P );

4: e .used = false for all e ∈ E3;

5: T = {}; nr_MIVs = 0; min_nr_MIVs =∞;

6: Call recur_con (T , G2, G3, E ′2, 0, nr_MIVs,

min_nr_MIVs);

7: Return T ;

Function: recur_con (T , G2, G3, E ′2, index, nr_MIVs, min_nr_MIVs)

1: if index ≥ |E ′2 | then

2: if nr_MIVs == min_nr_MIVs then

3: Add G3 to T ;

4: else if nr_MIVs < min_nr_MIVs then

5: Clear T ; Add G3 to T ; min_nr_MIVs = nr_MIVs;

6: end if

7: return;

8: end if

9: e = E ′2[index];

10: e .visited = true;

11: for s = 0 ; s < t ; s = s + 1 do

12: e3 = E3[e .x][e .y][s];
13: e3.used = true;

14: v = e .left (or e .bottom);

15: min_t1 = max_t1 = 0;

16: if all the edges connected to v have been visited then

17: min_t1, max_t1 = get_min_max_tier (v, G2, G3);

18: end if

19: v = e .right (or e .top);

20: min_t2 = max_t2 = 0;

21: if all the edges connected to v have been visited then

22: min_t2, max_t2 = get_min_max_tier (v, G2, G3);

23: end if

24: delta = (max_t1 - min_t1) + (max_t2 - min_t2);

25: nr_MIVs = nr_MIVs + delta;

26: if nr_MIVs ≤ min_nr_MIVs then

27: recur_con (T , G2, G3, E ′2, index+1, nr_MIVs, min_nr_MIVs);

28: end if

29: nr_MIVs = nr_MIVs - delta;

30: e3.used = false;

31: end for

32: e .visited = false;

we set the used variables of all the edges in E3 to false (line 4). T is a set of graphs storing all the
3D POSTs, nr_MIVs is a variable storing the number of MIVs used in G3, and min_nr_MIVs is a
variable storing the minimum number of MIVs used in the 3D POSTs (line 5). Then, we call the
recur_con function to recursively construct all 3D POSTs (line 6). Once the algorithm ends, we
return T (line 7).
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Fig. 6. Construction of all 3D POSTs in three tiers for pins (0, 0, 0), (1, 2, 2), (2, 1, 1). (a) A 2D POST is given.
(b) The construct_3D_grid function creates a 3D grid structure. (c)–(n) 3D POST construction. The red edges
are used planar edges and the blue edges are used z-directional edges.

The recur_con function starts from checking the given index, which is used to access the edges
in E ′2. The edge index is greater than the number of edges in E ′2 when there is no more edge to
process in G3 (line 1), which means that G3 is a 3D graph connecting all the pins. In this case, if
the total number of MIVs used in G3 is equal to the minimum number of MIVs used in the best
graphs found until now, we add it toT (line 3). However, if the total number of MIVs used inG3 is
less than the minimum number of MIVs used in the best graphs found until now, all the graphs in
T use more MIVs than G3, so we empty T , add G3 to T , and update min_nr_MIVs (line 5).

If the edge index is less than the size of E ′2 (line 9), we visit the edge in E ′2 indexed by the edge
index variable (line 10) and try using edges inG3 corresponding to the indexed edge (lines 11–31).
First, suppose e ′

d
(i, j ) is E ′2[index], where d is either x or y. Then, we try using ed (i, j,k ) in G3

for each k = 0, . . . , t − 1 (line 13). In Figure 6(c), for example, we try using ex (0, 0, 0) in G3. Then,
if e is x-directional, we obtain its left vertex in G2, and otherwise we obtain its bottom vertex
in G2 and assign it to v (line 14). Then, we find the bottommost and topmost tiers that should
be connected along the z-axis through v in G3 by the get_min_max_tier function (lines 15–18).
The function finds all the visited edges connected to e in G2, obtains the tiers of the edges in
G3 corresponding to the visited edges, and finds the bottommost and topmost tiers. In addition,
if v is a pin vertex, its z-coordinate should be included in the computation of the range of the
tiers. We repeat the same process for the right vertex of e (or the top vertex if e is y-directional)
(lines 19–23).
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Fig. 7. Congruence of eight PSs.

If we have visited all the edges connected to the left and right (or the bottom and top) vertices
of e , we can find the z-directional edges required to connect to the pin and the edges along the
z-axis at the vertices. From the z-directional edges, we obtain the number of MIVs (line 24). If the
total number of MIVs currently used in G3 is less than or equal to the minimum number of MIVs
used in the best graphs found until now, we move on to the next edge in E ′2 (line 27). Otherwise,
the current graph uses more MIVs than the best graphs, so we do not need to proceed to the next
edge. Once the recursive function call ends (line 28), we re-adjust the number of MIVs used in
G3 (line 29) and try using the edge above e (lines 30 and 31).

In Figure 6(c), for example, ex (0, 0, 0) is in Tier 0 and its left vertex is a pin vertex, so both the
bottommost and topmost tiers for the vertex are Tier 0. Then, we move on to ey (0, 1) in E ′2 and try
using ey (0, 1, 0) in G3 in Figure 6(d). The used variables of all the edges connected to the bottom
vertex of ey (0, 1) are true at this point and all the edges are placed in Tier 0. Thus, we do not need to
add any z-directional edges above the vertex. Then, we process the next edge ex (1, 1) in Figure 6(e).
The right vertex of ex (1, 1) is connected to the pin located at (2, 1) in G2, which corresponds to
the pin located at (2, 1, 1) in G3, so the bottommost and topmost tiers at the vertex are Tier 0 and
Tier 1, respectively. Thus, we use ez (2, 1, 0) in G3, which is inserting an MIV into the location.
When we also try using ey (1, 1, 0) in Figure 6(f), we finally construct a 3D graph connecting all
the pins and the total number of MIVs is 3. Similarly, the total numbers of MIVs in the 3D graphs
in Figure 6(g) through (i) are all 3. However, the 3D graph in Figure 6(j) uses two MIVs. At this
time, T contains all the 3D graphs found in Figure 6(f) through (i), so we delete all of them from
T and add the 3D graph found in Figure 6(j) to T . There are four more 3D graphs using two MIVs
as shown in Figure 6(k) through (n). Thus, when the algorithm finishes, T contains all the five 3D
graphs, which become 3D POSTs for the given pin locations and 2D POST.

3.2 Congruence of 3D POSTs

The runtime of the algorithm shown in Algorithm 1 is still long and there are numerous 3D POSTs
in the DB, so it is crucial to reduce the runtime and the DB size. In this section, we show congruent
properties of the 3D POSTs, which are used to skip generating and storing some 3D POSTs.

3.2.1 Congruence of PSs. As mentioned in the work of Chu and Wong [2], two PSs are congru-
ent if rotating one of them leads to the other. For example, Figure 7(a) shows the PS (31542). If we
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rotate it counterclockwise by 90, 180, and 270 degrees, we obtain PSs (41523), (42153), and (34152)
as shown in Figure 7(b), (c), and (d), respectively. If two PSs are congruent to each other, the POSTs
constructed for one of them can be used for the other. Thus, we do not need to generate 2D POSTs
for some PSs. In addition to the rotation, reflection also generates congruent PSs. Reflecting the
pin locations in Figure 7(a) over the y-directional line results in PS (35124) shown in Figure 7(e).
Now, rotating the PS counterclockwise by 90, 180, and 270 degrees leads to PSs (32514), (24513),
and (25143) shown in Figure 7(f), (g), and (h), respectively.

Rotating and reflecting a PS has the same effect as generating PSs by Γ(s,r ) . For example, gener-
ating the PS in Figure 7(a) is the same as generating the PS Γ(y+,x+ ) . The PSs obtained by rotating
the PS Γ(y+,x+ ) by 90, 180, and 270 degrees are the same as the PSs Γ(x+,y− ) , Γ(y−,x− ) , and Γ(x−,y+ ) , re-
spectively. Similarly, reflecting Γ(y+,x+ ) over the y-directional line is the same as generating the PS
Γ(y+,x− ) . Then, rotating Γ(y+,x− ) by 90, 180, and 270 degrees is the same as obtaining the PSs Γ(x−,y− ) ,
Γ(y−,x+ ) , and Γ(x+,y+ ) , respectively. Appendix A shows operations defined for PSs, their properties,
and a table for the congruence rules.

If multiple PSs are congruent, we store POSTs for only one (called a base position sequence) of
them. Then, we can obtain POSTs for the other PSs by properly transforming the POSTs stored for
their base PS. We use the following rule to determine base PSs. When pin locations are given, we
find eight PSs Γ(y±,x± ) and Γ(x±,y± ) for them and choose the smallest PS for its base PS. In Figure 7,
for example, (24513) in Figure 7(g) is the smallest number, so (24513) becomes the base PS for all
the PSs in Figure 7.

