
EE582

Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim

School of Electrical Engineering and Computer Science

Washington State University

Partitioning



2Physical Design Automation of VLSI Circuits and Systems

What We Will Study

• Partitioning

– Practical examples

– Problem definition

– Deterministic algorithms

• Kernighan-Lin (KL)

• Fiduccia-Mattheyses (FM)

• h-Metis

– Stochastic algorithms

• Simulated-annealing
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Example

Source: http://upload.wikimedia.org/wikipedia/commons/3/37/Dolby_SR_breadboard.jpg

http://upload.wikimedia.org/wikipedia/commons/3/37/Dolby_SR_breadboard.jpg
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VLSI Circuits

• # interconnections

– Intra-module: many

– Inter-module: few
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Problem Definition

• Given
– A set of cells: T = {c1, c2, …, cn}. |W|=n.

– A set of edges (netlist): R = {e1, e2, …, em}. |R|=m.

– Cell size: s(ci)

– Edge weight: w(ej)

– # partitions: k (k-way partitioning). P = {P1, …, Pk}

– Minimum partition size: b ≤ s(Pi)

– Balancing factor: max(s(Pi)) – min(s(Pj)) ≤ B

– Graph representation: edges / hyper-edges

• Find k partitions
– P = {P1, …, Pk}

• Minimize
– Cut size:  ∀𝑒(𝑢

1
,…,𝑢𝑑)∈𝑝(𝑢𝑖)≠𝑝(𝑢𝑗)𝑤(𝑒)
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Problem Definition

• A set of cells

– T = {c1, c2, …, cn}. |W|=n

c1

c2

c3

c4

c5

c6

c7

c8

e1

e2

e3

e4

e6

e5
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Problem Definition

• A set of edges (netlist, connectivity)

– R = {e1, e2, …, em}. |R|=m

c1

c2

c3

c4

c5

c6

c7

c8

e1

e2

e3

e4

e6

e5
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k-way Partitioning

• k=2, |Pi|=4

c1

c2

c3

c4

c5

c6

c7

c8

c1

c2

c3

c4

c5

c6

c7

c8

P1 = {c1, c2, c3, c4}

P2 = {c5, c6, c7, c8}

P1 = {c1, c2, c3, c5}

P2 = {c4, c6, c7, c8}

Cut size = 3 Cut size = 3
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Kernighan-Lin (KL) Algorithm

• Problem definition
– Given

• A set of vertices (cell list): V = {c1, c2, …, c2n}. |T|=2n.

• A set of two-pin edges (netlist): E = {e1, e2, …, em}. |E|=m.

• Weight of each edge: w(ej)

• Vertex size: s(ci) = 1

– Constraints

• # partitions: 2 (two-way partitioning). P = {A, B}

• Balanced partitioning: |A| = |B| = n

– Minimize

• Cutsize
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Kernighan-Lin (KL) Algorithm

• Cost function: cutsize =  𝑒∈𝜓𝑤(𝑒)

– Ψ: cut set = {e2, e4, e5}

– Cutsize = w(e2) + w(e4) + w(e5)

e1

e2
e3

e4

A={c1, c2, c3}

c1

c2

c3 c6

c4

c5

B={c4, c5, c6}

e5
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Kernighan-Lin (KL) Algorithm

• Algorithm

Find an initial solution

Improve the solution

Best? Keep the best one.

No more 

improvement?

Yes

No

End

Yes

No
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Kernighan-Lin (KL) Algorithm

• Iterative improvement

Current Optimal

A B A* B*

X Y Y X

How can we find X and Y?
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Kernighan-Lin (KL) Algorithm

• Iterative improvement

– Find a pair of vertices such that swapping the two 

vertices reduces the cutsize.

ca

cb

Cutsize = 4

ca
cb

Cutsize = 3
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Kernighan-Lin (KL) Algorithm

• Gain computation
– External cost (a) = Ea = 𝑤(𝑒𝑎𝑣) for all v∈B

= # external edges (if w(e) = 1)

– Internal cost (a) = Ia =  𝑤(𝑒𝑎𝑣) for all v∈A
= # internal edges (if w(e) = 1)

– D-value (a) = Da = Ea – Ia
– Gain = gab = Da + Db – 2w(eab)

