
EE582

Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim

School of Electrical Engineering and Computer Science

Washington State University

Partitioning



2Physical Design Automation of VLSI Circuits and Systems

What We Will Study

• Partitioning

– Practical examples

– Problem definition

– Deterministic algorithms

• Kernighan-Lin (KL)

• Fiduccia-Mattheyses (FM)

• h-Metis

– Stochastic algorithms

• Simulated-annealing



3Physical Design Automation of VLSI Circuits and Systems

Example

Source: http://upload.wikimedia.org/wikipedia/commons/3/37/Dolby_SR_breadboard.jpg

http://upload.wikimedia.org/wikipedia/commons/3/37/Dolby_SR_breadboard.jpg


4Physical Design Automation of VLSI Circuits and Systems

VLSI Circuits

• # interconnections

– Intra-module: many

– Inter-module: few



5Physical Design Automation of VLSI Circuits and Systems

Problem Definition

• Given
– A set of cells: T = {c1, c2, …, cn}. |W|=n.

– A set of edges (netlist): R = {e1, e2, …, em}. |R|=m.

– Cell size: s(ci)

– Edge weight: w(ej)

– # partitions: k (k-way partitioning). P = {P1, …, Pk}

– Minimum partition size: b ≤ s(Pi)

– Balancing factor: max(s(Pi)) – min(s(Pj)) ≤ B

– Graph representation: edges / hyper-edges

• Find k partitions
– P = {P1, …, Pk}

• Minimize
– Cut size:  ∀𝑒(𝑢

1
,…,𝑢𝑑)∈𝑝(𝑢𝑖)≠𝑝(𝑢𝑗)𝑤(𝑒)



6Physical Design Automation of VLSI Circuits and Systems

Problem Definition

• A set of cells

– T = {c1, c2, …, cn}. |W|=n

c1

c2

c3

c4

c5

c6

c7

c8

e1

e2

e3

e4

e6

e5



7Physical Design Automation of VLSI Circuits and Systems

Problem Definition

• A set of edges (netlist, connectivity)

– R = {e1, e2, …, em}. |R|=m

c1

c2

c3

c4

c5

c6

c7

c8

e1

e2

e3

e4

e6

e5



8Physical Design Automation of VLSI Circuits and Systems

k-way Partitioning

• k=2, |Pi|=4

c1

c2

c3

c4

c5

c6

c7

c8

c1

c2

c3

c4

c5

c6

c7

c8

P1 = {c1, c2, c3, c4}

P2 = {c5, c6, c7, c8}

P1 = {c1, c2, c3, c5}

P2 = {c4, c6, c7, c8}

Cut size = 3 Cut size = 3



9Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Problem definition
– Given

• A set of vertices (cell list): V = {c1, c2, …, c2n}. |T|=2n.

• A set of two-pin edges (netlist): E = {e1, e2, …, em}. |E|=m.

• Weight of each edge: w(ej)

• Vertex size: s(ci) = 1

– Constraints

• # partitions: 2 (two-way partitioning). P = {A, B}

• Balanced partitioning: |A| = |B| = n

– Minimize

• Cutsize



10Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Cost function: cutsize =  𝑒∈𝜓𝑤(𝑒)

– Ψ: cut set = {e2, e4, e5}

– Cutsize = w(e2) + w(e4) + w(e5)

e1

e2
e3

e4

A={c1, c2, c3}

c1

c2

c3 c6

c4

c5

B={c4, c5, c6}

e5



11Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Algorithm

Find an initial solution

Improve the solution

Best? Keep the best one.

No more 

improvement?

Yes

No

End

Yes

No



12Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Iterative improvement

Current Optimal

A B A* B*

X Y Y X

How can we find X and Y?



13Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Iterative improvement

– Find a pair of vertices such that swapping the two 

vertices reduces the cutsize.

ca

cb

Cutsize = 4

ca
cb

Cutsize = 3



14Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Gain computation
– External cost (a) = Ea = 𝑤(𝑒𝑎𝑣) for all v∈B

= # external edges (if w(e) = 1)

– Internal cost (a) = Ia =  𝑤(𝑒𝑎𝑣) for all v∈A
= # internal edges (if w(e) = 1)

– D-value (a) = Da = Ea – Ia
– Gain = gab = Da + Db – 2w(eab)

– gab = {(Ea – w(eab)) – Ia}+ {(Eb – w(eab)) – Ib}

= Da + Db – 2w(eab)

a

b

A B

Ea = 4

Ia = 2

Da = 2

Eb = 1

Ib = 0

Db = 1



15Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Find a best-gain pair among all the gate pairs

c1 c2

c5

c6

c3

c4

A B

Ea Ia Da

c1 1 0 1

c2 1 2 -1

c3 0 1 -1

c4 2 1 1

c5 1 1 0

c6 1 1 0

g12 = 1 – 1 – 2 = -2

g13 = 1 – 1 – 0 = 0

g14 = 1 + 1 – 0 = +2

g52 = 0 – 1 – 0 = -1

g53 = 0 – 1 – 0 = -1

g54 = 0 + 1 – 2 = -1

g62 = 0 – 1 – 0 = -1

g63 = 0 – 1 – 0 = -1

g64 = 0 + 1 – 2 = -1

gab = Da + Db – 2w(eab)

Cutsize = 3



16Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Swap and Lock

– After swapping, we lock the swapped cells. The 

locked cells will not be moved further.

c4 c2

c5

c6

c3

c1

A B

Ea Ia Da

c1 1 0 1

c2 1 2 -1

c3 0 1 -1

c4 2 1 1

c5 1 1 0

c6 1 1 0

Cutsize = 1



17Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Update of the D-value

– Update the D-value of the cells affected by the move.

• Dx = Ex – Ix = {(Ex – w(exb)) + w(exb)} – {(Ix – w(exa) + w(exa))}

• Dx’ = Ex’ – Ix’ = {Ex – w(exb) + w(exa)} – {Ix + w(exb) – w(exa)}

= (Ex – Ix) + 2w(exa) – 2w(exb) = Dx + 2w(exa) – 2w(exb)

• Dy’ = (Ey – Iy) + 2w(eyb) – 2w(eya) = Dy + 2w(eyb) – 2w(eya)

ca

cb

x

y



18Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Update

Da Da’

c1 1

c2 -1 -1 + 2 – 2 = -1

c3 -1 -1 + 0 – 0 = -1

c4 1

c5 0 0 + 0 – 2 = -2

c6 0 0 + 0 – 2 = -2

Dx’ = Dx + 2*w(exa) – 2*w(exb)

Dy’ = Dy + 2*w(eyb) – 2*w(eya)

c1 c2

c5

c6

c3

c4

A B



19Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Gain computation and pair selection

Da’

c1

c2 -1

c3 -1

c4

c5 -2

c6 -2

g52 = -2 – 1 – 0 = -3

g53 = -2 – 1 – 0 = -3

g62 = -2 – 1 – 0 = -3

g63 = -2 – 1 – 0 = -3

gab = Da + Db – 2w(eab)

c4 c2

c5

c6

c3

c1

A B

Cutsize = 1



20Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Swap and update

Da Da’

c1

c2 -1 -1 + 2 – 0 = +1

c3 -1

c4

c5 -2 -2 + 2 – 0 = 0

c6 -2

Dx’ = Dx + 2*w(exa) – 2*w(exb)

Dy’ = Dy + 2*w(eyb) – 2*w(eya)

c4 c2

c5

c6

c3

c1

A B

Cutsize = 1



21Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Swap and update

Da

c1

c2 +1

c3

c4

c5 0

c6

Dx’ = Dx + 2*w(exa) – 2*w(exb)

Dy’ = Dy + 2*w(eyb) – 2*w(eya)

c4 c2

c5 c6

c3 c1

A B

Cutsize = 4



22Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Gain computation

Da

c1

c2 +1

c3

c4

c5 0

c6

g52 = +1 + 0 – 0 = +1

gab = Da + Db – 2w(eab)

c4 c2

c5 c6

c3 c1

A B

Cutsize = 4



23Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Swap

c4

c2

c5

c6

c3 c1

A B

Cutsize = 3



24Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Cutsize

– Initial: 3

• g1 = +2

– After 1st swap: 1

• g2 = -3

– After 2nd swap: 4

• g3 = +1

– After 3rd swap: 3

c4 c2

c5

c6

c3

c1

A B

Cutsize = 1



25Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Algorithm (a single iteration)

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖



26Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Algorithm (overall)
1. Run a single iteration.