3.2.2 Congruence of 3D POSTs. Suppose pin locations are given in the 3D space. Then, we
can characterize the pin locations by two sequences: a PS and a Tier Sequence (TS). The PS is
based on the projection of the pins onto the xy plane, and the TS is based on the z-coordinates of
the pins. Figure 8 shows an example. In Figure 8(a), the z-coordinates of the pins corresponding
to the PS elements 3, 1, 5, 4, 2 are 0, 1, 0, 1, 0, respectively. Thus, the TS for the pin locations is
(01010).

If we rotate the two tiers in Figure 8(a) counterclockwise by 90, 180, and 270 degrees around the
z-axis, we obtain the PSs and TSs shown in Figure 8(b), (c), and (d), respectively. In addition, if we
reflect the two tiers in Figure 8(a) over theyz plane, we obtain the PS and TS in Figure 8(e). Rotating
the two tiers in Figure 8(e) counterclockwise by 90, 180, and 270 degrees around the z-axis leads
to the PSs and TSs in Figure 8(f), (g), and (h), respectively. Moreover, reflecting the two tiers in
Figure 8(a) and (e) over the xy plane generates the PSs and TSs in Figure 8(i) and (m), respectively.
Rotating them counterclockwise by 90, 180, and 270 degrees around the z-axis generates the PSs
and TSs in Figure 8(j), (k), and (l), and Figure 8(n), (o), and (p), respectively.

To find a congruence between two sets of PSs and TSs, we define a 3D position sequence Λ(s,r,w ) ,
which consists of a pair of sequences. The first sequence is the 2D PS (a1...an ) obtained from
Γ(s,r ) . The second sequence is the TS along the w-direction (w ∈ {z+, z−}) as defined previously.
Then, the 3D PS for the pins in Figure 8(a) is denoted by Λ(y+,x+,z+ ) . Similarly, 3D PSs for the
pins in Figure 8(b), (c), (d), (e), (f), (g), and (h) are Λ(x+,y−,z+ ) , Λ(y−,x−,z+ ) , Λ(x−,y+,z+ ) , Λ(y+,x−,z+ ) ,
Λ(x−,y−,z+ ) , Λ(y−,x+,z+ ) , and Λ(x+,y+,z+ ) , respectively. Since the reflection over the xy plane reverses
the TS, 3D PSs for the pins in Figure 8(i), (j), (k), (l), (m), (n), (o), and (p) are Λ(y+,x+,z− ) , Λ(x+,y−,z− ) ,
Λ(y−,x−,z− ) , Λ(x−,y+,z− ) , Λ(y+,x−,z− ) , Λ(x−,y−,z− ) , Λ(y−,x+,z− ) , and Λ(x+,y+,z− ) , respectively. If two sets of
pin locations are congruent, we can use the 3D POSTs belonging to one of them for the other by
properly transforming the 3D POSTs.

We also define a 3D base position sequence as follows. Suppose a set of pin locations is given
in the 3D space. Then, we find all the 16 3D PSs Λ(y±,x±,z± ) and Λ(x±,y±,z± ) for them and choose
the smallest 3D PS for their 3D base PS. If multiple 3D PSs have the same 2D PS, the one with
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Fig. 8. Congruence of 16 PSs and TSs.

the smallest TS becomes the 3D base PS for them. In Figure 8, for example, the smallest 2D PS is
(24513) in Figure 8(g) and (o). Between these two, the TS (01010) is smaller than the TS (10101),
so the 3D PS of Figure 8(g) becomes the 3D base PS for all the 3D PSs in Figure 8. Appendix A
also shows operations defined for 3D PSs, their properties, and a table for the congruence
rules.

4 DB GENERATION

In this section, we present simulation results obtained from the construction of all 3D POSTs on
the 3D Hanan grid. We implemented the proposed algorithm using C/C++ and ran the code in an
Intel Core i5-6600K 3.3-GHz CPU system with 64 GB of memory. We used the 2D POST DB in
previous work [9]. Table 1 shows some statistics of the construction of all 3D POSTs for two- to
six-pin nets and two to four tiers.

Our first observation is that as the tier count goes up from 2 to 4, the total number of 3D POSTs
increases exponentially. This is because the number of combinations of placing pins in different
tiers increases exponentially as the tier count goes up. The recurrence relation for the number of

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 1, Article 17. Pub. date: December 2023.



Construction of AMM-RSMTs and Its Application to M3D IC Routing 17:13

Table 1. Statistics of the Construction of all 3D POSTs for Two- to Six-Pin Nets
for Two, Three, and Four Tiers

# pins # PS # 2D
# tiers

# all 3D POSTs # gen. 3D POSTs r Con. time Con. eff. Table

(n) (n!) POSTs (A) (B) (B/A) (C) (B/C) size

2 2 4

2 24 12 0.5 0.0 s – < 1 KB

3 48 24 0.5 0.0001 s – < 1 KB

4 80 40 0.5 0.0001 s – < 1 KB

3 6 16

2 224 84 0.375 0.0001 s – 1 KB

3 896 336 0.375 0.0003 s – 2 KB

4 2,352 888 0.378 0.0006 s – 4 KB

4 24 284

2 20,056 5,372 0.268 0.0043 s 1,249,302 35 KB

3 226,800 60,120 0.265 0.0457 s 1,315,536 313 KB

4 1,396,944 367,424 0.263 0.3465 s 1,060,387 2 MB

5 120 4,260

2 719,864 125,360 0.174 0.1484 s 844,744 850 KB

3 14,876,928 2,575,092 0.173 5.2478 s 490,699 16 MB

4 142,195,680 24,482,354 0.172 95.77 s 255,637 167 MB

6 720 120,212

2 85,530,040 13,831,206 0.162 20.13 s 687,094 93 MB

3 4,318,826,472 697,355,262 0.161 42.2 m 275,417 5.1 GB

4 90,473,628,112 14,586,090,890 0.161 30.2 h 134,162 129 GB

“# PS” is the number of 2D position sequences for the projected pins. “# all 3D POSTs” is the total number of 3D

POSTs (A), and “# gen. 3D POSTs” is the number of 3D POSTs (B) generated from the proposed algorithm. r is B/A.

“Con. time” is the DB construction time (C ). “Con. eff.” is the construction efficiency measured by B/C (# 3D POSTS

generated per second).

combinations is as follows:

f (n, t ) = tn −
t−1∑
i=1

{(t − i + 1) · f (n, i )}, (2)

where f (n, t ) is the number of combinations of placing n pins in t consecutive tiers. A closed-form
expression for f (n, t ) is as follows:

f (n, t ) = tn − 2 · (t − 1)n + (t − 2)n , (3)

f (n, 1) = 1. (4)

Thus, as t increases, f (n, t ) goes up polynomially, and as the pin count goes up, the number
of 2D POSTs increases exponentially as shown in the table. Thus, the total number of 3D POSTs
increases extremely fast as the pin and tier counts go up. The number of generated 3D POSTs
is approximately 16% of the total 3D POSTs. As explained in Section 3.2, using the congruence
properties of PSs and 3D POSTs significantly reduces the number of 3D POSTs generated. Thus,
we reduce the construction time and the DB size effectively.

The construction efficiency measured by the ratio between the number of generated 3D POSTs
and the total construction time decreases almost exponentially as the pin count and the tier count
go up. The algorithm can still construct approximately 130,000 3D POSTs per second for the six-
pin four-tier case. However, there are almost 15 billion 3D POSTs to generate for the case, so the
construction time is about 30 hours. The table size is approximately 135 GB, which can be easily
handled in server computers.

Figure 9 shows two 3D POSTs constructed for the given six pins and the same 2D POST. The
red edges are planar wires, and the blue edges are MIVs. The 3D POST in Figure 9(a) has five
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Fig. 9. Comparison of two 3D POSTs constructed for pin locations (0, 0, 0), (3, 1, 3), (2, 2, 2), (5, 3, 1), (1, 4, 0),
(4, 5, 3). 3D PS Λ(y+,x+,z+ ) : PS = (143625), TS = (032103).

planar edges in Tier 0 and eight planar edges in Tier 1. However, the 3D POST in Figure 9(b) has
12 planar edges in Tier 2 and a planar edge in Tier 3. In addition, the planar coordinates of the
MIVs in Tier 1 in Figure 9(a) are (2, 1) and (2, 3), whereas those in Tier 1 in Figure 9(b) are (0, 0)
and (1, 4). Similarly, the planar coordinates of the MIVs in Tier 2 in Figure 9(a) are (3, 1), (2, 2),
and (4, 5), whereas those in Figure 9(b) are (0, 0), (1, 4), and (5, 3). The planar coordinates of the
MIVs in Tier 3 in Figure 9(a) are (3, 1) and (4, 5), whereas those in Figure 9(b) are (2, 1) and (4, 5).
Thus, among the seven MIVs inserted in the two 3D POSTs, only one MIV located at (4, 5, 3) is
common and the other MIVs are located at quite different locations. We also found similar trends
in many other 3D POSTs. Thus, we expect that the DB of the 3D POSTs can be used for 3D routing
to evenly distribute planar wires and MIVs across the tiers.

