
EE582

Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim

School of Electrical Engineering and Computer Science

Washington State University

Floorplanning

2Physical Design Automation of VLSI Circuits and Systems

What We Will Study

• Floorplanning

– Problem definition

– Deterministic algorithms

• Linear-programming

– Stochastic algorithms

• Simulated-annealing

– Polish expression

– Sequence pair

3Physical Design Automation of VLSI Circuits and Systems

Problem Definition

• Given
– A set of modules (blocks): M = {m1, m2, …, mn}

• (width, height) for each module is also given. (e.g., m1 = (10um, 20um))

– A set of nets (netlist): N = {n1, n2, …, nm}

– Outline: Chip width and height

• Find a floorplan
– Minimize

• Area

• Wirelength

• Constraints
– No overlap between modules

4Physical Design Automation of VLSI Circuits and Systems

Example

5Physical Design Automation of VLSI Circuits and Systems

Problem Definition

• Later on, we will solve more complex problems.

– Rotatable blocks

• Some blocks are rotatable.

– Soft blocks

• Some blocks are soft.

– Area: fixed. Aspect ratio = [0.5, 2.0]

10

20

15 20

6Physical Design Automation of VLSI Circuits and Systems

Floorplanning Algorithms

• Deterministic algorithms

– Linear-programming

• Stochastic algorithms

– Simulated-annealing

• Polish expression

• Sequence pair

7Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Formulation

Minimize 𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants

8Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Extension

– Integer linear programming

Minimize 𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 ∈ 𝑍

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants

9Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Extension

– Binary integer linear programming

Minimize 𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 ∈ {0,1}

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants

10Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Example
– An oil refinery produces two products.

• Jet fuel

• Gasoline

– Profit
• Jet fuel: $1 per Barrel

• Gasoline: $2 per Barrel

– Conditions (constraints)
• Only 10,000 barrels of crude oil are available per day.

• The refinery should produce at least 1,000 barrels of jet fuel.

• The refinery should produce at least 2,000 barrels of gasoline.

• Both products are shipped in trucks whose delivery capacity is 180,000
barrel-miles.

• The jet fuel is delivered to an airfield 10 miles away from the refinery.

• The gasoline is transported a distributor 30 miles away from the refinery.

– Objective
• Maximize the profit.

• How much of each product should be produced?

11Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Example
– An oil refinery produces two products.

• Jet fuel (variable: x)

• Gasoline (variable: y)

– Profit
• Jet fuel: $1 per Barrel

• Gasoline: $2 per Barrel

– Conditions (constraints)
• Only 10,000 barrels of crude oil are available per day. (x + y ≤ 10,000)

• The refinery should produce at least 1,000 barrels of jet fuel. (x ≥ 1,000)

• The refinery should produce at least 2,000 barrels of gasoline. (y ≥ 2,000)

• Both products are shipped in trucks whose delivery capacity is 180,000
barrel-miles. (10x + 30y ≤ 180,000)

• The jet fuel is delivered to an airfield 10 miles away from the refinery.

• The gasoline is transported a distributor 30 miles away from the refinery.

– Objective
• Maximize the profit. (maximize x + 2y)

• How much of each product should be produced?

12Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Formulation

Minimize 𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants

Maximize x + 2y (Minimize –x – 2y)

subject to

𝑥 + 𝑦 ≤ 10,000
𝑥 ≥ 1,000
𝑦 ≥ 2,000
10𝑥 + 30𝑦 ≤ 180,000

13Physical Design Automation of VLSI Circuits and Systems

Linear Programming-Based

Floorplanning

• Analytical approach

– Case 1) All modules are rigid and not rotatable.

