EE582
 Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim
School of Electrical Engineering and Computer Science Washington State University

Floorplanning

What We Will Study

- Floorplanning
- Problem definition
- Deterministic algorithms
- Linear-programming
- Stochastic algorithms
- Simulated-annealing
- Polish expression
- Sequence pair

Problem Definition

- Given
- A set of modules (blocks): $M=\left\{m_{1}, m_{2}, \ldots, m_{n}\right\}$
- (width, height) for each module is also given. (e.g., $\left.m_{1}=(10 u m, 20 u m)\right)$
- A set of nets (netlist): $\mathrm{N}=\left\{\mathrm{n}_{1}, \mathrm{n}_{2}, \ldots, \mathrm{n}_{m}\right\}$
- Outline: Chip width and height
- Find a floorplan
- Minimize
- Area
- Wirelength
- Constraints
- No overlap between modules

Example

Problem Definition

- Later on, we will solve more complex problems.
- Rotatable blocks
- Some blocks are rotatable.

- Soft blocks
- Some blocks are soft.
- Area: fixed. Aspect ratio $=[0.5,2.0]$

Floorplanning Algorithms

- Deterministic algorithms
- Linear-programming
- Stochastic algorithms
- Simulated-annealing
- Polish expression
- Sequence pair

Linear Programming

- Formulation

Minimize $\sum_{j=1}^{n} c_{i} x_{j}$
subject to

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1,2, \ldots, m
$$

x_{j} : variables
$c_{j}, a_{i j}, b_{i j}$: constants

Linear Programming

- Extension
- Integer linear programming

Minimize $\sum_{j=1}^{n} c_{i} x_{j}$
subject to

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1,2, \ldots, m \\
& x_{j} \in Z
\end{aligned}
$$

x_{j} : variables
$c_{j}, a_{i j}, b_{i j}$: constants

Linear Programming

- Extension
- Binary integer linear programming

Minimize $\sum_{j=1}^{n} c_{i} x_{j}$
subject to

$$
\begin{aligned}
& \sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1,2, \ldots, m \\
& x_{j} \in\{0,1\}
\end{aligned}
$$

x_{j} : variables
$c_{j}, a_{i j}, b_{i j}$: constants

Linear Programming

- Example

- An oil refinery produces two products.
- Jet fuel
- Gasoline
- Profit
- Jet fuel: \$1 per Barrel
- Gasoline: \$2 per Barrel
- Conditions (constraints)
- Only 10,000 barrels of crude oil are available per day.
- The refinery should produce at least 1,000 barrels of jet fuel.
- The refinery should produce at least 2,000 barrels of gasoline.
- Both products are shipped in trucks whose delivery capacity is 180,000 barrel-miles.
- The jet fuel is delivered to an airfield 10 miles away from the refinery.
- The gasoline is transported a distributor 30 miles away from the refinery.
- Objective
- Maximize the profit.
- How much of each product should be produced?

Linear Programming

- Example

- An oil refinery produces two products.
- Jet fuel (variable: x)
- Gasoline (variable: y)
- Profit
- Jet fuel: \$1 per Barrel
- Gasoline: $\$ 2$ per Barrel
- Conditions (constraints)
- Only 10,000 barrels of crude oil are available per day. $(x+y \leq 10,000)$
- The refinery should produce at least 1,000 barrels of jet fuel. ($x \geq 1,000$)
- The refinery should produce at least 2,000 barrels of gasoline. $(y \geq 2,000)$
- Both products are shipped in trucks whose delivery capacity is 180,000 barre-miles. $(10 x+30 y \leq 180,000)$
- The jet fuel is delivered to an airfield 10 miles away from the refinery.
- The gasoline is transported a distributor 30 miles away from the refinery.
- Objective
- Maximize the profit. (maximize $x+2 y$)
- How much of each product should be produced?

Linear Programming

- Formulation

Minimize $\sum_{j=1}^{n} c_{i} x_{j}$
subject to

$$
\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, i=1,2, \ldots, m
$$

$x_{j}:$ variables
$c_{j}, a_{i j}, b_{i j}$: constants

Maximize $\mathrm{x}+2 \mathrm{y}$ (Minimize -x-2y) subject to

$$
\begin{aligned}
& x+y \leq 10,000 \\
& x \geq 1,000 \\
& y \geq 2,000 \\
& 10 x+30 y \leq 180,000
\end{aligned}
$$

Linear Programming-Based Floorplanning

- Analytical approach
- Case 1) All modules are rigid and not rotatable.
- Module 1: (width, height) $=\left(w_{1}, h_{1}\right)$
- Module 2: (width, height) $=\left(w_{2}, h_{2}\right)$
- ...
- Constraints
- The width and the height of the floorplan are given (fixed-outline floorplanning)