5 APPLICATION I: 3D ROUTING TOPOLOGY GENERATION

In this section and the next section, we present two applications for the practical use of the
ARD. The first application is constructing 3D routing topologies for the optimization of given
metrics. The two metrics we optimize are the Source-to-Critical-Sink Length (SCSL) used
for wirelength minimization and the Source-to-Critical-Sink Delay (SCSD) used for timing
optimization. The second application is congestion-aware 3D global routing for the minimization
of routing congestion in M3D IC layouts.

5.1 Motivation

Figure 10 shows a two-tier 3D placement result for a five-pin net to be routed. The 3D PS is
Λ(y+,x+,z+ ) = ((31542), (00011)), and the POWV is (12211111). If we assume the length of each
planar edge is l and the length of an MIV is lm , then all 3D POSTs in the figure have the same
length of (10l + lm ).

Suppose the source of the net is p5 and the critical sink (the sink that has the smallest slack) is p4.
Then, the SCSL is (2l + lm ) in Figure 10(a), but that in Figure 10(b) is (4l + lm ), so the former has a
shorter SCSL. Similarly, suppose the source is p2 and the critical sink is p4. Then, all the topologies
in Figure 10 have the same SCSL of 3l . We can also compute the SCSD using the PI model for the
edges and the Elmore delay model for the delay estimation. Suppose the output resistance of the
source is RD , the input capacitance of each sink is CL , the RC of an edge are r and c , respectively,
and the RC of an MIV are rm and cm , respectively. Then, if the source is p5 and the critical sink is
p4, the SCSD in Figure 10(a) is smaller than that in Figure 10(b) by r (5CL + 9c + cm ). Moreover, the

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 1, Article 17. Pub. date: December 2023.



Construction of AMM-RSMTs and Its Application to M3D IC Routing 17:15

Fig. 10. Four MMRSMTs for the routing of a five-pin net in a two-tier design. 3D PS Λ(y+,x+,z+ ) : PS = (31542),
TS = (00011), POWV = (12211111).

Table 2. Comparison of the SCSL and SCSD for the Topologies in Figure 10

source:p5 � sink:p4 source:p2 � sink:p4

SCSL SCSD SCSL SCSD

(a) left 2l+lm TD + r(6CL+13c+2cm) + rm(2CL+3c+0.5cm) 3l TD + r(12CL+25.5c+3cm)

(a) right 2l+lm TD + r(6CL+13c+cm) + rm(2CL+4c+0.5cm) 3l TD + r(12CL+25.5c+3cm)

(b) left 4l+lm TD + r(11CL+22c+3cm) + rm(2CL+3c+0.5cm) 3l TD + r(9CL+18.5c+2cm)

(b) right 4l+lm TD + r(11CL+22c+2cm) + rm(2CL+4c+0.5cm) 3l TD + r(9CL+18.5c+2cm)

TD = RD(4CL+10c+cm).

two topologies in Figure 10(a) have the same 2D projection with different MIV locations. Thus,
the topology on the left has less SCSD than the one on the right if ( r

c
< rm

cm
), whereas the right one

has less SCSD if ( r
c
> rm

cm
). In addition, if the source is p2 and the critical sink is p4, the SCSD of

the topologies in Figure 10(b) is smaller than that in Figure 10(a) by r (3CL + 7c + cm ) as shown in
Table 2. In conclusion, the effectiveness of a particular topology for a specific metric is dependent
on the locations of the source and sinks and can be maximized only after examining all the
MMRSMTs.

5.2 Simulation Methodology

To show the effectiveness of the use of the ARD, we compare two 3D routing topology generation
approaches. The first is a so-called BF approach that selects one MMRSMT for each 3D net. If
a 3D net is given, we select the first MMRSMT found in the ARD for the pin locations of the
3D net. The second approach is using the ARD for which we search the ARD for a given 3D
net, find all MMRSMTs, and select the best one for a given metric (SCSL or SCSD). We used the
ISPD 2005 and 2006 benchmarks [16, 17] and ePlace-3D [15] to generate 3D placement results in
two, three, and four tiers. For the SCSD computation, we assume that the output resistance of a
source (driver) is 100Ω, the wire RC per unit length are 2Ω/unit and 0.4f F /unit, respectively, and
the load capacitance of a sink pin is 5f F [12]. The MIV height, resistance, and capacitance are
140 nm, 4Ω, and 1f F , respectively [7, 18]. For each 3D net, we set the source pin to the driver node
of the net from the benchmark suites, randomly selected a pin for the critical sink, constructed
two 3D routing topologies, one by the BF approach and the other by the ARD, and compared their
SCSLs and SCSDs.
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5.3 Simulation Results

Table 3 shows the comparison of the SCSLs of the 3D routing topologies constructed by the BF-
and ARD-based approaches for all the 3D nets of the benchmarks with net degree 4 and 6. Notice
that all 2D POSTs for each two- or three-pin net have the same SCSL regardless of the selection of
the source and critical-sink pins. Therefore, the 3D routing topologies constructed for these nets
by BF and ARD have the same SCSL. The BF and ARD have different SCSLs for approximately
20.70% to 23.54% of the 3D nets (NL/N ). Nonetheless, the average SCSL differences (LT /NL)
between BF and ARD are approximately 103, 92, and 86 for the two-, three-, and four-tier designs,
respectively. Moreover, we compute the sum of the ratios of each SCSL difference to its average
to obtain the average difference ratio, which are 0.09, 0.11, and 0.14, respectively, for the two-,
three-, and four-tier designs. The maximum SCSL differences are also very large (840 to 7,080), so
the comparison shows that ARD can effectively minimize the SCSL for each 3D net.

We also observe that the average SCSL difference (LT /NL) between BF and ARD generally goes
down as the tier count goes up from 2 to 4. This is because stacking more tiers helps reduce
the wirelength of each net. For example, the uniform-scaling-based 3D placement [1, 13] ideally

reduces the wirelength of a net by 1/
√
t , where t is the number of tiers. As a result, the average SCSL

difference also goes down as the tier count increases. However, the maximum SCSL difference is
dependent not only on the 3D placement result but also on whether the 3D routing topologies
constructed by BF can minimize the SCSLs by accident. Thus, the maximum SCSL difference does
not go down even if the tier count goes up as shown in the table.

We observe similar trends in the SCSD simulation results. First of all, BF and ARD have differ-
ent SCSDs for approximately 53.28% to 57.40% of the 3D nets (ND/N ). The reason that ND/N is
greater than NL/N is that two 3D routing topologies with the same SCSL can have different SCSDs
as shown in Figure 10 and Table 2. The average SCSD differences (DT /ND ) between BF and ARD
are approximately 222ps, 195ps, and 122ps for the two-, three-, and four-tier designs, respectively.
The maximum SCSD differences are also large as shown in the table. Moreover, the SCSD average
difference ratios are 0.14, 0.15, and 0.17, respectively, for the two-, three-, and four-tier designs.
Although several interconnect optimization techniques such as buffer insertion would help reduce
the SCSD, finding a good 3D routing topology would still be one of the most important intercon-
nect optimization techniques. As shown previously, the ARD can provide multiple 3D routing
topologies optimal for different metrics such as SCSL and SCSD.

Note that in some cases, minimizing the SCSL (or SCSD) of a net may not be compatible with
constructing its RSMT. As the papers related to this work [2, 12] aimed at minimizing the pla-
nar wirelength (and then minimizing # vertical edges), we do not construct minimum-SCSL (or
minimum-SCSD) topologies either. Instead, we find topologies minimizing the SCSL (or SCSD)
among the MMRSMTs for a given net.

6 APPLICATION II: CONGESTION-AWARE 3D ROUTING

In this section, we present the use of ARD for the minimization of routing congestion in M3D IC
layouts. As shown in Figure 9, MMRSMTs might use very different 3D routing topologies. Thus,
we can minimize routing congestion by selecting a good MMRSMT after an exhaustive search of
all MMRSMTs for each 3D net.

6.1 Simulation Methodology

We used ePlace-3D [15] for 3D placement and bin-based 3D global routing for the congestion-
aware 3D routing. Each x- or y-directional edge ec,i, j,k (c ∈ {x ,y}) has a predetermined maximum
capacity mc,i, j,k and the # nets sc,i, j,k crossing the edge. Similarly, each bin binz,i, j,k has a
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Table 3. Comparison of the SCSL and SCSD of 3D Routing Topologies Constructed
by BF- and ARD-Based Routing

# T Bench.

SCSL SCSD

Avg. Diff.
# d. nets Avg. Diff.

Max.
Avg. Diff. Avg. Diff. # d. nets Avg. Diff. Max. Avg. Diff.