2. Get the best partitioning result in the iteration.

3. Unlock all the cells.

4. Re-start the iteration. Use the best partitioning result 
for the initial partitioning.

• Stop criteria
– Max. # iterations

– Max. runtime

– Δ Cutsize between the two consecutive iterations.



27Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Complexity analysis

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖

O(n)



28Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Complexity of the D-value computation

– External cost (a) = Ea = 𝑤(𝑒𝑎𝑣) for all v∈B

– Internal cost (a) = Ia =  𝑤(𝑒𝑎𝑣) for all v∈A

– D-value (a) = Da = Ea – Ia

a

b

A B

Ea = 4

Ia = 2

Da = 2

Eb = 1

Ib = 0

Db = 1

For each cell (node) a

For each net connected to cell a

Compute Ea and Ia

Practically O(n)



29Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Complexity of the gain computation

– gab = Da + Db – 2w(eab)

For each pair (a, b)

gab = Da + Db – 2w(eab)

Complexity: O((n-i)2)



30Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Complexity of the D-value

– Dx’ = Dx + 2w(exa) – 2w(exb)

– Dy’ = Dy + 2w(eyb) – 2w(eya)

For a (and b)

For each cell x connected to cell a (and b)

Update Dx and Dy

Practically O(1)



31Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Complexity analysis

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖

O(n)

O((n-i)2)

O(n)

O(1)

Loop. # iterations: n

O(n3)



32Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Reduce the runtime
– The most expensive step: gain computation (O(n2))

• Compute the gain of each pair: gab = Da + Db – 2w(eab)

– How to expedite the process
• Sort the cells in the decreasing order of the D-value

– Da1 ≥ Da2 ≥ Da3 ≥ …

– Db1 ≥ Db2 ≥ Db3 ≥ …

• Keep the max. gain (gmax) found until now.

• When computing the gain of (Dal, Dbm)

– If Dal + Dbm < gmax, we don’t need to compute the gain for all the 
pairs (Dak, Dbp) s.t. k>l and p>m.

– Practically, it takes O(1).

– Complexity: O(n*logn) for sorting.



33Physical Design Automation of VLSI Circuits and Systems

Kernighan-Lin (KL) Algorithm

• Complexity analysis

1. V = {c1, c2, …, c2n}

{A, B}: initial partition

2. Compute Dv for all v ∈ V

queue = {}, i = 1, A’=A, B’=B

3. Compute gain and choose the best-gain pair (ai, bi).

queue += (ai, bi), A’ = A’-{ai}, B’=B’-{bi}

4. If A’ and B’ are empty, go to step 5.

Otherwise, update D for A’ and B’ and go to step 3.

5. Find k maximizing G= 𝑖=1
𝑘 𝑔𝑖

O(n)

O(n log n)

O(n)

O(1)

Loop. # iterations: n

O(n2 log n)



34Physical Design Automation of VLSI Circuits and Systems

Questions

• Intentionally left blank



35Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Handles

– Hyperedges

– Imbalance (unequal partition sizes)

– Runtime: O(n)

edge
hyperedge



36Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Definitions
– Cutstate(net)

• uncut: the net has all the cells in a single partition.

• cut: the net has cells in both the two partitions.

– Gain of cell: # nets by which the cutsize will decrease if the 
cell were to be moved.

– Balance criterion: To avoid having all cells migrate to one 
block.

• r·|V| - smax ≤ |A| ≤ r·|V| + smax

• |A| + |B| = |V|

– Base cell: The cell selected for movement.
• The max-gain cell that doesn’t violate the balance criterion.

Max cell size



37Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Definitions (continued)

– Distribution (net): (A(n), B(n))

• A(n): # cells connected to n in A

• B(n): # cells connected to n in B

– Critical net

• A net is critical if it has a cell that if moved will change its 

cutstate.

– cut to uncut

– uncut to cut

• Either the distribution of the net is (0,x), (1,x), (x,0), or (x,1).



38Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Critical net

– Moving a cell connected to the net changes the 

cutstate of the net.