LP-Based Floorplanning

LPEBASEO Eloorgigninig

- Analytical formulation
- Boundary conditions
- $x_{i} \geq 0, x_{i}+w_{i} \leq W$
- $y_{i} \geq 0, y_{i}+h_{i} \leq H$
- No overlap conditions
- i is to the left of $\mathrm{k}: x_{i}+w_{i} \leq x_{k}$
- i is to the right of $\mathrm{k}: x_{k}+w_{k} \leq x_{i}$
- i is below $\mathrm{k}: y_{i}+h_{i} \leq y_{k}$
- i is above k: $y_{k}+h_{k} \leq y_{i}$

LP-Based Floorplanning

- Linear programming formulation for no overlaps
-i is to the left of $\mathrm{k}: x_{i}+w_{i} \leq x_{k}$
-i is to the right of $\mathrm{k}: x_{k}+w_{k} \leq x_{i}$
-i is below $\mathrm{k}: y_{i}+h_{i} \leq y_{k}$
-i is above $\mathrm{k}: y_{k}+h_{k} \leq y_{i}$
- Introduce two binary variables, $x_{i k}$ and $y_{i k}$.

$x_{i k}$	$y_{i k}$	Meaning
0	0	i is to the left of k
0	1	i is below k
1	0	i is to the right of k
1	1	i is above k

LP-Based Floorplanning

- Linear programming formulation for no overlaps

$x_{i k}$	$y_{i k}$	Meaning
0	0	i is to the left of k
0	1	i is below k
1	0	i is to the right of k
1	1	i is above k

LP-Based Floorplanning

- Formulation

$$
\begin{aligned}
& \text { Minimize } Y \\
& \text { Subject to } \\
& \qquad \begin{array}{ll}
x_{i} \geq 0, & 1 \leq i \leq n \\
y_{i} \geq 0, & 1 \leq i \leq n \\
x_{i}+w_{i} \leq W & 1 \leq i \leq n \\
y_{i}+h_{i} \leq Y & 1 \leq i \leq n \\
x_{i}+w_{i} \leq x_{k}+W\left(x_{i k}+y_{i k}\right) & 1 \leq i<j \leq n \\
y_{i}+h_{i} \leq y_{k}+H\left(1+x_{i k}-y_{i k}\right) & 1 \leq i<j \leq n \\
x_{k}+w_{k} \leq x_{i}+W\left(1-x_{i k}+y_{i k}\right) & 1 \leq i<j \leq n \\
y_{k}+h_{k} \leq y_{i}+H\left(2-x_{i k}-y_{i k}\right) & 1 \leq i<j \leq n
\end{array}
\end{aligned}
$$

LP-Based Floorplanning

- Analytical approach
- Case 2) All modules are rigid and rotatable.
- Module 1: $($ width, height $)=\left(w_{1}, h_{1}\right)$ or $\left(h_{1}, w_{1}\right)$
- Module 2: $($ width, height $)=\left(w_{2}, h_{2}\right)$ or $\left(h_{2}, w_{2}\right)$
- ...
- Constraints
- The width and the height of the floorplan are given (fixed-outline floorplanning)

LP-Based Floorplanning

- Formulation
- Introduce a new binary variable for each module.
- Z_{i}
- 0: un-rotated $\left(w=w_{i}, h=h_{i}\right)$
-1 : $\operatorname{rotated}\left(w=h_{i}, h=w_{i}\right)$

$$
\begin{aligned}
& w_{i}=>z_{i} h_{i}+\left(1-z_{i}\right) w_{i} \\
& h_{i}=>z_{i} w_{i}+\left(1-z_{i}\right) h_{i}
\end{aligned}
$$

LP-Based Floorplanning

- Formulation
- Introduce a new binary variable, z_{i}, for each module.
- 0: un-rotated
- 1: rotated