(%) (d.)
Diff.

ratio (ps) (%) (d.) (ps) Diff. ratio
LT

N
NL

N
× 100 LT

NL

RL

NL

DT

N
ND

N
× 100 DT

ND
(ps) RD

ND

2

adaptec1 11.72 19.89 58.95 960 0.13 33.94 58.09 58.43 3,698 0.16

adaptec2 20.63 18.78 109.85 2,400 0.15 69.78 56.35 123.83 8,530.1 0.16

adaptec3 19.31 15.52 124.45 2,400 0.03 218.37 37.36 584.56 14,452.8 0.09

adaptec4 52.91 32.91 160.78 3,600 0.06 233.47 43.13 541.3 15,454.8 0.13

adaptec5 36.8 25.37 145.02 4,560 0.10 243.94 45.81 532.45 52,503.8 0.13

bigblue1 16.2 23.97 67.6 1,080 0.15 33.25 58.49 56.85 2,964.4 0.18

bigblue2 61.71 34.29 180 1,320 0.07 711.74 77.14 922.63 10,225.8 0.18

bigblue3 19.83 21.66 91.59 7,080 0.09 172.77 58.86 293.5 78,146.4 0.12

newblue1 22.51 21.43 105.04 2,520 0.15 82.85 58.04 142.76 7,469.3 0.15

newblue2 16.28 21.07 77.26 1,440 0.14 37.79 58.44 64.67 4,499.6 0.17

newblue4 13.1 25.03 52.34 1,680 0.11 55.15 58.8 93.79 6,011 0.16

newblue5 32.73 22.51 145.38 3,240 0.09 153.74 42.91 358.31 14,339 0.11

newblue6 31.24 27.3 114.42 1,440 0.04 271.05 50.79 533.63 12,109.6 0.10

Geo. mean 24.02 23.31 103.06 0.09 118.07 53.28 221.60 0.14

3

adaptec1 16.98 25.2 67.38 1,680 0.09 77.2 64.77 119.2 8,446 0.14

adaptec2 30.1 25.29 119.01 5,040.3 0.08 220.92 56.54 390.73 32,344.4 0.13

adaptec3 20 26.3 76.03 2,160 0.08 153.44 55.06 278.67 21,513.4 0.15

adaptec4 11.81 20.98 56.28 1,680 0.11 60.12 44.86 134.01 6,831.3 0.15

adaptec5 16.42 22.27 73.74 2,400 0.13 66.78 58.05 115.05 18,701 0.18

bigblue1 15.15 21.77 69.59 960 0.13 43.38 58 74.8 3,217.8 0.18

bigblue2 20.01 17.79 112.45 1,680 0.20 64.85 56.98 113.81 4,254.6 0.16

bigblue3 41.59 23.75 175.09 6,600 0.11 524.81 60.61 865.87 87,378.8 0.15

newblue1 16.86 23.65 71.31 1,680 0.10 68.88 57.39 120.01 5,297.7 0.16

newblue2 19.53 23.28 83.88 4,800 0.12 74.37 60.22 123.5 21,886.9 0.16

newblue4 35.56 25.49 139.52 3,960 0.10 140.29 54.93 255.39 13,062.6 0.17

newblue5 26.21 25.75 101.8 2,640 0.08 218.55 61.56 354.99 17,204.6 0.13

newblue6 31.11 26.23 118.57 1,560 0.10 172.25 59.69 288.6 14,646.8 0.16

Geo. mean 21.71 23.54 92.23 0.11 111.66 57.40 194.55 0.15

4

adaptec1 15.8 20.7 76.34 2,280 0.14 68.95 60.15 114.64 8,235.6 0.17

adaptec2 31.03 22.71 136.67 2,640 0.15 84.2 61.79 136.26 11,941.9 0.15

adaptec3 18.27 20.58 88.76 3,840 0.14 93.78 53.5 175.29 27,445.7 0.18

adaptec4 18.22 18.9 96.4 1,920 0.15 71.88 54 133.1 9,576.5 0.17

adaptec5 14.04 21.43 65.5 2,160 0.12 47.64 54.77 86.98 7,849.3 0.17

bigblue1 12.57 21.85 57.52 1,080 0.15 22.72 60.3 37.68 1,831.4 0.18

bigblue2 9.56 12.73 75.05 840 0.28 17.21 53.46 32.19 1,272.1 0.20

bigblue3 21.37 21.3 100.35 3,480 0.13 168.48 59.02 285.45 33,586.7 0.16

newblue1 16.93 21.94 77.16 2,160 0.12 69.15 54.65 126.52 5,406.8 0.19

newblue2 19 24.08 78.93 6,960 0.10 113.97 57.07 199.71 83,711.1 0.15

newblue4 17.07 21.95 77.79 2,280 0.14 57.21 56.27 101.67 6,777.1 0.17

newblue5 22.61 22.57 100.14 2,400 0.13 104.25 56.96 183.03 10,346.5 0.16

newblue6 24.5 21.02 116.55 2,640 0.14 144.71 57.07 253.55 15,780.2 0.17

Geo. mean 17.79 20.70 85.97 0.14 69.21 56.79 121.87 0.17

N , # four- to six-pin 3D nets; LT (DT ), the sum of the SCSL (or SCSD) differences; RL (RD ), the sum of the ratios

of each SCSL (or SCSD) difference to its average; NL (ND ), # 3D nets with nonzero SCSL (or SCSD) differences. “#

T” denotes the number of tiers, “# d. nets (%)” denotes how many of the 3D nets have nonzero SCSL (or SCSD)

differences. “Max. Diff.” denotes the maximum SCSL (or SCSD) differences.
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predetermined maximum MIV capacitymbin,i, j,k and the # MIVs sbin,i, j,k located on that bin. We
compute the overflow OFc,i, j,k (or OFbin,i, j,k ) of edge ec,i, j,k (or bin binz,i, j,k ) as follows:

OFw,i, j,k =
⎧⎪⎨
⎪
⎩

(sw,i, j,k −mw,i, j,k ), if sw,i, j,k > mw,i, j,k

0, otherwise
(5)

wherew ∈ {c,bin}. The objective is to minimize the total overflow in the following equation while
routing all the 2D and 3D nets sequentially.

OFCombined = α ·OFc,i, j,k + β ·OFbin,i, j,k (6)

We chose α and β suitably. We estimate the maximum MIV capacity of a bin by deducting the
total area occupied by all instances of that bin from the total bin area and dividing the resulting
area by the MIV pitch area. Moreover, MIV violations occur when the number of MIVs placed in a
bin exceeds its maximum MIV capacity.

We route all the 2D and 3D nets of each design using two routing methodologies similar to the
BF- and ARD-based routing methodologies used in Section 5. We route each net as follows:

• 2D nets (≤ 8 pins): BF uses the FLUTE DB, so it finds only one RSMT for a 2D net. ARD uses
the ARSMT DB, so it finds all RSMTs for a 2D net and selects the best one minimizing the
overflow.
• 2D nets (> 8 pins): Both BF and ARD use the net-breaking technique proposed in FLUTE [2].

The net-breaking decomposes a high-degree net into multiple low-degree nets, uses the
FLUTE DB to find an RSMT for each low-degree net, and inserts some additional (Steiner)
points to connect the low-degree nets. Thus, BF and ARD use only one RSMT for a 2D net
in this case.
• 3D nets (≤ 6 pins): BF uses the ARD, but it finds only one MMRSMT in the DB and uses it for

a 3D net. ARD also uses the ARD and finds all MMRSMTs for a 3D net and selects the best
one minimizing the overflow.
• 3D nets (> 6 pins): Both BF and ARD use a net-breaking technique shown in the following.

However, we made an exception for the six-pin-four-tier case and used the net-breaking tech-
nique shown in the following for both the BF and ARD due to memory limitations. Moreover, we
also routed all the nets of each design using MLOARST construction algorithms [8] to assess the
efficacy of the ARD-based routing approach.

Note that global routing is a coarse-level bin-based routing step focusing on constructing routing
topologies for a given design on a single routing layer under maximum capacity constraints. On the
contrary, detailed routing that includes track assignment is a more fine-grained routing step based
on the routing topologies obtained in the global routing step. In brief, since a single routing layer
is often used for global routing purposes in the literature, we also consider similar conventions
and problem definitions in this research.

6.2 3D Net-Breaking Techniques

Suppose N pins of a 3D net, P = {p1,p2, . . . ,pN }, are given and its 3D PS is ((s1s2...sN ), (t1t2...tN )).
If a group of the pins belongs to an octant and the others belong to its opposite octant, we can break
the pins into two groups, construct an MMRSMT for each group, and connect the two MMRSMTs
using an additional point. Figure 11(a) illustrates the octant pairs geometrically opposite in the 3D
space. For example, if PG1 = {p1, . . . ,pr } belongs to the octant x+y+z+ and PG2 = {pr+1, . . . ,pN }
belongs to the opposite octant x−y−z−, we can find pi ∈ PG1 and pj ∈ PG2 closest to the origin.
Then, we can insert a pointph in the hexahedron constructed withpi andpj as the two endpoints of
the hexahedron. Then, the union of the two MMRSMTs constructed for PG1∪{ph } and PG2∪{ph } is
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Fig. 11. 3D optimal net-breaking techniques. (a) Four octant pairs opposite to each other in 3D space. The
octant pairs in brown, green, cyan, and red are detailed through (b) x−y−z− → x+y+z+, (c) x−y−z+ →
x+y+z−, (d) x+y−z− → x−y+z+, and (e) x+y−z+ → x−y+z−, respectively.

an MMRSMT for P . Figure 11(b) through (e) demonstrate the four octant pairs, (x−y−z− → x+y+z+),
(x−y−z+ → x+y+z−), (x+y−z− → x−y+z+), and (x+y−z+ → x−y+z−), that can be used for 3D optimal
net breaking.