• Module 1: (width, height) = (w1, h1)

• Module 2: (width, height) = (w2, h2)

• …

• Constraints

– The width and the height of the floorplan are given

(fixed-outline floorplanning)

14Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

W

H

(0, 0)

Module 1

(x1, y1)

(x1+w1, y1+h1)

Module 2

(x2, y2)

(x2+w2, y2+h2)

Module 3

(x3, y3)

(x3+w3, y3+h3)

15Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Analytical formulation

– Boundary conditions

• 𝑥𝑖 ≥ 0, 𝑥𝑖 + 𝑤𝑖 ≤ 𝑊

• 𝑦𝑖 ≥ 0, 𝑦𝑖 + ℎ𝑖 ≤ 𝐻

– No overlap conditions

• i is to the left of k: 𝑥𝑖 + 𝑤𝑖 ≤ 𝑥𝑘
• i is to the right of k: 𝑥𝑘 +𝑤𝑘 ≤ 𝑥𝑖
• i is below k: 𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘
• i is above k: 𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖 Module i

(xi, yi)

(xi+wi, yi+hi)

Module k

(xk, yk)

(xk+wk, yk+hk)

16Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Linear programming formulation for no overlaps

– i is to the left of k: 𝑥𝑖 + 𝑤𝑖 ≤ 𝑥𝑘
– i is to the right of k: 𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖
– i is below k: 𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘
– i is above k: 𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖

– Introduce two binary variables, 𝑥𝑖𝑘 and 𝑦𝑖𝑘.

𝑥𝑖𝑘 𝒚𝑖𝑘 Meaning

0 0 i is to the left of k

0 1 i is below k

1 0 i is to the right of k

1 1 i is above k

17Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Linear programming formulation for no overlaps

𝑥𝑖𝑘 𝒚𝑖𝑘 Meaning

0 0 i is to the left of k

0 1 i is below k

1 0 i is to the right of k

1 1 i is above k

𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑘 +𝑊 𝑥𝑖𝑘 + 𝑦𝑖𝑘
𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘 + 𝐻 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘
𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖 +𝑊 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘
𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖 + 𝐻 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘

18Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Formulation

Minimize Y
Subject to

𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑊 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 + ℎ𝑖 ≤ 𝑌 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑘 +𝑊 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘 + 𝐻 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖 +𝑊 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖 + 𝐻 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

19Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Analytical approach

– Case 2) All modules are rigid and rotatable.

• Module 1: (width, height) = (w1, h1) or (h1, w1)

• Module 2: (width, height) = (w2, h2) or (h2, w2)

• …

• Constraints

– The width and the height of the floorplan are given

(fixed-outline floorplanning)

20Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Formulation

– Introduce a new binary variable for each module.

• zi

– 0: un-rotated (w = wi, h = hi)

– 1: rotated (w = hi, h = wi)

𝑤𝑖 => 𝑧𝑖ℎ𝑖 + (1 − 𝑧𝑖) 𝑤𝑖
ℎ𝑖 => 𝑧𝑖𝑤𝑖 + (1 − 𝑧𝑖) ℎ𝑖

21Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Formulation

– Introduce a new binary variable, zi, for each module.

• 0: un-rotated

• 1: rotated

Minimize Y
Subject to

𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 + 𝑧𝑖ℎ𝑖 + (1 − 𝑧𝑖) 𝑤𝑖 ≤ 𝑊 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 + 𝑧𝑖𝑤𝑖 + (1 − 𝑧𝑖) ℎ𝑖 ≤ 𝑌 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 + 𝑧𝑖ℎ𝑖 + (1 − 𝑧𝑖) 𝑤𝑖 ≤ 𝑥𝑘 +𝑀 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑖 + 𝑧𝑖𝑤𝑖 + (1 − 𝑧𝑖) ℎ𝑖 ≤ 𝑦𝑘 +𝑀 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑥𝑘 + 𝑧𝑘ℎ𝑘 + (1 − 𝑧𝑘) 𝑤𝑘 ≤ 𝑥𝑖 +𝑀 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑘 + 𝑧𝑘𝑤𝑘 + (1 − 𝑧𝑘) ℎ𝑘 ≤ 𝑦𝑖 +𝑀 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑀 = max 𝑊,𝐻 𝑜𝑟 (𝑊 + 𝐻)

22Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Analytical approach

– Case 3) Some modules are flexible (soft).