– gab = {(Ea – w(eab)) – Ia}+ {(Eb – w(eab)) – Ib}

= Da + Db – 2w(eab)

a

b

A B

Ea = 4

Ia = 2

Da = 2

Eb = 1

Ib = 0

Db = 1
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Kernighan-Lin (KL) Algorithm

• Find a best-gain pair among all the gate pairs

c1 c2

c5

c6

c3

c4

A B

Ea Ia Da

c1 1 0 1

c2 1 2 -1

c3 0 1 -1

c4 2 1 1

c5 1 1 0

c6 1 1 0

g12 = 1 – 1 – 2 = -2

g13 = 1 – 1 – 0 = 0

g14 = 1 + 1 – 0 = +2

g52 = 0 – 1 – 0 = -1

g53 = 0 – 1 – 0 = -1

g54 = 0 + 1 – 2 = -1

g62 = 0 – 1 – 0 = -1

g63 = 0 – 1 – 0 = -1

g64 = 0 + 1 – 2 = -1

gab = Da + Db – 2w(eab)

Cutsize = 3
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Kernighan-Lin (KL) Algorithm

• Swap and Lock

– After swapping, we lock the swapped cells. The 

locked cells will not be moved further.

c4 c2

c5

c6

c3

c1

A B

Ea Ia Da

c1 1 0 1

c2 1 2 -1

c3 0 1 -1

c4 2 1 1

c5 1 1 0

c6 1 1 0

Cutsize = 1
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Kernighan-Lin (KL) Algorithm

• Update of the D-value

– Update the D-value of the cells affected by the move.

• Dx = Ex – Ix = {(Ex – w(exb)) + w(exb)} – {(Ix – w(exa) + w(exa))}

• Dx’ = Ex’ – Ix’ = {Ex – w(exb) + w(exa)} – {Ix + w(exb) – w(exa)}

= (Ex – Ix) + 2w(exa) – 2w(exb) = Dx + 2w(exa) – 2w(exb)

• Dy’ = (Ey – Iy) + 2w(eyb) – 2w(eya) = Dy + 2w(eyb) – 2w(eya)

ca

cb

x

y
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Kernighan-Lin (KL) Algorithm

• Update

Da Da’

c1 1

c2 -1 -1 + 2 – 2 = -1

c3 -1 -1 + 0 – 0 = -1

c4 1

c5 0 0 + 0 – 2 = -2

c6 0 0 + 0 – 2 = -2

Dx’ = Dx + 2*w(exa) – 2*w(exb)

Dy’ = Dy + 2*w(eyb) – 2*w(eya)

c1 c2

c5

c6

c3

c4

A B
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Kernighan-Lin (KL) Algorithm

• Gain computation and pair selection

Da’

c1

c2 -1

c3 -1

c4

c5 -2

c6 -2

g52 = -2 – 1 – 0 = -3

g53 = -2 – 1 – 0 = -3

g62 = -2 – 1 – 0 = -3

g63 = -2 – 1 – 0 = -3

gab = Da + Db – 2w(eab)

c4 c2

c5

c6

c3

c1

A B

Cutsize = 1
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Kernighan-Lin (KL) Algorithm

• Swap and update

Da Da’

c1

c2 -1 -1 + 2 – 0 = +1

c3 -1

c4

c5 -2 -2 + 2 – 0 = 0

c6 -2

Dx’ = Dx + 2*w(exa) – 2*w(exb)

Dy’ = Dy + 2*w(eyb) – 2*w(eya)

c4 c2

c5

c6

c3

c1

A B

Cutsize = 1
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Kernighan-Lin (KL) Algorithm

• Swap and update

Da

c1

c2 +1

c3

c4

c5 0

c6

Dx’ = Dx + 2*w(exa) – 2*w(exb)

Dy’ = Dy + 2*w(eyb) – 2*w(eya)

c4 c2

c5 c6

c3 c1

A B

Cutsize = 4
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Kernighan-Lin (KL) Algorithm

• Gain computation

Da

c1

c2 +1

c3

c4

c5 0

c6

g52 = +1 + 0 – 0 = +1

gab = Da + Db – 2w(eab)

c4 c2

c5 c6

c3 c1

A B

Cutsize = 4
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Kernighan-Lin (KL) Algorithm

• Swap

c4

c2

c5

c6

c3 c1

A B

Cutsize = 3
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Kernighan-Lin (KL) Algorithm

• Cutsize

– Initial: 3

• g1 = +2

– After 1st swap: 1

• g2 = -3

– After 2nd swap: 4

• g3 = +1

– After 3rd swap: 3

c4 c2

c5

c6

c3

c1

A B

Cutsize = 1
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Kernighan-Lin (KL) Algorithm

• Algorithm (a single iteration)

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖
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Kernighan-Lin (KL) Algorithm

• Algorithm (overall)
1. Run a single iteration.

