EE582

Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim School of Electrical Engineering and Computer Science Washington State University

Floorplanning

What We Will Study

- Floorplanning
 - Problem definition
 - Deterministic algorithms
 - Linear-programming
 - Stochastic algorithms
 - Simulated-annealing
 - Polish expression
 - Sequence pair

Problem Definition

- Given
 - A set of modules (blocks): $M = \{m_1, m_2, ..., m_n\}$
 - (width, height) for each module is also given. (e.g., $m_1 = (10um, 20um))$
 - A set of nets (netlist): $N = \{n_1, n_2, ..., n_m\}$
 - Outline: Chip width and height
- Find a floorplan
 - Minimize
 - Area
 - Wirelength
- Constraints

WASHINGTON STATE

No overlap between modules

Example

Problem Definition

- Later on, we will solve more complex problems.
 - Rotatable blocks
 - Some blocks are rotatable.
 - Soft blocks
 - Some blocks are soft.
 - Area: fixed. Aspect ratio = [0.5, 2.0]

Floorplanning Algorithms

- Deterministic algorithms
 - Linear-programming
- Stochastic algorithms
 - Simulated-annealing
 - Polish expression
 - Sequence pair

Formulation

 $\begin{array}{l} \text{Minimize } \sum_{j=1}^n c_i x_j \\ \text{subject to} \\ \sum_{j=1}^n a_{ij} x_j \leq b_i \, , i=1,2,\ldots,m \end{array}$

 x_j : variables c_j , a_{ij} , b_{ij} : constants

• Extension

- Integer linear programming

 $\begin{array}{l} \text{Minimize } \sum_{j=1}^n c_i x_j \\ \text{subject to} \\ & \sum_{j=1}^n a_{ij} x_j \leq b_i \,, i=1,2,\ldots,m \\ & x_j \in Z \end{array}$

 x_j : variables c_j , a_{ij} , b_{ij} : constants

• Extension

- Binary integer linear programming

 $\begin{array}{l} \text{Minimize } \sum_{j=1}^n c_i x_j \\ \text{subject to} \\ & \sum_{j=1}^n a_{ij} x_j \leq b_i \,, i=1,2,\ldots,m \\ & x_j \in \{0,1\} \end{array}$

 x_j : variables c_j , a_{ij} , b_{ij} : constants

- Example
 - An oil refinery produces two products.
 - Jet fuel
 - Gasoline
 - Profit
 - Jet fuel: \$1 per Barrel
 - Gasoline: \$2 per Barrel
 - Conditions (constraints)
 - Only 10,000 barrels of crude oil are available per day.
 - The refinery should produce at least 1,000 barrels of jet fuel.
 - The refinery should produce at least 2,000 barrels of gasoline.
 - Both products are shipped in trucks whose delivery capacity is 180,000 barrel-miles.
 - The jet fuel is delivered to an airfield 10 miles away from the refinery.
 - The gasoline is transported a distributor 30 miles away from the refinery.
 - Objective

WASHINGTON STATE

IVERSITY

- Maximize the profit.
- How much of each product should be produced?

- Example
 - An oil refinery produces two products.
 - Jet fuel (variable: x)
 - Gasoline (variable: y)
 - Profit
 - Jet fuel: \$1 per Barrel
 - Gasoline: \$2 per Barrel
 - Conditions (constraints)
 - Only 10,000 barrels of crude oil are available per day. ($x + y \le 10,000$)
 - The refinery should produce at least 1,000 barrels of jet fuel. ($x \ge 1,000$)
 - The refinery should produce at least 2,000 barrels of gasoline. ($y \ge 2,000$)
 - Both products are shipped in trucks whose delivery capacity is 180,000 barrel-miles. (10x + 30y ≤ 180,000)
 - The jet fuel is delivered to an airfield 10 miles away from the refinery.
 - The gasoline is transported a distributor 30 miles away from the refinery.
 - Objective

WASHINGTON STATE

NIVERSITY

- Maximize the profit. (maximize x + 2y)
- How much of each product should be produced?