• Module 1: area = A1 = w1*h1. w1 = [w1_min, w1_max]

• Module 2: area = A2 = w2*h2. w2 = [w2_min, w2_max]

• …

• Constraints

– The width and the height of the floorplan are given

(fixed-outline floorplanning)

23Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Formulation

– wi and hi are variables.

– wi*hi ≥ Ai is not linear.

• Linear formulation (Linearization)

– First-order approximation

• hi = Δiwi + ci (y = mx+c)

• Δi = (hi,min – hi,max) / (wi,max – wi,min)

• ci = hi,max – Δiwi,min

24Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Linear formulation (Linearization)

– First-order approximation

• hi = Δiwi + ci (y = mx+c)

• Δi = (hi,min – hi,max) / (wi,max – wi,min)

• ci = hi,max – Δiwi,min

wi,min wi,max

hi,min

hi,max

hi = Ai/wi

Δi = (hmin – hmax) / (wmax – wmin)

25Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

• Formulation

Minimize Y
Subject to

𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑊 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 + (∆𝑖𝑤𝑖 + 𝑐𝑖) ≤ 𝑌 1 ≤ 𝑖 ≤ 𝑛
𝑤𝑖 ≥ 𝑤𝑖,𝑚𝑖𝑛 1 ≤ 𝑖 ≤ 𝑛

𝑤𝑖 ≤ 𝑤𝑖,𝑚𝑎𝑥 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑘 +𝑊 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑖 + (∆𝑖𝑤𝑖 + 𝑐𝑖) ≤ 𝑦𝑘 + 𝐻 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖 +𝑊 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑘 + (∆𝑘𝑤𝑘 + 𝑐𝑘) ≤ 𝑦𝑖 + 𝐻 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛

26Physical Design Automation of VLSI Circuits and Systems

Floorplanning Algorithms

• Deterministic algorithms

– Linear-programming

• Stochastic algorithms

– Simulated-annealing

• Polish expression

• Sequence pair

27Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Similar to the simulated annealing algorithm

used for partitioning.

28Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Algorithm

T = T0 (initial temperature)

S = S0 (initial solution)

Time = 0

repeat

Call Metropolis (S, T, M);

Time = Time + M;

T = α · T; // α: cooling rate (α < 1)

M = β · M;

until (Time ≥ maxTime);

29Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Algorithm

Metropolis (S, T, M) // M: # iterations

repeat

NewS = neighbor(S); // get a new solution by perturbation

Δh = cost(NewS) – cost(S);

If ((Δh < 0) or (random < e-Δh/T))

S = NewS; // accept the new solution

M = M – 1;

until (M==0)

30Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• How can we represent floorplans?

– Polish expression (slicing floorplan)

– Sequence pair (non-slicing floorplan)

1

6

2
3

4
7 5

1 6

2

3

4

7

5

31Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Polish expression ↔ post-order traversal

1

6

2
3

4
7 5

V

H

V V

H 2 7 5

1 6

H

3 4

E = 1 6 H 2 V 7 5 V H 3 4 H V

32Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Polish expression

– E = e1 e2 … e2n-1 where ei ϵ {1, 2, …, n, H, V} is a

Polish expression of length (2n-1) if and only if

• Every operand j (1 ≤ j ≤ n) appears exactly once

• (balloting property) for every subexpression Ek = e1 … ek,

#operands > #operators.

E = 1 6 H 2 V 7 5 V H 3 4 H V

operands: 3

operators: 1

operands: 7

operators: 4

operators

33Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Redundancy in the solution representation

1

2

3

4

V

1

2 3

V

H 4

V

V

2 3

4

H1

34Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Non-skewed vs. Skewed

V(H)

V(H)

Non-skewed

(… VV …)

or

(… HH …)

35Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Normalized polish expression

– E = e1 e2 … e2n-1 is called normalized if and only if

• E has no consecutive operators of the same type (H or V).