Let SG1 and SG2 be the PS values of PG1 and PG2, respectively. Similarly, let TG1 and TG2 be the
TS values of PG1 and PG2, respectively. Then, the following inequalities show the conditions for
the 3D optimal net breaking:

max(SG1) ≤ min(SG2) & max(TG1) ≤ min(TG2), (7)

max(SG1) ≤ min(SG2) & min(TG1) ≥ max(TG2), (8)

min(SG1) ≥ max(SG2) & max(TG1) ≤ min(TG2), (9)

min(SG1) ≥ max(SG2) & min(TG1) ≥ max(TG2), (10)

where max(A) and min(A) find the maximum and minimum elements in A, respectively, and In-
equalities (7) through (10) correspond to the cases shown in Figure 11(b) through (e), respectively.
The figures also show new Steiner points ( ) inserted for the 3D optimal net breaking. Note that in
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Figure 11(b) through (e), dots in red ( ), cyan ( ), green ( ), and black ( ) indicate nodes on Tiers
3, 2, 1, and 0, respectively.

Notice that a 3D net cannot be optimally broken if we cannot find PG1 and PG2 satisfying any
of the inequality pairs in (7) through (10). In this case, we first project all the pins of the 3D net
onto the xy plane and perform 2D optimal net breaking for the projected pins. If this is successful,
there will be two groups of the projected pins, so we construct an MMRSMT for each pin group
and connect the two MMRSMTs. If this is not successful, however, we use the 2D net-breaking
heuristics for the projected pins [2], construct an MMRSMT for each pin group, and connect all
the MMRSMTs.

6.3 Simulation Results

Table 4 compares the planar overflows and the number of MIV violations of the congestion-aware
3D global routing by the BF- and ARD-based routing. The number of global nets shows the total
number of nets routed optimally (by 2D RSMTs and MMRSMTs) or nonoptimally, whereas the
number of routed nets shows the total number of nets routed optimally. For all the designs, most
of the nets (around 94% on average) are routed optimally because they are low-degree nets. Table 5
shows the details of the # “k-Pin” nets for each “k.”

For the two-tier designs, the ratios of the total number of planar overflows and MIV violations
between BF and ARD are 0.25 and 0.47 on average, respectively, which demonstrate that the use
of ARD can reduce the routing congestion effectively. ARDs are effective because they minimize
planar overflow while distributing MIVs according to available whitespace. For each net, the min-
imum planar wirelength is used and then MIVs are minimized. The average planar overflows (#
planar overflows per edge capacity) and the maximum planar overflows of ARD are also lower
than those of BF by 48% to 93% and 11% to 74%, respectively. Furthermore, the # MIV violations
of ARD is 20% to 68% fewer than their BF counterparts. Note that a higher number of tiers means
more bins accepting MIVs, which boosts the overall capacity of MIVs. Consequently, we expect
fewer MIV violations. Nevertheless, the # MIVs will also rise due to the increasing number of
3D wires. Thus, with more tier inclusion, the # MIV violations varies either way (increasing or
decreasing).

The runtime of the BF approach is less than 1 second for small benchmarks and maximum
2 seconds for the largest design. However, ARD takes 4 to 30 seconds for the routing of all the nets.
The runtime overhead is negligible, but the overflow reduction is significantly large, which shows
the effectiveness of the ARD for the routing congestion minimization. We observe similar trends
in the three- and four-tier designs. The planar overflow ratio between the BF and ARD designs is
0.24 for the three-tier designs and 0.27 for the four-tier designs on average provided 49% less MIV
violations on average for both the cases. ARD still achieves 11% to 83% lower maximum planar
overflows with 38% to 63% fewer MIV violations for the three-tier designs and 29% to 69% lower
maximum planar overflows with 38% to 68% fewer MIV violations for the four-tier designs.

Table 6 compares the planar overflows and the number of MIV violations of congestion-aware
3D global routing by the MLOARST construction algorithms (denoted by MR) and ARD-based
routing. For the two-, three-, and four-tier designs, the ratios of the total number of planar over-
flows between MR and ARD are 0.26, 0.25, and 0.25 on average, respectively, and are 0.18, 0.16,
and 0.16 on average, respectively, for the number of MIV violations. ARD’s average and maximum
planar overflows are consistently lower with significantly fewer # MIV violations compared to MR.
This is because even with the minimized planar wirelength and MIV count, the MR only generates
one routing topology demonstrating the effectiveness of ARD with multiple topologies to reduce
routing congestion. However, only for the four-tier bigblue2 design, the ARD shows slightly more
planar and maximum overflow than MR. This is because nets were sequentially routed in the ARD.
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Table 4. Comparison of the Planar Edge Overflows and the # MIV Violations of Congestion-Aware
3D Global Routing by BF- and ARD-Based Routing

# # Bins # Nets
# Planar Avg. Max. # MIV

RT

T
Bench.

per tier
overflows overflow overflow violations

(s)
Global Routed BF ARD BF ARD BF ARD BF ARD

2

adaptec1 140×140 152.4k 142.03k (0.93) 4872 1485 (0.3) 0.06 0.02 171 58 685 356 (0.52) 4.12

adaptec2 184×184 165.04k 153.46k (0.93) 20005 5470 (0.27) 0.15 0.04 239 61 885 486 (0.55) 5.03

adaptec3 289×287 303.61k 286.45k (0.94) 44437 3000 (0.07) 0.13 0.01 240 70 980 498 (0.51) 10.62

adaptec4 282×285 322.19k 308.03k (0.96) 11476 1183 (0.1) 0.04 0 145 62 1947 621 (0.32) 8.68

adaptec5 289×287 517.4k 487.8k (0.94) 90861 18256 (0.2) 0.27 0.06 338 143 1544 697 (0.45) 17.4

bigblue1 140×140 187.19k 174.48k (0.93) 23006 9196 (0.4) 0.3 0.12 223 198 962 451 (0.47) 5.14

bigblue2 233×232 334.71k 318.89k (0.95) 0 0 (0) 0 0 0 0 729 580 (0.8) 8.42

bigblue3 344×343 601.03k 569.08k (0.95) 516833 220542 (0.43) 1.1 0.47 1360 498 3204 1564 (0.49) 18.29

newblue1 148×148 195.92k 187.13k (0.96) 10160 1962 (0.19) 0.12 0.02 149 68 686 232 (0.34) 4.55

newblue2 286×344 353.82k 332.82k (0.94) 519503 103129 (0.2) 1.32 0.26 797 627 3149 1563 (0.5) 8.68

newblue4 226×225 432.65k 410.11k (0.95) 31189 10346 (0.33) 0.15 0.05 218 95 2914 1392 (0.48) 10.89

newblue5 309×314 678.91k 622.5k (0.92) 125248 64738 (0.52) 0.32 0.17 531 301 1900 1078 (0.57) 29.92

newblue6 343×340 836.87k 785.75k (0.94) 43011 20794 (0.48) 0.09 0.04 263 173 881 297 (0.34) 30.47

Geo. mean 0.94 0.25 0.47

3

adaptec1 116×116 151.89k 141.28k (0.93) 6008 1440 (0.24) 0.08 0.02 131 62 1140 682 (0.6) 4.07

adaptec2 152×152 164.93k 153.43k (0.93) 15361 2190 (0.14) 0.11 0.02 136 53 1402 864 (0.62) 5.99

adaptec3 236×235 303.25k 285.45k (0.94) 105416 21717 (0.21) 0.32 0.07 641 244 1951 794 (0.41) 9.31

adaptec4 231×233 318.46k 304.27k (0.96) 9605 697 (0.07) 0.03 0 110 50 1812 678 (0.37) 7.44

adaptec5 236×235 515.16k 484.16k (0.94) 106255 23917 (0.23) 0.32 0.07 350 150 3050 1835 (0.6) 16.6

bigblue1 116×116 182.98k 170.35k (0.93) 22690 9905 (0.44) 0.28 0.12 223 131 1485 720 (0.48) 5.08

bigblue2 190×189 333.12k 317.12k (0.95) 18 3 (0.17) 0 0 12 2 951 591 (0.62) 7.71

bigblue3 281×280 600.61k 567.58k (0.95) 540436 132427 (0.25) 1.15 0.28 880 309 8479 5248 (0.62) 33.26

newblue1 123×123 194.36k 185.79k (0.96) 14850 3612 (0.24) 0.16 0.04 156 89 998 432 (0.43) 3.58

newblue2 234×281 355.91k 334.71k (0.94) 566695 125180 (0.22) 1.44 0.32 809 724 4253 2628 (0.62) 10.3

newblue4 185×184 429.16k 406.88k (0.95) 30577 15436 (0.5) 0.15 0.08 248 145 3159 1257 (0.4) 10.59

newblue5 258×257 694.69k 636.79k (0.92) 315083 123946 (0.39) 0.8 0.31 772 262 2481 1218 (0.49) 29.68

newblue6 281×278 829.96k 778.91k (0.94) 28151 11063 (0.39) 0.06 0.02 164 118 2317 997 (0.43) 31.5