A B A B A B A B



39Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Algorithm

1. Gain computation

• Compute the gain of each cell move

2. Select a base cell

3. Move and lock the base cell and update gain.



40Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Gain computation

– F(c): From_block (either A or B)

– T(c): To_block (either B or A)

– gain = g(c) = FS(c) – TE(c)

• FS(c): |P| s.t. P = {n | c ∈ n and dis(n) = (F(c), T(c)) = (1, x)}

• TE(c): |P| s.t. P = {n | c ∈ n and dis(n) = (F(c), T(c)) = (x, 0)}

A B



41Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Gain computation

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

gain = g(c) = FS(c) – TE(c)

FS(c): # nets whose dis. = (F(c), T(c)) = (1, x)}

TE(c): # nets whose dis. = (F(c), T(c)) = (x, 0)}

Distribution of the nets (A, B)

m: (3, 0)

q: (2, 1)

k: (1, 1)

p: (1, 1)

j: (0, 2)

Gain

g(c1) = 0 – 1 = -1

g(c2) = 2 – 1 = +1

g(c3) = 0 – 1 = -1

g(c4) = 1 – 1 = 0

g(c5) = 1 – 1 = 0

g(c6) = 1 – 0 = +1

For each net n connected to c

if F(n) = 1, g(c)++;

if T(n) = 0, g(c)--;



42Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Select a base (best-gain) cell.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Gain

g(c1) = 0 – 1 = -1

g(c2) = 2 – 1 = +1

g(c3) = 0 – 1 = -1

g(c4) = 1 – 1 = 0

g(c5) = 1 – 1 = 0

g(c6) = 1 – 0 = +1

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5

Balance factor: 0.4

S(A) = 9, S(B) = 9

Area criterion: [0.4*18-5, 0.4*18+5] = [2.2, 12.2]



43Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Before move, update the gain of other cells.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5



44Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Original code for gain update
– F: From_block of the base cell

– T: To_block of the base cell

– For each net n connected to the base cell

• If T(n) = 0

– gain(c)++;  // for c ∈ n

• Else if T(n) = 1

– gain(c)--;  // for c ∈ n & T

• F(n)--;

• T(n)++;

• If F(n) = 0

– gain(c)--;  // for c ∈ n

• Else if F(n) = 1

– gain(c)++;  // for c ∈ n & F



45Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Gain update
– F: From_block of the base cell

– T: To_block of the base cell

– For each net n connected to the base cell

• If T(n) = 0

– gain(c)++;  // for c ∈ n

• Else if T(n) = 1

– gain(c)--;  // for c ∈ n & T

• If F(n) = 1

– gain(c)--;  // for c ∈ n

• Else if F(n) = 2

– gain(c)++;  // for c ∈ n & F

• F(n)--;

• T(n)++;



46Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Gain update 

F T

base cell

F T

g: -1

g: +1

F T

g: -1
g: -1

F T

g: 0
g: 0

Case 1) T(n) = 0



47Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Gain update 

F T

base cell

F T

g: +1
g: -1

F T

g: 0

g: +1

F T

g: +1
g: 0

Case 2) T(n) = 1

F T

g: 0

g: +1

F T

g: 0
g: 0g: 0

g: 0



48Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Instead of enumerating all the cases, we 

consider the following combinations.

F(n) = 1 T(n) = 0

F(n) = 2 T(n) = 1

F(n) ≥ 3 T(n) ≥ 2

(2)

(3)

(4)

(5)

(6)

(7)

(8)

(9)

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

(1)



49Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)



50Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

T(n) = 0 : g(c)++;  // c ∈ n & F



51Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

T(n) = 1 : g(c)--;  // c ∈ n & T



52Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

F(n) = 1 : g(c)--;  // c ∈ n & T



53Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Conversion from the table to a source code.

Δg(c) in F Δg(c) in T F(n) T(n)

(1)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

(9)

F(n) = 2 : g(c)++;  // c ∈ n & F



54Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Gain update
– F: From_block of the base cell

– T: To_block of the base cell

– For each net n connected to the base cell

• If T(n) = 0

– gain(c)++;  // for c ∈ n

• If T(n) = 1

– gain(c)--;  // for c ∈ n

• If F(n) = 1

– gain(c)--;  // for c ∈ n

• If F(n) = 2

– gain(c)++;  // for c ∈ n

• F(n)--;

• T(n)++;



55Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Before move, update the gain of other cells.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5