2. Get the best partitioning result in the iteration.

3. Unlock all the cells.

4. Re-start the iteration. Use the best partitioning result 
for the initial partitioning.

• Stop criteria
– Max. # iterations

– Max. runtime

– Δ Cutsize between the two consecutive iterations.
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Kernighan-Lin (KL) Algorithm

• Complexity analysis

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖

O(n)
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Kernighan-Lin (KL) Algorithm

• Complexity of the D-value computation

– External cost (a) = Ea = 𝑤(𝑒𝑎𝑣) for all v∈B

– Internal cost (a) = Ia =  𝑤(𝑒𝑎𝑣) for all v∈A

– D-value (a) = Da = Ea – Ia

a

b

A B

Ea = 4

Ia = 2

Da = 2

Eb = 1

Ib = 0

Db = 1

For each cell (node) a

For each net connected to cell a

Compute Ea and Ia

Practically O(n)
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Kernighan-Lin (KL) Algorithm

• Complexity of the gain computation

– gab = Da + Db – 2w(eab)

For each pair (a, b)

gab = Da + Db – 2w(eab)

Complexity: O((n-i)2)
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Kernighan-Lin (KL) Algorithm

• Complexity of the D-value

– Dx’ = Dx + 2w(exa) – 2w(exb)

– Dy’ = Dy + 2w(eyb) – 2w(eya)

For a (and b)

For each cell x connected to cell a (and b)

Update Dx and Dy

Practically O(1)
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Kernighan-Lin (KL) Algorithm

• Complexity analysis

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖

O(n)

O((n-i)2)

O(n)

O(1)

Loop. # iterations: n

O(n3)
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Kernighan-Lin (KL) Algorithm

• Reduce the runtime
– The most expensive step: gain computation (O(n2))

• Compute the gain of each pair: gab = Da + Db – 2w(eab)

– How to expedite the process
• Sort the cells in the decreasing order of the D-value

– Da1 ≥ Da2 ≥ Da3 ≥ …

– Db1 ≥ Db2 ≥ Db3 ≥ …

• Keep the max. gain (gmax) found until now.

• When computing the gain of (Dal, Dbm)

– If Dal + Dbm < gmax, we don’t need to compute the gain for all the 
pairs (Dak, Dbp) s.t. k>l and p>m.

– Practically, it takes O(1).

– Complexity: O(n*logn) for sorting.
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Kernighan-Lin (KL) Algorithm

• Complexity analysis

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖

O(n)

O(n log n)

O(n)

O(1)

Loop. # iterations: n

O(n2 log n)
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Questions

• Intentionally left blank
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Fiduccia-Mattheyses (FM) Algorithm

• Handles

– Hyperedges

– Imbalance (unequal partition sizes)

– Runtime: O(n)

edge
hyperedge
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Fiduccia-Mattheyses (FM) Algorithm

• Definitions
– Cutstate(net)

• uncut: the net has all the cells in a single partition.

• cut: the net has cells in both the two partitions.

– Gain of cell: # nets by which the cutsize will decrease if the 
cell were to be moved.

– Balance criterion: To avoid having all cells migrate to one 
block.

• r·|V| - smax ≤ |A| ≤ r·|V| + smax

• |A| + |B| = |V|

– Base cell: The cell selected for movement.
• The max-gain cell that doesn’t violate the balance criterion.

Max cell size
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Fiduccia-Mattheyses (FM) Algorithm

• Definitions (continued)

– Distribution (net): (A(n), B(n))

• A(n): # cells connected to n in A

• B(n): # cells connected to n in B

– Critical net

• A net is critical if it has a cell that if moved will change its 

cutstate.

– cut to uncut

– uncut to cut

• Either the distribution of the net is (0,x), (1,x), (x,0), or (x,1).
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Fiduccia-Mattheyses (FM) Algorithm

• Critical net

– Moving a cell connected to the net changes the 

cutstate of the net.