Geo. mean 0.94 0.24 0.51

4

adaptec1 101×101 152.77k 142.04k (0.93) 4230 1058 (0.25) 0.05 0.01 187 81 1724 956 (0.55) 3.73

adaptec2 133×133 162.43k 150.92k (0.93) 12140 6572 (0.54) 0.09 0.05 287 165 1947 1202 (0.62) 5.04

adaptec3 204×203 302.21k 283.98k (0.94) 95171 19696 (0.21) 0.29 0.06 470 307 3448 1765 (0.51) 7.9

adaptec4 204×203 315.78k 301.58k (0.96) 18230 2388 (0.13) 0.06 0.01 164 76 1791 605 (0.34) 7.07

adaptec5 204×203 515.64k 483.84k (0.94) 92752 14116 (0.15) 0.28 0.04 409 127 3957 2210 (0.56) 14.91

bigblue1 101×101 182.69k 169.35k (0.93) 20833 5945 (0.29) 0.26 0.07 271 117 2212 1169 (0.53) 4.25

bigblue2 165×164 331.8k 315.75k (0.95) 22 7 (0.32) 0 0 15 6 1400 856 (0.61) 7.13

bigblue3 254×253 591.64k 559.22k (0.95) 448410 170041 (0.38) 0.88 0.33 1880 670 7140 4310 (0.6) 16.5

newblue1 112×112 192.63k 183.94k (0.95) 13648 2495 (0.18) 0.14 0.03 196 71 1256 401 (0.32) 3.57

newblue2 211×254 355.85k 334.26k (0.94) 548915 100936 (0.18) 1.29 0.24 927 655 6712 4145 (0.62) 9.67

newblue4 160×159 429.9k 406.98k (0.95) 34992 15425 (0.44) 0.17 0.08 208 133 3727 1864 (0.5) 9.54

newblue5 224×223 682.7k 625.42k (0.92) 150013 79262 (0.53) 0.38 0.2 531 359 4268 2537 (0.59) 24.95

newblue6 243×242 829.69k 778.15k (0.94) 31221 7641 (0.24) 0.07 0.02 259 88 2719 1188 (0.44) 25.49

Geo. mean 0.94 0.27 0.51

“# T” denotes the number of tiers, “# global nets” is the total number of nets routed optimally (2D RSMTs and

MMRSMTs) or nonoptimally, “# routed nets” is the total number of nets routed optimally, and “RT” denotes the

runtime which is the global routing time of the ARD-based routing.

Routing topologies were chosen to minimize the total overflow that ultimately depends on the net
routing order. Still, the # MIV violations are significantly fewer for ARD compared to MR.

Moreover, Table 7 shows a detailed comparison of the # 3D nets, the total Half-Perimeter

Wirelength (HPWL), the MIV distribution on different tiers, and the total # MIVs for the

ACM Transactions on Design Automation of Electronic Systems, Vol. 29, No. 1, Article 17. Pub. date: December 2023.



17:22 M. I. Dewan et al.

Table 5. Details of the Benchmarks of the Two-, Three-, and Four-Tier Designs of Bin-Based 3D Global
Routing Showing # 2D and 3D “k-Pin” Nets Separately for Each “k”

#
Bench.

# 2D “k-Pin” nets # 3D “k-Pin” nets

T “2” “3” “4” “5” “6” “7” “8” “>8” “2” “3” “4” “5” “6” “>6”

2

atec1 89184 24407 10223 5082 3799 2757 2106 9249 1789 1275 722 442 239 1125

atec2 104314 20381 8413 5316 3618 2626 1932 9488 3946 1286 861 434 334 2089

atec3 195104 42372 19505 10853 6517 3780 2818 17110 4226 755 203 270 49 44

atec4 213085 49957 18287 8239 4860 3221 2287 14125 7345 431 229 60 24 42

atec5 327515 72655 33177 18227 12631 8932 6494 28096 6043 990 532 409 194 1507

bbl1 110922 27018 12647 7805 5135 3115 1940 10510 3587 1054 529 421 310 2196

bbl2 231956 47586 20382 7417 4118 2738 2283 15672 1862 508 16 11 8 151

bbl3 402736 74093 34575 17821 9578 6074 4062 24519 12197 3714 1744 1484 997 7437

nbl1 129017 27026 11312 5955 3970 2644 1921 7811 3158 1118 492 302 214 981

nbl2 207175 66225 22466 9872 5299 3253 2403 10465 7511 5084 1560 1157 837 10509

nbl4 266001 65972 28115 15282 9581 6651 5106 20473 9754 1842 799 615 392 2065

nbl5 458137 74959 33350 17980 12238 8828 7385 56168 6570 1876 698 367 112 239

nbl6 533494 119181 56056 29843 19174 13514 9784 51033 3604 472 308 222 100 86

3

atec1 88329 23710 10065 5045 3531 2634 2031 8578 2701 1482 802 521 431 2028

atec2 104077 19635 8449 5370 3755 2750 1995 10142 4312 1715 691 452 233 1352

atec3 190546 41207 18665 10036 6086 3667 2530 14550 7677 2113 1361 1002 561 3251

atec4 210026 48639 17956 7884 4744 3113 2168 13684 8177 868 419 178 94 509

atec5 321653 69308 31426 17324 11126 8465 5970 24957 10363 3652 2187 1685 1305 6040

bbl1 107293 26056 12120 7604 5128 3078 1954 10051 4608 1206 564 401 335 2582

bbl2 229986 46813 20232 7419 4164 2656 2140 15283 2422 842 214 149 81 721

bbl3 390458 70610 32805 16696 9424 5700 3617 21587 24089 6880 3421 2363 1520 11442

nbl1 126880 26436 11299 5940 3866 2804 2001 7864 4521 1228 424 210 178 706

nbl2 207022 65552 21991 9791 5258 3240 2329 9618 8104 6533 2354 1563 972 11583

nbl4 264174 64030 28169 14898 9198 6671 5099 20880 9581 2859 969 852 380 1401

nbl5 465807 75718 33335 18024 11977 8803 7080 52534 9638 3390 1477 1040 501 5369

nbl6 522828 116044 54583 28454 18401 13120 9687 48767 10808 2488 1249 765 479 2285

4

atec1 87345 23750 9938 4830 3554 2647 2011 8084 3809 1971 1083 684 435 2627

atec2 99656 18864 7801 4923 3533 2608 2019 8929 6683 2547 970 857 502 2536

atec3 187629 39227 18017 9764 5758 3314 2337 13553 10372 3596 1817 1390 769 4671

atec4 208665 48111 17620 7759 4570 3030 2323 12916 7034 1398 593 292 189 1283

atec5 319516 68162 30759 16862 11007 8025 5758 23679 12626 4647 2955 2045 1510 8090

bbl1 105669 24802 11318 6785 4613 2556 1699 8978 6207 2455 1303 1085 863 4359

bbl2 227085 46475 20141 7313 3979 2488 2202 14403 3472 1525 562 343 163 1646

bbl3 386850 70763 32351 16457 9254 5644 3645 20507 21385 6311 3369 2075 1306 11725

nbl1 124625 25587 10888 5713 3983 2624 1882 7583 5515 1618 828 404 273 1104

nbl2 201414 64133 21131 9120 5158 3148 2128 8659 13750 8288 3169 1868 1123 12759

nbl4 262404 63259 26482 14085 8777 6408 5046 19106 11636 4096 2260 1640 889 3808

nbl5 454105 72875 32208 17421 11748 8482 6938 49661 13111 4447 1978 1435 692 7597

nbl6 521761 114194 53849 28462 18355 12798 9656 46655 11647 3677 1783 1215 757 4879

“atec,” “bbl,” and “nbl” denote “adaptec,” “bigblue,” and “newblue,” respectively.

two-, three-, and four-tier designs for all the benchmarks. Except for adaptec4 and bigblue3, the
number of 3D nets increases as the tiers climb. The total HPWL is computed from the HPWL
of the 2D nets plus the 2D projection of the 3D nets. The HPWL decreases from the two-tier
design to the four-tier design for all the benchmarks except for adaptec2, bigblue3, newblue2, and
newblue5, which is purely dependent on the placement locations of the instances. We obtained
the placement results from the 3D placer [15] that showed a similar trend to the HPWL as well.
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Table 6. Comparison of the Planar Edge Overflows and the # MIV Violations of Congestion-Aware
3D Global Routing by MR- and ARD-Based Routing