Minimize Y
Subject to

$$
\begin{array}{lll}
x_{i} \geq 0, & \\
y_{i} \geq 0, & \\
x_{i}+z_{i} h_{i}+\left(1-z_{i}\right) w_{i} \leq W & \\
y_{i}+z_{i} w_{i}+\left(1-z_{i}\right) h_{i} \leq Y & 1 \leq i \leq n & \\
x_{i}+z_{i} h_{i}+\left(1-z_{i}\right) w_{i} \leq x_{k}+M\left(x_{i k}+y_{i k}\right) & \\
y_{i}+z_{i} w_{i}+\left(1-z_{i}\right) h_{i} \leq y_{k}+M\left(1+x_{i k}-y_{i k}\right) & 1 \leq i<j \leq n \\
x_{k}+z_{k} h_{k}+\left(1-z_{k}\right) w_{k} \leq x_{i}+M\left(1-x_{i k}+y_{i k}\right) & 1 \leq i<j \leq n \\
y_{k}+z_{k} w_{k}+\left(1-z_{k}\right) h_{k} \leq y_{i}+M\left(2-x_{i k}-y_{i k}\right) & 1 \leq i<j \leq n \\
M=\max (W, H) \operatorname{or}(W+H) &
\end{array}
$$

LP-Based Floorplanning

- Analytical approach
- Case 3) Some modules are flexible (soft).
- Module 1: area $=\mathrm{A}_{1}=\mathrm{w}_{1}{ }^{*} \mathrm{~h}_{1} \cdot \mathrm{w}_{1}=\left[\mathrm{w}_{1 _ \text {min }}, \mathrm{w}_{1 _\max }\right]$
- Module 2: area $=A_{2}=w_{2}{ }^{*} h_{2} \cdot w_{2}=\left[w_{2 _\min }, w_{2 _\max }\right]$
- ...
- Constraints
- The width and the height of the floorplan are given (fixed-outline floorplanning)

LP-Based Floorplanning

- Formulation
$-w_{i}$ and h_{i} are variables.
$-w_{i}^{*} h_{i} \geq A_{i}$ is not linear.
- Linear formulation (Linearization)
- First-order approximation
- $h_{i}=\Delta_{i} W_{i}+c_{i} \quad(y=m x+c)$
- $\Delta_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}, \min }-\mathrm{h}_{\mathrm{i}, \max }\right) /\left(\mathrm{w}_{\mathrm{i}, \max }-\mathrm{w}_{\mathrm{i}, \min }\right)$
- $\mathrm{C}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}, \max }-\Delta_{\mathrm{i}} \mathrm{W}_{\mathrm{i}, \text { min }}$

LP-Based Floorplanning

- Linear formulation (Linearization)
- First-order approximation
- $h_{i}=\Delta_{i} w_{i}+c_{i} \quad(y=m x+c)$
- $\Delta_{\mathrm{i}}=\left(\mathrm{h}_{\mathrm{i}, \min }-\mathrm{h}_{\mathrm{i}, \max }\right) /\left(\mathrm{w}_{\mathrm{i}, \max }-\mathrm{w}_{\mathrm{i}, \min }\right)$
- $\mathrm{c}_{\mathrm{i}}=\mathrm{h}_{\mathrm{i}, \max }-\Delta_{\mathrm{i}} \mathrm{w}_{\mathrm{i}, \min }$

LP-Based Floorplanning

- Formulation

Minimize Y

Subject to

$$
\begin{array}{ll}
x_{i} \geq 0, & 1 \leq i \leq n \\
y_{i} \geq 0, & 1 \leq i \leq n \\
x_{i}+w_{i} \leq W & 1 \leq i \leq n \\
y_{i}+\left(\Delta_{i} w_{i}+c_{i}\right) \leq Y \quad 1 \leq i \leq n \\
w_{i} \geq w_{i, \min } & 1 \leq i \leq n \\
w_{i} \leq w_{i, \max } & 1 \leq i \leq n \\
x_{i}+w_{i} \leq x_{k}+W & \left(x_{i k}+y_{i k}\right) \quad 1 \leq i<j \leq n \\
y_{i}+\left(\Delta_{i} w_{i}+c_{i}\right) \leq y_{k}+H\left(1+x_{i k}-y_{i k}\right) \quad 1 \leq i<j \leq n \\
x_{k}+w_{k} \leq x_{i}+W\left(1-x_{i k}+y_{i k}\right) \quad 1 \leq i<j \leq n \\
y_{k}+\left(\Delta_{k} w_{k}+c_{k}\right) \leq y_{i}+H\left(2-x_{i k}-y_{i k}\right) \quad 1 \leq i<j \leq n
\end{array}
$$

Floorplanning Algorithms

- Deterministic algorithms
- Linear-programming
- Stochastic algorithms
- Simulated-annealing
- Polish expression
- Sequence pair

Simulated Annealing

- Similar to the simulated annealing algorithm used for partitioning.