A B A B A B A B
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Fiduccia-Mattheyses (FM) Algorithm

• Algorithm

1. Gain computation

• Compute the gain of each cell move

2. Select a base cell

3. Move and lock the base cell and update gain.
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Fiduccia-Mattheyses (FM) Algorithm

• Gain computation

– F(c): From_block (either A or B)

– T(c): To_block (either B or A)

– gain = g(c) = FS(c) – TE(c)

• FS(c): |P| s.t. P = {n | c ∈ n and dis(n) = (F(c), T(c)) = (1, x)}

• TE(c): |P| s.t. P = {n | c ∈ n and dis(n) = (F(c), T(c)) = (x, 0)}

A B
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Fiduccia-Mattheyses (FM) Algorithm

• Gain computation

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

gain = g(c) = FS(c) – TE(c)

FS(c): # nets whose dis. = (F(c), T(c)) = (1, x)}

TE(c): # nets whose dis. = (F(c), T(c)) = (x, 0)}

Distribution of the nets (A, B)

m: (3, 0)

q: (2, 1)

k: (1, 1)

p: (1, 1)

j: (0, 2)

Gain

g(c1) = 0 – 1 = -1

g(c2) = 2 – 1 = +1

g(c3) = 0 – 1 = -1

g(c4) = 1 – 1 = 0

g(c5) = 1 – 1 = 0

g(c6) = 1 – 0 = +1

For each net n connected to c

if F(n) = 1, g(c)++;

if T(n) = 0, g(c)--;
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Fiduccia-Mattheyses (FM) Algorithm

• Select a base (best-gain) cell.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Gain

g(c1) = 0 – 1 = -1

g(c2) = 2 – 1 = +1

g(c3) = 0 – 1 = -1

g(c4) = 1 – 1 = 0

g(c5) = 1 – 1 = 0

g(c6) = 1 – 0 = +1

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5

Balance factor: 0.4

S(A) = 9, S(B) = 9

Area criterion: [0.4*18-5, 0.4*18+5] = [2.2, 12.2]
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Fiduccia-Mattheyses (FM) Algorithm

• Before move, update the gain of other cells.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5
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Fiduccia-Mattheyses (FM) Algorithm

• Original code for gain update
– F: From_block of the base cell

– T: To_block of the base cell

– For each net n connected to the base cell

• If T(n) = 0

– gain(c)++;  // for c ∈ n

• Else if T(n) = 1

– gain(c)--;  // for c ∈ n & T

• F(n)--;

• T(n)++;

• If F(n) = 0

– gain(c)--;  // for c ∈ n

• Else if F(n) = 1

– gain(c)++;  // for c ∈ n & F
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Fiduccia-Mattheyses (FM) Algorithm

• Gain update
– F: From_block of the base cell

– T: To_block of the base cell

– For each net n connected to the base cell

• If T(n) = 0

– gain(c)++;  // for c ∈ n

• Else if T(n) = 1

– gain(c)--;  // for c ∈ n & T

• If F(n) = 1

– gain(c)--;  // for c ∈ n

• Else if F(n) = 2

– gain(c)++;  // for c ∈ n & F

• F(n)--;

• T(n)++;
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Fiduccia-Mattheyses (FM) Algorithm

• Gain update 

F T

base cell

F T

g: -1

g: +1

F T

g: -1
g: -1

F T

g: 0
g: 0

Case 1) T(n) = 0
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Fiduccia-Mattheyses (FM) Algorithm

• Gain update 

F T

base cell

F T

g: +1
g: -1

F T

g: 0

g: +1

F T

g: +1
g: 0

Case 2) T(n) = 1

F T

g: 0

g: +1

F T

g: 0
g: 0g: 0

g: 0
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Fiduccia-Mattheyses (FM) Algorithm

• Instead of enumerating all the cases, we 

consider the following combinations.