Benchmark

# Planar overflows Avg. overflow

2 tier 3 tier 4 tier 2 tier 3 tier 4 tier

MR ARD MR ARD MR ARD MR ARD MR ARD MR ARD

adaptec1 4784 1485 (0.31) 5067 1440 (0.28) 7862 1058 (0.13) 0.06 0.02 0.06 0.02 0.1 0.01

adaptec2 10001 5470 (0.55) 13656 2190 (0.16) 11685 6572 (0.56) 0.07 0.04 0.1 0.02 0.08 0.05

adaptec3 63903 3000 (0.05) 106728 21717 (0.2) 93848 19696 (0.21) 0.19 0.01 0.32 0.07 0.28 0.06

adaptec4 14890 1183 (0.08) 13344 697 (0.05) 12913 2388 (0.18) 0.05 0 0.04 0 0.04 0.01

adaptec5 94377 18256 (0.19) 100210 23917 (0.24) 87057 14116 (0.16) 0.29 0.06 0.3 0.07 0.26 0.04

bigblue1 17935 9196 (0.51) 18675 9905 (0.53) 16869 5945 (0.35) 0.23 0.12 0.23 0.12 0.21 0.07

bigblue2 0 0 25 3 (0.12) 0 7 0 0 0 0 0 0

bigblue3 535776 220542 (0.41) 585782 132427 (0.23) 435857 170041 (0.39) 1.14 0.47 1.25 0.28 0.85 0.33

newblue1 7536 1962 (0.26) 8722 3612 (0.41) 5441 2495 (0.46) 0.09 0.02 0.1 0.04 0.05 0.03

newblue2 518172 103129 (0.2) 555603 125180 (0.23) 490522 100936 (0.21) 1.32 0.26 1.41 0.32 1.15 0.24

newblue4 34098 10346 (0.3) 32655 15436 (0.47) 29504 15425 (0.52) 0.17 0.05 0.16 0.08 0.15 0.08

newblue5 132664 64738 (0.49) 246577 123946 (0.5) 1316436 79262 (0.06) 0.34 0.17 0.62 0.31 3.31 0.2

newblue6 41979 20794 (0.5) 24846 11063 (0.45) 26456 7641 (0.29) 0.09 0.04 0.05 0.02 0.06 0.02

Geo. mean 0.26 0.25 0.25

Benchmark

# MIV violations Max. overflow

2 tier 3 tier 4 tier 2 tier 3 tier 4 tier

MR ARD MR ARD MR ARD MR ARD MR ARD MR ARD

adaptec1 1975 356 (0.18) 3202 682 (0.21) 4887 956 (0.2) 173 58 74 62 255 81

adaptec2 2857 486 (0.17) 3195 864 (0.27) 5479 1202 (0.22) 183 61 142 53 288 165

adaptec3 2392 498 (0.21) 7215 794 (0.11) 10097 1765 (0.17) 467 70 617 244 482 307

adaptec4 3222 621 (0.19) 5082 678 (0.13) 5674 605 (0.11) 142 62 106 50 136 76

adaptec5 3908 697 (0.18) 10661 1835 (0.17) 13064 2210 (0.17) 359 143 359 150 359 127

bigblue1 3053 451 (0.15) 3881 720 (0.19) 6360 1169 (0.18) 225 198 241 131 206 117

bigblue2 1846 580 (0.31) 3557 591 (0.17) 5769 856 (0.15) 0 0 14 2 0 6

bigblue3 8581 1564 (0.18) 15853 5248 (0.33) 18712 4310 (0.23) 1035 498 1042 309 1450 670

newblue1 2270 232 (0.1) 2790 432 (0.15) 4310 401 (0.09) 107 68 90 89 81 71

newblue2 12278 1563 (0.13) 18429 2628 (0.14) 22293 4145 (0.19) 797 627 827 724 794 655

newblue4 6186 1392 (0.23) 7221 1257 (0.17) 9288 1864 (0.2) 217 95 249 145 215 133

newblue5 4845 1078 (0.22) 11272 1218 (0.11) 16465 2537 (0.15) 553 301 761 262 563 359

newblue6 2173 297 (0.14) 9231 997 (0.11) 11076 1188 (0.11) 283 173 161 118 238 88

Geo. mean 0.18 0.16 0.16

Note that all the routed designs have a minimum planar wirelength. Furthermore, the number of
MIVs increases from two-tier to three-tier designs and from three-tier to four-tier designs except
for the adaptec4 and bigblue3 benchmarks. The reason is that the three-tier designs have more 3D
nets than the four-tier designs for these benchmarks discussed earlier. Ideally, the # MIVs should
exceed the # 3D nets. Moreover, in most cases, two-tier nets dominate the set of 3D nets. The MIV
distribution on each tier is therefore related to the 3D net distribution on that tier to its lower
neighboring tier.

In conclusion, controlling the MIV density is crucial for the MIV violations, which are not trivial,
and should be considered after minimizing the planar wirelength for the congestion-aware 3D
global routing. In addition to that, by integrating our ARD into the ePlace-3D, we anticipate that
the 3D placement engine will be able to manage the # 3D nets, the overall HPWL, and the vertical
interconnects better.
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Table 7. Comparison of the # 3D Nets, HPWL, the MIV Distribution on Different Tiers, and the Total # MIVs
for the Two-, Three-, and Four-Tier Designs for All Benchmarks of Congestion-Aware 3D Global Routing

Benchmark
# 3D nets HPWL

2 tier 3 tier 4 tier 2 tier 3 tier 4 tier

adaptec1 4467 5937 7968 63.74 58.41 55.63

adaptec2 6861 7403 11520 78.25 81.41 66.92

adaptec3 5503 12714 17938 153.46 148.83 133.92

adaptec4 8089 9736 9506 136.93 123.29 116.78

adaptec5 8168 19192 23751 241.89 233.62 216.19

bigblue1 5901 7114 11911 80.34 76.15 68.69

bigblue2 2405 3708 6065 110 97.95 91.18

bigblue3 20136 38273 34251 334.42 483.1 317.25

newblue1 5284 6561 8637 61.97 56.63 52.99

newblue2 16149 19526 28027 186.99 217.63 237.50

newblue4 13402 14641 20521 177.93 166.34 157.74

newblue5 9623 16046 21647 319.97 332.30 283.11

newblue6 4706 15789 19077 373.24 338.53 317.19

Benchmark

# MIVs

2 tier 3 tier 4 tier

T1 (Total) T1 T2 Total T1 T2 T3 Total

adaptec1 4695 3428 3484 6912 (1.47) 3429 4171 2781 10381 (2.21)

adaptec2 7144 4577 3833 8410 (1.18) 3274 7380 4149 14803 (2.07)

adaptec3 5523 10826 4108 14934 (2.70) 9735 9849 3854 23438 (4.24)

adaptec4 8114 8684 4503 13187 (1.63) 7821 3791 1305 12917 (1.59)

adaptec5 8250 17815 5466 23281 (2.82) 18339 6779 2787 27905 (3.38)

bigblue1 6153 5117 2749 7866 (1.28) 5987 6520 2223 14730 (2.39)

bigblue2 2419 2798 1547 4345 (1.80) 4322 1873 818 7013 (2.90)

bigblue3 20861 23503 21512 45015 (2.16) 13380 18799 11851 44030 (2.11)

newblue1 5499 2023 4741 6764 (1.23) 1888 4834 3528 10250 (1.86)

newblue2 16807 13539 11873 25412 (1.51) 15604 15145 7079 37828 (2.25)

newblue4 13834 9722 6425 16147 (1.17) 11455 7708 4483 23646 (1.71)

newblue5 9823 9651 8074 17725 (1.80) 11856 6881 7421 26158 (2.66)

newblue6 4771 12626 6789 19415 (4.07) 15011 4956 2431 22398 (4.69)

Geo. mean
(

# MIVs (X-tier)
# MIVs (2-tier)

)
1.77 2.48

The HPWL includes both 2D and 3D nets and measures in meters.

6.4 Proposed Approach: Five Tiers and Above

Suppose we have an ARD constructed for two, three, and four tiers. For more than four tiers, we
can construct 3D routing topologies using the ARD as follows (considering a five-tier case):

First, we begin the routing topology construction by projecting all the pins in the tiers above
Tier 3 onto Tier 3. Now, all the pins are located in four tiers, so we can use the ARD to find
all MMRSMTs for the (projected) pin locations. Then, we move the projected pins back to their
original tiers. When we expand them, we insert vertical edges to connect the projected pins and
the MMRSMTs. Of course, we can project the pins in many different ways (e.g., project the pins in
the tiers below Tier 1 onto Tier 1), which will help generate many different routing topologies.