Simulated Annealing

Simulated Annealing

- Algorithm
$\mathrm{T}=\mathrm{T}_{0}$ (initial temperature)
$S=S_{0}$ (initial solution)
Time $=0$
repeat
Call Metropolis (S, T, M);
Time = Time +M ;
$\mathrm{T}=\alpha \cdot \mathrm{T}$; // α : cooling rate $(\alpha<1)$
$M=\beta \cdot M ;$
until (Time \geq maxTime);

Simulated Annealing

- Algorithm

Metropolis (S, T, M) // M: \# iterations
repeat
NewS = neighbor(S); // get a new solution by perturbation $\Delta \mathrm{h}=\operatorname{cost}(\mathrm{NewS})-\operatorname{cost}(\mathrm{S})$;
If $\left((\Delta h<0)\right.$ or (random $\left.<\mathrm{e}^{-\Delta h / T}\right)$)
S = NewS; // accept the new solution
$M=M-1$;
until ($\mathrm{M}==0$)

Simulated Annealing

- How can we represent floorplans?
- Polish expression (slicing floorplan)
- Sequence pair (non-slicing floorplan)

Polish Expression

- Polish expression \leftrightarrow post-order traversal

Polish Expression

- Polish expression
$-E=e_{1} e_{2} \ldots e_{2 n-1}$ where $e_{i} \in\{1,2, \ldots, n, H, V\}$ is a Polish expression of length (2n-1) if and only if
- Every operand $\mathrm{j}(1 \leq \mathrm{j} \leq \mathrm{n})$ appears exactly once
- (balloting property) for every subexpression $E_{k}=e_{1} \ldots e_{k}$, \#operands > \#operators.

Polish Expression

- Redundancy in the solution representation

Polish Expression

- Non-skewed vs. Skewed

Polish Expression

- Normalized polish expression
$-E=e_{1} e_{2} \ldots e_{2 n-1}$ is called normalized if and only if
- E has no consecutive operators of the same type (H or V).
- In other words, it's skewed.
- Using the normalized polish expression, we remove the redundancy and construct a unique representation.

Polish Expression

- Solution perturbation
- Chain: HVHVH ... or VHVHV ...
- Adiacent 16 H 352 HV 74 HV
- Adjacent
- 1 6: adjacent operands
- 2 7: adjacent operands
- 5 V : adjacent operand and operator
- Moves
- Move 1 (Operand swap): Swap two adjacent operands.
- Move 2 (Chain invert): Complement a chain ($\mathrm{V} \rightarrow \mathrm{H}, \mathrm{H} \rightarrow \mathrm{V}$)
- Move 3 (Operator/operand swap): Swap two adjacent operand and operator.

Polish Expression

- Effects of perturbation

Polish Expression

- Does the balloting property hold during moves?
- (balloting property) for every subexpression $E_{k}=e_{1} \ldots$ e_{k}, \#operands > \#operators.
- Moves
- Move 1 (Operand swap): Swap two adjacent operands. (Yes)
- Move 2 (Chain invert): Complement a chain ($\mathrm{H} \leftrightarrow \mathrm{V}$) (Yes)
- Move 3 (Operator/operand swap): Swap two adjacent operand and operator.
- Reject "illegal" moves.
- How can we find "illegal" moves?

Polish Expression

- Operator/operand swap
- Assume that the type-3 move swaps operand e_{i} with operator $\mathrm{e}_{\mathrm{i}+1},(1 \leq \mathrm{i} \leq \mathrm{k}-1)$. Then, the swap will not violate the balloting property iff $2 \mathrm{~N}_{i+1}<\mathrm{i}$.
- N_{k} : \# operators in the Polish expression $E=e_{1} e_{2} \ldots e_{k}$.

Polish Expression

- Cost function
- Cost $=$ Area $+\lambda \cdot W$
- Area computation

$\operatorname{Max}\left(w_{1}, w_{2}\right)$

Polish Expression

- Example

Polish Expression

- Wirelength estimation

Polish Expression

- Incremental cost computation

$\mathrm{E}=16 \mathrm{H} 2 \mathrm{~V} 75 \mathrm{~V}$ H 34 HV

$\mathrm{E}=16 \mathrm{H} 2 \mathrm{~V} 73 \mathrm{VH} 54 \mathrm{HV}$

Polish Expression

- Example

Floorplanning Algorithms

- Deterministic algorithms
- Linear-programming
- Stochastic algorithms
- Simulated-annealing
- Polish expression
- Sequence pair

Sequence Pair

- P-admissible solution space for a problem
- The solution space is finite.
- Every solution is feasible.
- Implementation and evaluation of each configuration are possible in polynomial time.
- The configuration corresponding to the best evaluated solution in the space coincides with an optimal solution of the problem.
- Slicing floorplan is not P-admissible.
- Sequence pair is P-admissible.