Formulation

 $\begin{array}{l} \text{Minimize } \sum_{j=1}^n c_i x_j \\ \text{subject to} \\ \sum_{j=1}^n a_{ij} x_j \leq b_i \text{ , } i=1,2,\ldots,m \end{array}$

 x_j : variables c_j , a_{ij} , b_{ij} : constants

Maximize x + 2y (Minimize -x - 2y) subject to $x + y \le 10,000$ $x \ge 1,000$ $y \ge 2,000$ $10x + 30y \le 180,000$

Linear Programming-Based Floorplanning

- Analytical approach
 - Case 1) All modules are rigid and not rotatable.
 - Module 1: (width, height) = (w_1, h_1)
 - Module 2: (width, height) = (w_2, h_2)
 - ...
- Constraints
 - The width and the height of the floorplan are given (fixed-outline floorplanning)

- Analytical formulation
 - Boundary conditions
 - $x_i \ge 0, x_i + w_i \le W$
 - $y_i \ge 0$, $y_i + h_i \le H$
 - No overlap conditions
 - i is to the left of k: $x_i + w_i \le x_k$
 - i is to the right of k: $x_k + w_k \le x_i$
 - i is below k: $y_i + h_i \le y_k$
 - i is above k: $y_k + h_k \le y_i$

	(x _k +w _k , y _k +h _k)
	Module k
(x _k ,	y _k)

	(x _i +w _i , y _i +h _i)
	Module i
$(\mathbf{x}_{i}, \mathbf{y}_{i})$	

- Linear programming formulation for no overlaps
 - i is to the left of k: $x_i + w_i \le x_k$
 - i is to the right of k: $x_k + w_k \le x_i$
 - − i is below k: $y_i + h_i \le y_k$
 - − i is above k: $y_k + h_k \le y_i$
 - Introduce two binary variables, x_{ik} and y_{ik} .

x _{ik}	y _{ik}	Meaning		
0	0	i is to the left of k		
0	1	i is below k		
1	0	i is to the right of k		
1	1	i is above k		

• Linear programming formulation for no overlaps

x _{ik}	y _{ik}	Meaning	
0	0	i is to the left of k	
0	1	i is below k	
1	0	i is to the right of k	
1	1	i is above k	

$$x_{i} + w_{i} \leq x_{k} + W(x_{ik} + y_{ik})$$

$$y_{i} + h_{i} \leq y_{k} + H(1 + x_{ik} - y_{ik})$$

$$x_{k} + w_{k} \leq x_{i} + W(1 - x_{ik} + y_{ik})$$

$$y_{k} + h_{k} \leq y_{i} + H(2 - x_{ik} - y_{ik})$$

• Formulation

Minimize Y		
Subject to		
$x_i \ge 0$,	$1 \le i \le n$	
$y_i \ge 0$,	$1 \le i \le n$	
$x_i + w_i \leq$	$W \qquad 1 \le i \le n$	
$y_i + h_i \leq 1$	$Y 1 \le i \le n$	
$x_i + w_i \leq$	$x_k + W(x_{ik} + y_{ik})$	$1 \le i < j \le n$
$y_i + h_i \leq$	$1 \le i < j \le n$	
$x_k + w_k \leq$	$\leq x_i + W(1 - x_{ik} + y_{ik})$	$1 \le i < j \le n$
$y_k + h_k \leq$	$\leq y_i + H(2 - x_{ik} - y_{ik})$	$1 \le i < j \le n$

- Analytical approach
 - Case 2) All modules are rigid and rotatable.
 - Module 1: (width, height) = (w_1, h_1) or (h_1, w_1)
 - Module 2: (width, height) = (w_2, h_2) or (h_2, w_2)
 - ...
- Constraints
 - The width and the height of the floorplan are given (fixed-outline floorplanning)

- Formulation
 - Introduce a new binary variable for each module.
 - Z_i
 - 0: un-rotated (w = w_i , h = h_i)

- 1: rotated (
$$w = h_i$$
, $h = w_i$)

$$w_i => z_i h_i + (1 - z_i) w_i$$

 $h_i => z_i w_i + (1 - z_i) h_i$

• Formulation

- Introduce a new binary variable, z_i , for each module.
 - 0: un-rotated
 - 1: rotated

Minimize Y Subject to

WASHINGTON STATE

INIVERSITY

$$\begin{array}{ll} x_i \geq 0, & 1 \leq i \leq n \\ y_i \geq 0, & 1 \leq i \leq n \\ x_i + z_i h_i + (1 - z_i) w_i \leq W & 1 \leq i \leq n \\ y_i + z_i w_i + (1 - z_i) h_i \leq Y & 1 \leq i \leq n \\ x_i + z_i h_i + (1 - z_i) w_i \leq x_k + M(x_{ik} + y_{ik}) & 1 \leq i < j \leq n \\ y_i + z_i w_i + (1 - z_i) h_i \leq y_k + M(1 + x_{ik} - y_{ik}) & 1 \leq i < j \leq n \\ x_k + z_k h_k + (1 - z_k) w_k \leq x_i + M(1 - x_{ik} + y_{ik}) & 1 \leq i < j \leq n \\ y_k + z_k w_k + (1 - z_k) h_k \leq y_i + M(2 - x_{ik} - y_{ik}) & 1 \leq i < j \leq n \\ M = \max(W, H) \text{ or } (W + H) \end{array}$$

