EE582

Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim School of Electrical Engineering and Computer Science Washington State University

Preliminaries

Table of Contents

- Semiconductor manufacturing
- Problems to solve
- Algorithm complexity analysis

- Input
 - Layout (GDSII stream format)
 - A set of geometric objects

- Layer id 3, polygon { 50, 40, 70, 40, 70, 220, 50, 220, 50, 140, 20, 140, 20, 110, 50, 110, 50, 40 }
- (2): Layer id 7, rectangle { 10, 105, 40, 150 }

Gate-oxide deposition

Photoresist

Mask

Expose (photolithography)

After photolithography

Remove mask

Etching

Etching

Oxide deposition

Photoresist

Mask

Photolithography

After photolithography

Etch

Doping

Doping

Poly

Etch

Doping

Oxide deposition

Contact

Metal 1

Via12

Chemical-mechanical-polishing (CMP)

Problems – Partitioning

- You are given
 - A set of modules
 - M1 (area: 10), M2 (area:20), ...
 - Netlist
 - N1 (M1, M2), N2 (M2, M3, M4), ...
- Find *k* partitions
 - Satisfy the following constraints:
 - $S_{\min} \leq Size(P_k) \leq S_{\max}$
 - Minimize
 - Cutsize

Problems – Partitioning

Problems – Floorplanning

- You are given
 - A set of modules
 - M1 (w: 10, h: 20), M2 (w: 30, h: 10), ...
 - Netlist
 - N1 (M1, M2), N2 (M2, M3, M4), ...
- Find a floorplan
 - Minimize
 - Area
 - Wirelength

Problems – Floorplanning

Problems – Floorplanning

- More complex floorplanning
 - Some modules are rotatable.
 - M1, M4, M6, ...
 - Some modules are soft.
 - M2 (w_{min}: 10, w_{max}: 20, area: 150), ...
 - Some modules have fixed locations.
 - The outline is fixed (fixed-outline floorplanning)
 - Find a floorplan
 - Minimize
 - Area
 - Wirelength

Problems – Floorplanning

- More complex floorplanning
 - Each module also has power profile.
 - Each net has access frequency profile.
 - Find a floorplan
 - Minimize
 - Area
 - Interconnect power
 - Worst-case temperature
 - Maximize
 - Performance
 - Achieve
 - 100% routability

- Global placement
 - You are given
 - A set of standard cells (and their dimensions)

 — C1 (NAND2_X4), C2 (FA_X4), ...
 - Netlist
 - N1 (C1/Z, C3/A, C4/A, C5/B), N2 (C2/S, C6/A), ...
 - Core area
 - Width: 1,000um, Height: 1,000um
 - Find the (non-legal) locations of the cells
 - Satisfy
 - − Density $(W_j) \le D_{max}$ (e.g., 70%)
 - Minimize

WASHINGTON STATE

NIVERSITY

Total wirelength

- More complex global placement
 - You are also given
 - Timing libraries
 - Find (non-legal) locations of the cells
 - Satisfy
 - Density $(W_j) \le D_{max}$ (e.g., 70%)
 - Minimize
 - Worst net delay
 - Worst path delay

- More complex global placement
 - You are also given
 - Routing resources
 - Find (non-legal) locations of the cells
 - Satisfy
 - Density $(W_j) \le D_{max}$ (e.g., 70%)
 - Maximize
 - Routability

- Legalization
 - You are given
 - A set of standard cells (and their dimensions)
 - C1 (NAND2_X4), C2 (FA_X4), ...
 - Netlist

WASHINGTON STATE

- N1 (C1/Z, C3/A, C4/A, C5/B), N2 (C2/S, C6/A), ...
- Core area
 - Width: 1,000um, Height: 1,000um
- Initial (non-legal) locations of the cells
 - C1 (100, 100), C2 (101, 100), ...

- Find the legal locations of the cells

- Detailed placement
 - You are given
 - A set of standard cells (and their dimensions)

 — C1 (NAND2 X4), C2 (FA X4), ...
 - Netlist
 - N1 (C1/Z, C3/A, C4/A, C5/B), N2 (C2/S, C6/A), ...
 - Core area
 - Width: 1,000um, Height: 1,000um
 - Initial (legal) locations of the cells
 - C1 (100, 100), C2 (105, 100), ...
 - Optimize

WASHINGTON STATE

IVERSITY

- Total wirelength
- Routability
- Design-rule violations

- Global routing
 - You are given
 - A set of pin locations
 - P1 (50, 100), P2 (55, 150), ...
 - Netlist
 - N1 (P1, P4, P6), N2 (P2, P3), ...
 - Core area
 - Width: 1,000um, Height: 1,000um
 - Detailed placement result
 - Find a global routing solution
 - Minimize
 - Total wirelength
 - Minimize runtime

• Global routing

Each boundary can accommodate two nets.