Sequence Pair

- Represent a solution by a pair of module-name sequences.
- (12345), (35142)

Positive seq. Negative seq.

- Conversion of a sequence pair into its corresponding floorplan.
$-x$ is after y in both Γ_{+}and $\Gamma_{-} \Leftrightarrow x$ is right to y.
$-x$ is before y in both Γ_{+}and $\Gamma_{-} \Leftrightarrow x$ is left to y.
$-x$ is after y in Γ_{+}and before y in $\Gamma_{-} \Leftrightarrow x$ is below to y.
$-x$ is before y in Γ_{+}and after y in $\Gamma_{-} \Leftrightarrow x$ is above to y.

Sequence Pair

- (Γ_{+}, Γ_{-})-Packing
- Constraint graphs
- Horizontal constraint graph (HCG)
- Vertical constraint graph (VCG)

Sequence Pair

- Horizontal constraint graph
(..y..x..) (..y..x..) $\Leftrightarrow x$ is right to y. (..x..y..) (..x..y..) $\Leftrightarrow x$ is left to y. (..y..x..) (..x..y..) $\Leftrightarrow x$ is below to y. (..x..y..) (.y..x..) $\Leftrightarrow x$ is above to y.

$$
\text { - (} 17452638 \text {) (} 8472536 \text { 1) }
$$

(a)

(b)

Sequence Pair

- Vertical constraint graph
(..y..x..) (..y..x..) $\Leftrightarrow x$ is right to y. (..x..y..) (..x..y..) $\Leftrightarrow x$ is left to y.
(..y..x..) (..x..y..) $\Leftrightarrow x$ is below to y.
(..x..y..) (.y..x..) $\Leftrightarrow x$ is above to y.

$$
\text { - (} 17452638 \text {) (} 8472536 \text { 1) }
$$

Sequence Pair

- Computation of the location of each block
- HCG: determines the x-coordinates.
- VCG: determines the y-coordinates.

$$
\begin{aligned}
& \text { Modules }(\mathrm{w}, \mathrm{~h}) \\
& \mathrm{m}_{1}=(2,4) \\
& \mathrm{m}_{2}=(1,3) \\
& \mathrm{m}_{3}=(3,3) \\
& \mathrm{m}_{4}=(3,5) \\
& \mathrm{m}_{5}=(3,2) \\
& \mathrm{m}_{6}=(5,3) \\
& \mathrm{m}_{7}=(1,2) \\
& \mathrm{m}_{8}=(2,4)
\end{aligned}
$$

(a)

Sequence Pair

- Use longest source-to-module path length

Sequence Pair

- Floorplan

$$
\begin{aligned}
\mathrm{m}_{1} & =(0,11) \\
\mathrm{m}_{2} & =(3,4) \\
\mathrm{m}_{3} & =(6,4) \\
\mathrm{m}_{4} & =(0,4) \\
\mathrm{m}_{5} & =(3,7) \\
\mathrm{m}_{6} & =(6,7) \\
\mathrm{m}_{7} & =(0,9) \\
\mathrm{m}_{8} & =(0,0)
\end{aligned}
$$

Sequence Pair

- Solution perturbation
- Move 1: Swap two cells in the positive sequence
- $\Gamma_{+}:(. . x . . y ..) \rightarrow(. . y . . x .$.
- Move 2: Swap two cells in the negative sequence
- Г. : (..x..y..) \rightarrow (..y..x..)
- Move 3: Swap two cells both in the pos/neg sequence
- $\Gamma_{+}:(. . x . . y ..) \rightarrow(. . y . . x .$.
- Г. : (..y......) \rightarrow (..x...у..)

Sequence Pair + Simulated Annealing

- Algorithm
$\mathrm{T}=\mathrm{T}_{0}$ (initial temperature)
$S=S_{0}$ (initial solution)
Time $=0$
repeat
Call Metropolis (S, T, M);
Time = Time +M ;
$\mathrm{T}=\alpha \cdot \mathrm{T}$; // α : cooling rate $(\alpha<1)$
$M=\beta \cdot M ;$
until (Time \geq maxTime);

Sequence Pair + Simulated Annealing

- Algorithm

Metropolis (S, T, M) // M: \# iterations
repeat
NewS = neighbor(S); // get a new solution by perturbation
$\Delta \mathrm{h}=\operatorname{cost}(\mathrm{NewS})-\operatorname{cost}(\mathrm{S})$;
If $\left((\Delta h<0)\right.$ or (random $\left.<e^{-\Delta h / T}\right)$)
S = NewS; // accept the new solution
$M=M-1$;
until ($\mathrm{M}==0$)