- Analytical approach
 - Case 3) Some modules are flexible (soft).
 - Module 1: area = $A_1 = w_1^* h_1$. $w_1 = [w_{1_{min}}, w_{1_{max}}]$
 - Module 2: area = $A_2 = w_2^* h_2$. $w_2 = [w_{2_{min}}, w_{2_{max}}]$

Constraints

•

 The width and the height of the floorplan are given (fixed-outline floorplanning)

Formulation

WASHINGTON STATE

- w_i and h_i are variables.
- $w_i^* h_i \ge A_i$ is not linear.
- Linear formulation (Linearization)
 - First-order approximation

•
$$h_i = \Delta_i w_i + c_i$$
 (y = mx+c)

• $\Delta_i = (h_{i,min} - h_{i,max}) / (w_{i,max} - w_{i,min})$

•
$$c_i = h_{i,max} - \Delta_i w_{i,min}$$

- Linear formulation (Linearization)
 - First-order approximation

•
$$h_i = \Delta_i w_i + c_i$$
 (y = mx+c)

•
$$\Delta_i = (h_{i,min} - h_{i,max}) / (w_{i,max} - w_{i,min})$$

Formulation

Floorplanning Algorithms

- Deterministic algorithms
 - Linear-programming
- Stochastic algorithms
 - Simulated-annealing
 - Polish expression
 - Sequence pair

• Similar to the simulated annealing algorithm used for partitioning.

Simulated Annealing

Algorithm

```
T = T_0 (initial temperature)
S = S_0 (initial solution)
Time = 0
     repeat
        Call Metropolis (S, T, M);
        Time = Time + M;
        T = \alpha \cdot T; // \alpha: cooling rate (\alpha < 1)
        \mathsf{M} = \beta \cdot \mathsf{M};
     until (Time \geq maxTime);
```


• Algorithm

```
Metropolis (S, T, M) // M: # iterations
```

repeat

NewS = neighbor(S); // get a new solution by perturbation

```
\Delta h = cost(NewS) - cost(S);
```

```
If ((\Delta h < 0) \text{ or } (random < e^{-\Delta h/T}))
```

S = NewS; // accept the new solution

$$M = M - 1;$$

until (M==0)

- How can we represent floorplans?
 - Polish expression (slicing floorplan)
 - Sequence pair (non-slicing floorplan)

Polish expression ↔ post-order traversal

- Polish expression
 - E = $e_1 e_2 \dots e_{2n-1}$ where $e_i \in \{1, 2, \dots, n, H, V\}$ is a Polish expression of length (2n-1) if and only if
 - Every operand j $(1 \le j \le n)$ appears exactly once
 - (balloting property) for every subexpression E_k = e₁ ... e_k, #operands > #operators.

operators

Redundancy in the solution representation

Non-skewed vs. Skewed

Non-skewed (... VV ...) or (... HH ...)

- Normalized polish expression
 - $E = e_1 e_2 \dots e_{2n-1}$ is called normalized if and only if
 - E has no consecutive operators of the same type (H or V).
 - In other words, it's skewed.
 - Using the normalized polish expression, we remove the redundancy and construct a unique representation.

- Solution perturbation
 - Chain: HVHVH ... or VHVHV ...

6 H 3 5 V 2 H V 7 4 H V

- Adjacent
 - 1 6: adjacent operands
 - 2 7: adjacent operands
 - 5 V: adjacent operand and operator
- Moves
 - Move 1 (Operand swap): Swap two adjacent operands.
 - Move 2 (Chain invert): Complement a chain (V \rightarrow H, H \rightarrow V)
 - Move 3 (Operator/operand swap): Swap two adjacent operand and operator.

Effects of perturbation

- Does the balloting property hold during moves?
 - (balloting property) for every subexpression $E_k = e_1 \dots e_k$, #operands > #operators.
 - Moves
 - Move 1 (Operand swap): Swap two adjacent operands. (Yes)
 - Move 2 (Chain invert): Complement a chain (H↔V) (Yes)
 - Move 3 (Operator/operand swap): Swap two adjacent operand and operator.
 - Reject "illegal" moves.
 - How can we find "illegal" moves?

- Operator/operand swap
 - Assume that the type-3 move swaps operand e_i with operator e_{i+1} , (1 ≤ i ≤ k-1). Then, the swap will not violate the balloting property iff $2N_{i+1} < i$.
 - N_k : # operators in the Polish expression $E=e_1e_2...e_k$.