One of the problems of this methodology is that it does not use planar wires in the tiers above
Tier 3, which might cause routing congestion in Tier 0 through Tier 3. We can solve this problem
in many different ways like the following:
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• Reassign planar edges after the vertical expansion step: Moving a planar edge to a neighboring
tier and adjusting the locations of the relevant vertical edges could result in a new 3D routing
topology without any overhead. For example, if an end point of a planar edge in Tier k is
connected to a vertical edge connecting Tier k and Tier (k+1), we can move the planar edge
to Tier (k+1) without any overhead.
• Run the ARD construction algorithm (Algorithm 1) for each 2D POST for a given net: Since

Algorithm 1 can be applied to any number of tiers, this methodology can find all MMRSMTs
for the given pin locations (as long as the number of pins is less than 10). One problem of
this methodology is the runtime overhead. Although the runtime of Algorithm 1 for a single
3D net could be small, running it for many 3D nets might need a long runtime. Thus, we can
apply this methodology only to timing-critical 3D nets and the other methodologies to most
of the other 3D nets.

7 CONCLUSION

Routing of 3D nets in the design of M3D IC layouts that uses tiny MIVs requires distributing
2D wires evenly, minimizing the planar wirelength and the number of MIVs simultaneously in
each tier. In this article, we proposed an algorithm for building a DB of 3D POSTs that helps
generate MMRSMTs swiftly to route M3D ICs optimizing 2D and 3D interconnects. The DB size
is manageable for up to four-tier six-pin 3D POSTs. We applied the DB to construct timing-driven
3D routing topologies minimizing SCSLs and SCSDs. We also proposed a 3D optimal net-breaking
technique and performed congestion-aware global routing on 3D designs minimizing the con-
gestion cost. Both the applications evidenced the efficacy of using the ARD. We anticipate that
the proposed algorithm and the DB of the 3D POSTs will help various VLSI CAD algorithms
effectively optimize 3D IC layouts and serve as a baseline for the algorithms for better M3D IC
routing.

APPENDIX

A PS ALGEBRA

A.1 Definition

A sequence of size n is an n-tuple, (a1, . . . ,an ). A 2D position sequence (PS) of size n is a sequence
(a1, . . . ,an ) of natural numbers such that 1 ≤ ak ≤ n and ai � aj if i � j. A tier sequence (TS) of
size n is a sequence (a1, . . . ,an ) such that ak ∈ {0, 1, . . . , t − 1} for 1 ≤ k ≤ n and there exist at
least one ak for each i ∈ {0, t − 1} such that ak = i (t is the number of tiers and is given). A 3D

position sequence of size n, Λ = (Γ1, Γ2), is a pair of a 2D PS Γ1 of size n and a TS Γ2 of size n. A PS
generally means a 2D PS in this article. We define Γ(y±,x± ) and Γ(x±,y± ) as described in Section 2.1.3.
We also define Λ(y±,x±,z± ) and Λ(x±,y±,z± ) as described in Section 3.2.2.

A.2 Operations and Functions

We define the addition operation for two sequences Γ1 = (a1, . . . ,an ) and Γ2 = (b1, . . . ,bn ) as
follows:

Γ1 + Γ2 = (a1 + b1, . . . ,an + bn ). (11)

We also define the inversion operation for a sequence Γ = (a1, . . . ,an ) as follows:

Γ = (an , . . . ,a1). (12)

Notice that Γ1 + Γ2 = Γ2 + Γ1 and Γ = Γ. The following function maps ai in Γ = (a1, . . . ,an ) to i:

ϕ (ai ) = i . (13)
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Table 8. Congruence Rules

To

(y+, x+ ) (y+, x− ) (y−, x+ ) (y−, x− ) (x+, y+ ) (x+, y− ) (x−, y+ ) (x−, y− )

From

(y+, x+ ) - (a1, . . . , an ) (an, . . . , a1 ) (an, . . . , a1 ) (b1, . . . , bn ) (b1, . . . , bn ) (bn, . . . , b1 ) (bn, . . . , b1 )

(y+, x− ) (a1, . . . , an ) - (an, . . . , a1 ) (an, . . . , a1 ) (bn, . . . , b1 ) (bn, . . . , b1 ) (b1, . . . , bn ) (b1, . . . , bn )

(y−, x+ ) (an, . . . , a1 ) (an, . . . , a1 ) - (a1, . . . , an ) (b1, . . . , bn ) (b1, . . . , bn ) (bn, . . . , b1 ) (bn, . . . , b1 )

(y−, x− ) (an, . . . , a1 ) (an, . . . , a1 ) (a1, . . . , an ) - (bn, . . . , b1 ) (bn, . . . , b1 ) (b1, . . . , bn ) (b1, . . . , bn )

(x+, y+ ) (b1, . . . , bn ) (b1, . . . , bn ) (bn, . . . , b1 ) (bn, . . . , b1 ) - (a1, . . . , an ) (an, . . . , a1 ) (an, . . . , a1 )

(x+, y− ) (bn, . . . , b1 ) (bn, . . . , b1 ) (b1, . . . , bn ) (b1, . . . , bn ) (a1, . . . , an ) - (an, . . . , a1 ) (an, . . . , a1 )

(x−, y+ ) (b1, . . . , bn ) (b1, . . . , bn ) (bn, . . . , b1 ) (bn, . . . , b1 ) (an, . . . , a1 ) (an, . . . , a1 ) - (a1, . . . , an )

(x−, y− ) (bn, . . . , b1 ) (bn, . . . , b1 ) (b1, . . . , bn ) (b1, . . . , bn ) (an, . . . , a1 ) (an, . . . , a1 ) (a1, . . . , an ) -

From: Γ(s,r ) = (a1, . . . , an ). ϕ (Γ(s,r ) ) = (b1, . . . , bn ). k = (n + 1) − k .

Applying ϕ to a PS Γ results in a new sequence as follows:

ϕ (Γ) = (ϕ (1), . . . ,ϕ (n)). (14)

For example, suppose Γ = (31542). Then, ϕ (a1) = ϕ (3) = 1, ϕ (a2) = ϕ (1) = 2, ϕ (a3) = ϕ (5) = 3,
ϕ (a4) = ϕ (4) = 4, and ϕ (a5) = ϕ (2) = 5. Then, ϕ (Γ) = (25143). If i � j, then ai � aj because Γ is
a PS. In addition, 1 ≤ ϕ (ai ) ≤ n, so ϕ (Γ) is also a PS. For a 3D PS Λ = (Γ1, Γ2), we denote its 2D PS
and TS by PS(Λ) and TS(Λ), respectively.

A.3 Properties of 2D PSs

PSs have the following properties:

Γ(s,x+ ) + Γ(s,x− ) = (n + 1, . . . ,n + 1), (15)

Γ(s,y+ ) + Γ(s,y− ) = (n + 1, . . . ,n + 1), (16)

Γ(x+,r ) = Γ(x−,r ), (17)

Γ(y+,r ) = Γ(y−,r ) . (18)

For the pins in Figure 2(a), for example, Γ(y+,x+ ) + Γ(y+,x− ) = (66666) and Γ(y+,x+ ) = (31542) =
(24513) = Γ(y−,x+ ) . PSs also have the following properties:

ϕ (Γ(s,r ) ) = Γ(r,s ) . (19)

For example, ϕ (Γ(y+,x+ ) = (31542)) = (25143) = Γ(x+,y+ ) , ϕ (Γ(y+,x− ) = (35124)) = (34152) = Γ(x−,y+ ) ,
ϕ (Γ(y−,x+ ) = (24513)) = (41523) = Γ(x+,y− ) , and ϕ (Γ(y−,x− ) = (42153)) = (32514) = Γ(x−,y− ) . Using
the properties shown previously, we can generate seven PSs from a PS as shown in Table 8.

A.4 Properties of 3D PSs

First of all, the 2D PSs of 3D PSs have the properties shown in (15) through (19). The TSs of 3D
PSs have the following properties:

TS(Λ(s,r,z+ ) ) + TS(Λ(s,r,z− ) ) = (t − 1, . . . , t − 1), (20)

TS(Λ(s,x+,w ) ) = TS(Λ(s,x−,w ) ), (21)

TS(Λ(s,y+,w ) ) = TS(Λ(s,y−,w ) ), (22)

TS(Λ(x+,r,w ) ) = TS(Λ(x−,r,w ) ), (23)

TS(Λ(y+,r,w ) ) = TS(Λ(y−,r,w ) ). (24)

For the pins in Figure 8, for example, TS(Λ(y+,x+,z+ ) ) + TS(Λ(y+,x+,z− ) ) = (11111), TS(Λ(y+,x+,z− ) ) =

(10101) = TS(Λ(y+,x−,z− ) ), and TS(Λ(x+,y−,z− ) ) = (01101) = (10110) = TS(Λ(x−,y−,z− ) ). Table 8
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and the properties of TSs in (20) through (24) can be used for the congruence mapping of 2D and
3D PSs.
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