F(n) = 1 T(n) = 0

F(n) = 2 T(n) = 1

F(n) ≥ 3 T(n) ≥ 2

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

(1)
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Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)
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Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

T(n) = 0 : g(c)++;  // c ∈ n & F
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Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

T(n) = 1 : g(c)--;  // c ∈ n & T
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Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

F(n) = 1 : g(c)--;  // c ∈ n & T
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Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

F(n) = 2 : g(c)++;  // c ∈ n & F
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Fiduccia-Mattheyses (FM) Algorithm

• Gain update
– F: From_block of the base cell

– T: To_block of the base cell

– For each net n connected to the base cell

• If T(n) = 0

– gain(c)++;  // for c ∈ n

• If T(n) = 1

– gain(c)--;  // for c ∈ n

• If F(n) = 1

– gain(c)--;  // for c ∈ n

• If F(n) = 2

– gain(c)++;  // for c ∈ n

• F(n)--;

• T(n)++;
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Fiduccia-Mattheyses (FM) Algorithm

• Before move, update the gain of other cells.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5

Δg(c) in F Δg(c) in T F(n) T(n)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

Gain (before move)

g(c1) = 0 – 1 = -1

g(c2) = 2 – 1 = +1

g(c3) = 0 – 1 = -1

g(c4) = 1 – 1 = 0

g(c5) = 1 – 1 = 0

g(c6) = 1 – 0 = +1

Gain (after move)

g(c1) =  -1 + 1 = 0

g(c3) = -1 + 1 + 1 = +1

g(c4) = 0 – 1 = -1

g(c5) = 0 – 2 = -2

g(c6) = 1 – 2 = -1
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Fiduccia-Mattheyses (FM) Algorithm

• Move and lock the base cell.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5

Gain (after move)

g(c1) =  -1 + 1 = 0

g(c3) = -1 + 1 + 1 = +1

g(c4) = 0 – 1 = -1

g(c5) = 0 – 2 = -2

g(c6) = 1 – 2 = -1
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Fiduccia-Mattheyses (FM) Algorithm

• Choose the next base cell (except the locked 

cells).

• Update the gain of the other cells.

• Move and lock the base cell.

• Repeat this process.

• Find the best move sequence.
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Fiduccia-Mattheyses (FM) Algorithm

• Complexity analysis

1. Gain computation

• Compute the gain of each cell move

2. Select a base cell

3. Move and lock the base cell and update gain.

For each net n connected to c

if F(n) = 1, g(c)++;

if T(n) = 0, g(c)--;

Practically O(# cells or # nets)

O(1)

Practically O(1)

# iterations: # cells

Total complexity: O(n or c)



59Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Borrowed from chemical process
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Simulated Annealing

• Algorithm

T = T0 (initial temperature)

S = S0 (initial solution)

Time = 0

repeat

Call Metropolis (S, T, M);

Time = Time + M;

T = α · T;  // α: cooling rate (α < 1)

M = β · M;

until (Time ≥ maxTime);
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Simulated Annealing

• Algorithm

Metropolis (S, T, M)  // M: # iterations

repeat

NewS = neighbor(S);  // get a new solution by perturbation

Δh = cost(NewS) – cost(S);

If ((Δh < 0) or (random < e-Δh/T))

S = NewS;  // accept the new solution

M = M – 1;

until (M==0)
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Simulated Annealing

• Cost function for partition (A, B)

– Imbalance(A, B) = Size(A) – Size(B)

– Cutsize(A, B) = Σwn for n ϵ ψ

– Cost = Wc · Cutsize(A, B) + Ws · Imbalance(A, B)

• Wc and Ws: weighting factors

• Neighbor(S)

– Solution perturbation

• Example: move a free cell.
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hMetis

• Clustering-based partitioning

– Coarsening (grouping) by clustering

– Uncoarsening and refinement for cut-size 

minimization
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hMetis

• Coarsening

c3

c6

c4

c1

c2

c8

c7

c5

c3

c6

c4'

c8

c7

c5
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hMetis

• Coarsening

– Reduces the problem size

• Make sub-problems smaller and easier.

– Better runtime

– Higher probability for optimality

– Finds circuit hierarchy
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hMetis

• Algorithm

1. Coarsening

2. Initial solution generation

- Run partitioning for the top-level clusters.

3. Uncoarsening and refinement

- Flatten clusters at each level (uncoarsening).

- Apply partitioning algorithms to refine the solution.
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hMetis

• Three coarsening methods.
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hMetis

• Re-clustering (V- and v-cycles)

– Different clustering gives different cutsizes.
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hMetis

• Final results
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hMetis

• Final results