- Cost function
 Cost = Area + λ·W
- Area computation

• Example

• Wirelength estimation

INIVERSITY

Incremental cost computation

E = 1 6 H 2 V 7 5 V H 3 4 H V

E = 1 6 H 2 V 7 3 V H 5 4 H V

• Example

WASHINGTON STATE

INIVERSITY

Floorplanning Algorithms

- Deterministic algorithms
 - Linear-programming
- Stochastic algorithms
 - Simulated-annealing
 - Polish expression
 - Sequence pair

- P-admissible solution space for a problem
 - The solution space is finite.
 - Every solution is feasible.
 - Implementation and evaluation of each configuration are possible in polynomial time.
 - The configuration corresponding to the best evaluated solution in the space coincides with an optimal solution of the problem.
- Slicing floorplan is not P-admissible.
- Sequence pair is P-admissible.

WASHINGTON STATE

- Represent a solution by a pair of module-name sequences.
 - (1 2 3 4 5), (3 5 1 4 2) Positive seq. Negative seq. (Γ_+) (Γ_-)

WASHINGTON STATE

- Conversion of a sequence pair into its corresponding floorplan.
 - x is after y in both Γ_+ and $\Gamma_- \Leftrightarrow x$ is right to y.
 - x is before y in both Γ_+ and $\Gamma_- \Leftrightarrow x$ is left to y.
 - − x is after y in Γ_+ and before y in Γ_- ⇔ x is below to y.
 - x is before y in Γ_+ and after y in $\Gamma_- \Leftrightarrow x$ is above to y.

- (Γ_+, Γ_-) -Packing
 - Constraint graphs
 - Horizontal constraint graph (HCG)
 - Vertical constraint graph (VCG)

Horizontal constraint graph

$$\begin{array}{l} (..y..\textbf{X}..) (..y..\textbf{X}..) \Leftrightarrow x \text{ is right to y.} \\ (..\textbf{X}..y..) (..\textbf{X}..y..) \Leftrightarrow x \text{ is left to y.} \\ (..y..\textbf{X}..) (..\textbf{X}..y..) \Leftrightarrow x \text{ is below to y.} \\ (..\textbf{X}..y..) (..y..\textbf{X}..) \Leftrightarrow x \text{ is above to y.} \end{array}$$

-(17452638)(84725361)

• Vertical constraint graph

```
\begin{array}{l} (..y..\textbf{X}..) (..y..\textbf{X}..) \Leftrightarrow x \text{ is right to y.} \\ (..\textbf{X}..y..) (..\textbf{X}..y..) \Leftrightarrow x \text{ is left to y.} \\ (..y..\textbf{X}..) (..\textbf{X}..y..) \Leftrightarrow x \text{ is below to y.} \\ (..\textbf{X}..y..) (..y..\textbf{X}..) \Leftrightarrow x \text{ is above to y.} \end{array}
```

-(17452638)(84725361)

- Computation of the location of each block
 - HCG: determines the x-coordinates.
 - VCG: determines the y-coordinates.

INIVERSITY

Physical Design Automation of VLSI Circuits and Systems

51

Use longest source-to-module path length

• Floorplan

$$m_{1} = (0, 11)$$

$$m_{2} = (3, 4)$$

$$m_{3} = (6, 4)$$

$$m_{4} = (0, 4)$$

$$m_{5} = (3, 7)$$

$$m_{6} = (6, 7)$$

$$m_{7} = (0, 9)$$

$$m_{8} = (0, 0)$$

- Solution perturbation
 - Move 1: Swap two cells in the positive sequence
 - Γ_+ : (...x..y..) \rightarrow (...y..x..)
 - Move 2: Swap two cells in the negative sequence

• Γ_{-} : (...x..y..) \rightarrow (...y..x..)

- Move 3: Swap two cells both in the pos/neg sequence

•
$$\Gamma_+$$
: (...x..y..) \rightarrow (...y..x..)

•
$$\Gamma_{-}$$
: (...y...x..) \rightarrow (...x...y..)

Sequence Pair + Simulated Annealing

Algorithm

```
T = T_0 (initial temperature)
S = S_0 (initial solution)
Time = 0
     repeat
        Call Metropolis (S, T, M);
        Time = Time + M;
        T = \alpha \cdot T; // \alpha: cooling rate (\alpha < 1)
        \mathsf{M} = \beta \cdot \mathsf{M};
     until (Time \geq maxTime);
```


Sequence Pair + Simulated Annealing

• Algorithm

Metropolis (S, T, M) // M: # iterations

repeat

NewS = neighbor(S); // get a new solution by perturbation $\Delta h = cost(NewS) - cost(S);$ If (($\Delta h < 0$) or (random < $e^{-\Delta h/T}$)) S = NewS; // accept the new solution M = M - 1; until (M==0)