- Global routing
 - Steiner routing (for multi-fanout nets)

- Detailed routing
 - You are given
 - A set of pin locations
 - P1 (50, 100), P2 (55, 150), ...
 - Netlist
 - N1 (P1, P4, P6), N2 (P2, P3), ...
 - Core area
 - Width: 1,000um, Height: 1,000um
 - Global routing result
 - Detailed routing resources
 - Find a detailed routing solution
 - Minimize
 - Total wirelength
 - Maximize
 - Routability

- Detailed routing
 - Channel routing
 - Two metal layers

Problems – Interconnect

• Delay calculation

Problems – Timing Analysis

Problems – Power Analysis

VDD (M1)
 GND (M1)
 VDD (M2)
 GND (M2)

• IR drop

Problems – Power Analysis

Problems – Cross-talk

Problems – Interconnect Optimization

- Buffer insertion
 - You are given
 - An RC tree
 - A set of available buffers
 - Bufferable locations
 - Minimize by buffer insertion
 - Net delay

Problems – Interconnect Optimization

- Buffer insertion
 - What to consider
 - Slew computation / estimation / propagation
 - Delay calculation
 - Bufferable locations
 - Routing topology generation
 - Power consumption
 - ...

Problems – Interconnect Optimization

Gate sizing

WASHINGTON STATE

NIVERSITY

- You are given
 - An RC tree
 - A set of available buffers
- Minimize by gate sizing
 - Net delay
 - Path delay

Problems – Clock Tree Synthesis

• CTS

- You are given
 - F/Fs and their locations
 - A set of available buffers
 - RC characteristics of the interconnect
- Minimize
 - Clock skew
 - Power consumption
 - Noise
 - Slew

Problems – Clock Tree Synthesis

Clock skew = 20 - 9 = 11 units

Clock skew = 0

Problems – Low-Power Design

Power gating

Problems – Low-Power Design

Clock gating

Design for Manufacturability (DFM)

- Chemical-Mechanical Polishing (CMP)

Metal fill insertion

• Metal fill insertion

• Lithography

- Lithography
 - Optical Proximity Correction (OPC)

- Lithography
 - Multiple patterning

A. Conventional Double Patterning Lithography: Multiple Exposure and Etching

Complexity Analysis

- Sorting algorithms
 - Bubble sort
 - Merge sort
 - Bucket sort

Complexity Analysis – Bubble Sort

Complexity Analysis – Bubble Sort

}

Complexity Analysis – Bubble Sort

- *#* iterations (for five elements): 4+3+2+1+0
- # iterations (for *n* elements): (n-1) + (n-2) + ... + 0 = $\frac{(n-1)n}{2} = O(n^2)$
- Complexity of the if statement: O(1) = constant
- Final: O(n²)

WASHINGTON STATE

INIVERSITY

Complexity Analysis – Merge Sort

Pseudo code
 Split (left, right) {

 if ((right – left) ≥ 2) {
 Split (left, (left+right)/2);
 Split ((left+right)/2, right);
 Merge (left, (left+right)/2, right);

Complexity Analysis – Merge Sort

Complexity Analysis – Merge Sort

Complexity Analysis – Merge Sort

Idea L2 5 Sorted list 1 8 2 3 4 Sorted list 2 6 L1 Sorted list 1 8 5 2 3 4 Sorted list 2 6

lacksquare

Physical Design Automation of VLSI Circuits and Systems

Complexity Analysis – Merge Sort

• Idea

Physical Design Automation of VLSI Circuits and Systems

Complexity Analysis – Merge Sort

Complexity: $O(n * log_2 n)$

Physical Design Automation of VLSI Circuits and Systems

- We know the range of the values.
 [1, 10]
 - -7, 3, 3, 1, 6, 8, 3, 6, 8, 6, 4, 2, 2, 7, 8, 3