• In other words, it’s skewed.

– Using the normalized polish expression, we remove

the redundancy and construct a unique

representation.

36Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Solution perturbation
– Chain: HVHVH … or VHVHV …

– Adjacent
• 1 6: adjacent operands

• 2 7: adjacent operands

• 5 V: adjacent operand and operator

– Moves
• Move 1 (Operand swap): Swap two adjacent operands.

• Move 2 (Chain invert): Complement a chain (V→H, H→V)

• Move 3 (Operator/operand swap): Swap two adjacent
operand and operator.

1 6 H 3 5 V 2 H V 7 4 H V

37Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Effects of perturbation

1

3
4

1 2 V 4 H 3 V

2

M1

1

3

4
2

1 2 V 3 H 4 V

1

3

4

2

1 2 H 3 H 4 V

M2

1 3

42

1 2 H 3 4 H V

M3

38Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Does the balloting property hold during moves?

– (balloting property) for every subexpression Ek = e1 …

ek, #operands > #operators.

– Moves

• Move 1 (Operand swap): Swap two adjacent operands. (Yes)

• Move 2 (Chain invert): Complement a chain (H↔V) (Yes)

• Move 3 (Operator/operand swap): Swap two adjacent

operand and operator.

– Reject “illegal” moves.

– How can we find “illegal” moves?

39Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Operator/operand swap

– Assume that the type-3 move swaps operand ei with

operator ei+1, (1 ≤ i ≤ k-1). Then, the swap will not

violate the balloting property iff 2Ni+1 < i.

• Nk: # operators in the Polish expression E=e1e2…ek.

40Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Cost function

– Cost = Area + λ·W

• Area computation

w1

1
2

h1

w2

h2
1 2

V

1 2

H

1
2

1

2

w1 + w2

h1 + h2

Max(h1, h2)

Max(w1, w2)

41Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Example

H

1 6
(2,3) (1,2)

(2,5)

V

2
(3,4)

(7,5) V

7 5
(2,4) (3,3)

(5,4)

H(7,9) H

3 4
(4,2) (3,3)

(4,5)

V(11,9)

42Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Wirelength estimation

A

C

D

B(x1, y1)

(x2, y2)

x1 = min(xa1, xb1, xc1, xd1)

x2 = max(xa2, xb2, xc2, xd2)

y1 = min(ya1, yb1, yc1, yd1)

y2 = max(ya2, yb2, yc2, yd2)

(xa1, ya1)

(xa2, ya2)
Half-Perimeter WireLength

HPWL = (x2 – x1) + (y2 – y1)

43Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Incremental cost computation

V

H

V V

H 2 7 5

1 6

H

3 4

E = 1 6 H 2 V 7 5 V H 3 4 H V

M1

V

H

V V

H 2 7 3

1 6

H

5 4

E = 1 6 H 2 V 7 3 V H 5 4 H V

44Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Example

H

1 6
(2,3) (1,2)

(2,5)

V

2
(3,4)

(7,5) V

7 5
(2,4) (3,3)

(5,4)

H(7,9) H

3 4
(4,2) (3,3)

(4,5)

V(11,9)

H

1 6
(2,3) (1,2)

(2,5)

V

2
(3,4)

(7,5) V

7 3
(2,4) (4,2)

(6,4)

H(7,9) H

5 4
(3,3) (3,3)

(3,6)

V(10,9)

M1

45Physical Design Automation of VLSI Circuits and Systems

Floorplanning Algorithms

• Deterministic algorithms

– Linear-programming

• Stochastic algorithms

– Simulated-annealing

• Polish expression

• Sequence pair

46Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• P-admissible solution space for a problem
– The solution space is finite.

– Every solution is feasible.

– Implementation and evaluation of each configuration are
possible in polynomial time.

– The configuration corresponding to the best evaluated
solution in the space coincides with an optimal solution of
the problem.

• Slicing floorplan is not P-admissible.

• Sequence pair is P-admissible.

47Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Represent a solution by a pair of module-name
sequences.
– (1 2 3 4 5), (3 5 1 4 2)

• Conversion of a sequence pair into its
corresponding floorplan.
– x is after y in both Γ+ and Γ- ⇔ x is right to y.

– x is before y in both Γ+ and Γ- ⇔ x is left to y.

– x is after y in Γ+ and before y in Γ- ⇔ x is below to y.

– x is before y in Γ+ and after y in Γ- ⇔ x is above to y.

Positive seq.

(Γ+)

Negative seq.

(Γ-)

48Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• (Γ+, Γ-)-Packing

– Constraint graphs

• Horizontal constraint graph (HCG)

• Vertical constraint graph (VCG)

49Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Horizontal constraint graph

– (1 7 4 5 2 6 3 8) (8 4 7 2 5 3 6 1)

(..y..x..) (..y..x..) ⇔ x is right to y.

(..x..y..) (..x..y..) ⇔ x is left to y.

(..y..x..) (..x..y..) ⇔ x is below to y.

(..x..y..) (.y..x..) ⇔ x is above to y.

50Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Vertical constraint graph

– (1 7 4 5 2 6 3 8) (8 4 7 2 5 3 6 1)

(..y..x..) (..y..x..) ⇔ x is right to y.

(..x..y..) (..x..y..) ⇔ x is left to y.

(..y..x..) (..x..y..) ⇔ x is below to y.

(..x..y..) (.y..x..) ⇔ x is above to y.

51Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Computation of the location of each block

– HCG: determines the x-coordinates.

– VCG: determines the y-coordinates.

Modules (w, h)

m1 = (2, 4)

m2 = (1, 3)

m3 = (3, 3)

m4 = (3, 5)

m5 = (3, 2)

m6 = (5, 3)

m7 = (1, 2)

m8 = (2, 4)

52Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Use longest source-to-module path length

Modules (w, h)

m1 = (2, 4)

m2 = (1, 3)

m3 = (3, 3)

m4 = (3, 5)

m5 = (3, 2)

m6 = (5, 3)

m7 = (1, 2)

m8 = (2, 4)

0

0

3

3

6

6

0

0

11

0

4 4 4

9 7 7

11

15

m1 = (0, 11)

m2 = (3, 4)

m3 = (6, 4)

m4 = (0, 4)

m5 = (3, 7)

m6 = (6, 7)

m7 = (0, 9)

m8 = (0, 0)

53Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Floorplan

m1 = (0, 11)

m2 = (3, 4)

m3 = (6, 4)

m4 = (0, 4)

m5 = (3, 7)

m6 = (6, 7)

m7 = (0, 9)

m8 = (0, 0)

54Physical Design Automation of VLSI Circuits and Systems

Sequence Pair

• Solution perturbation

– Move 1: Swap two cells in the positive sequence

• Γ+ : (..x..y..) → (..y..x..)

– Move 2: Swap two cells in the negative sequence

• Γ- : (..x..y..) → (..y..x..)

– Move 3: Swap two cells both in the pos/neg sequence

• Γ+ : (..x..y..) → (..y..x..)

• Γ- : (..y..x..) → (..x..y..)

55Physical Design Automation of VLSI Circuits and Systems

Sequence Pair + Simulated Annealing

• Algorithm

T = T0 (initial temperature)

S = S0 (initial solution)

Time = 0

repeat

Call Metropolis (S, T, M);

Time = Time + M;

T = α · T; // α: cooling rate (α < 1)

M = β · M;

until (Time ≥ maxTime);

56Physical Design Automation of VLSI Circuits and Systems

Sequence Pair + Simulated Annealing

• Algorithm

Metropolis (S, T, M) // M: # iterations

repeat

NewS = neighbor(S); // get a new solution by perturbation

Δh = cost(NewS) – cost(S);

If ((Δh < 0) or (random < e-Δh/T))

S = NewS; // accept the new solution

M = M – 1;

until (M==0)