Δg(c) in F Δg(c) in T F(n) T(n)

(2) -2 1 1

(3) -1 1 ≥ 2

(4) +2 2 0

(5) +1 -1 2 1

(6) +1 2 ≥ 2

(7) +1 ≥ 3 0

(8) -1 ≥ 3 1

Gain (before move)

g(c1) = 0 – 1 = -1

g(c2) = 2 – 1 = +1

g(c3) = 0 – 1 = -1

g(c4) = 1 – 1 = 0

g(c5) = 1 – 1 = 0

g(c6) = 1 – 0 = +1

Gain (after move)

g(c1) =  -1 + 1 = 0

g(c3) = -1 + 1 + 1 = +1

g(c4) = 0 – 1 = -1

g(c5) = 0 – 2 = -2

g(c6) = 1 – 2 = -1



56Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Move and lock the base cell.

A B

c1

c2

c3

c4

c5

c6

m

q

k

j

p

Size: 3

S: 2

S: 4

S: 1

S: 3

S: 5

Gain (after move)

g(c1) =  -1 + 1 = 0

g(c3) = -1 + 1 + 1 = +1

g(c4) = 0 – 1 = -1

g(c5) = 0 – 2 = -2

g(c6) = 1 – 2 = -1



57Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Choose the next base cell (except the locked 

cells).

• Update the gain of the other cells.

• Move and lock the base cell.

• Repeat this process.

• Find the best move sequence.



58Physical Design Automation of VLSI Circuits and Systems

Fiduccia-Mattheyses (FM) Algorithm

• Complexity analysis

1. Gain computation

• Compute the gain of each cell move

2. Select a base cell

3. Move and lock the base cell and update gain.

For each net n connected to c

if F(n) = 1, g(c)++;

if T(n) = 0, g(c)--;

Practically O(# cells or # nets)

O(1)

Practically O(1)

# iterations: # cells

Total complexity: O(n or c)



59Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Borrowed from chemical process



60Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Algorithm

T = T0 (initial temperature)

S = S0 (initial solution)

Time = 0

repeat

Call Metropolis (S, T, M);

Time = Time + M;

T = α · T;  // α: cooling rate (α < 1)

M = β · M;

until (Time ≥ maxTime);



61Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Algorithm

Metropolis (S, T, M)  // M: # iterations

repeat

NewS = neighbor(S);  // get a new solution by perturbation

Δh = cost(NewS) – cost(S);

If ((Δh < 0) or (random < e-Δh/T))

S = NewS;  // accept the new solution

M = M – 1;

until (M==0)



62Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Cost function for partition (A, B)

– Imbalance(A, B) = Size(A) – Size(B)

– Cutsize(A, B) = Σwn for n ϵ ψ

– Cost = Wc · Cutsize(A, B) + Ws · Imbalance(A, B)

• Wc and Ws: weighting factors

• Neighbor(S)

– Solution perturbation

• Example: move a free cell.



63Physical Design Automation of VLSI Circuits and Systems

hMetis

• Clustering-based partitioning

– Coarsening (grouping) by clustering

– Uncoarsening and refinement for cut-size 

minimization



64Physical Design Automation of VLSI Circuits and Systems

hMetis

• Coarsening

c3

c6

c4

c1

c2

c8

c7

c5

c3

c6

c4'

c8

c7

c5



65Physical Design Automation of VLSI Circuits and Systems

hMetis

• Coarsening

– Reduces the problem size

• Make sub-problems smaller and easier.

– Better runtime

– Higher probability for optimality

– Finds circuit hierarchy



66Physical Design Automation of VLSI Circuits and Systems

hMetis

• Algorithm

1. Coarsening

2. Initial solution generation

- Run partitioning for the top-level clusters.

3. Uncoarsening and refinement

- Flatten clusters at each level (uncoarsening).

- Apply partitioning algorithms to refine the solution.



67Physical Design Automation of VLSI Circuits and Systems

hMetis

• Three coarsening methods.



68Physical Design Automation of VLSI Circuits and Systems

hMetis

• Re-clustering (V- and v-cycles)

– Different clustering gives different cutsizes.



69Physical Design Automation of VLSI Circuits and Systems

hMetis

• Final results



70Physical Design Automation of VLSI Circuits and Systems

hMetis

• Final results


