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What We Will Study

• Floorplanning

– Problem definition

– Deterministic algorithms

• Linear-programming

– Stochastic algorithms

• Simulated-annealing

– Polish expression

– Sequence pair
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Problem Definition

• Given
– A set of modules (blocks): M = {m1, m2, …, mn}

• (width, height) for each module is also given. (e.g., m1 = (10um, 20um))

– A set of nets (netlist): N = {n1, n2, …, nm}

– Outline: Chip width and height

• Find a floorplan
– Minimize

• Area

• Wirelength

• Constraints
– No overlap between modules
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Example
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Problem Definition

• Later on, we will solve more complex problems.

– Rotatable blocks

• Some blocks are rotatable.

– Soft blocks

• Some blocks are soft.

– Area: fixed. Aspect ratio = [0.5, 2.0]
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Floorplanning Algorithms

• Deterministic algorithms

– Linear-programming

• Stochastic algorithms

– Simulated-annealing

• Polish expression

• Sequence pair
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Linear Programming

• Formulation

Minimize  𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants
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Linear Programming

• Extension

– Integer linear programming

Minimize  𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 ∈ 𝑍

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants
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Linear Programming

• Extension

– Binary integer linear programming

Minimize  𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 ∈ {0,1}

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants



10Physical Design Automation of VLSI Circuits and Systems

Linear Programming

• Example
– An oil refinery produces two products.

• Jet fuel

• Gasoline

– Profit
• Jet fuel: $1 per Barrel

• Gasoline: $2 per Barrel

– Conditions (constraints)
• Only 10,000 barrels of crude oil are available per day.

• The refinery should produce at least 1,000 barrels of jet fuel.

• The refinery should produce at least 2,000 barrels of gasoline.

• Both products are shipped in trucks whose delivery capacity is 180,000 
barrel-miles.

• The jet fuel is delivered to an airfield 10 miles away from the refinery.

• The gasoline is transported a distributor 30 miles away from the refinery.

– Objective
• Maximize the profit.

• How much of each product should be produced?
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Linear Programming

• Example
– An oil refinery produces two products.

• Jet fuel (variable: x)

• Gasoline (variable: y)

– Profit
• Jet fuel: $1 per Barrel

• Gasoline: $2 per Barrel

– Conditions (constraints)
• Only 10,000 barrels of crude oil are available per day. (x + y ≤ 10,000)

• The refinery should produce at least 1,000 barrels of jet fuel. (x ≥ 1,000)

• The refinery should produce at least 2,000 barrels of gasoline. (y ≥ 2,000)

• Both products are shipped in trucks whose delivery capacity is 180,000 
barrel-miles. (10x + 30y ≤ 180,000)

• The jet fuel is delivered to an airfield 10 miles away from the refinery.

• The gasoline is transported a distributor 30 miles away from the refinery.

– Objective
• Maximize the profit. (maximize x + 2y)

• How much of each product should be produced?
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Linear Programming

• Formulation

Minimize  𝑗=1
𝑛 𝑐𝑖𝑥𝑗

subject to
 𝑗=1
𝑛 𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 , 𝑖 = 1, 2, … ,𝑚

𝑥𝑗 : variables

𝑐𝑗, 𝑎𝑖𝑗, 𝑏𝑖𝑗 : constants

Maximize x + 2y (Minimize –x – 2y)

subject to

𝑥 + 𝑦 ≤ 10,000
𝑥 ≥ 1,000
𝑦 ≥ 2,000
10𝑥 + 30𝑦 ≤ 180,000
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Linear Programming-Based 

Floorplanning

• Analytical approach

– Case 1) All modules are rigid and not rotatable.

• Module 1: (width, height) = (w1, h1)

• Module 2: (width, height) = (w2, h2)

• …

• Constraints

– The width and the height of the floorplan are given 

(fixed-outline floorplanning)



14Physical Design Automation of VLSI Circuits and Systems

LP-Based Floorplanning

W

H

(0, 0)

Module 1

(x1, y1)

(x1+w1, y1+h1)

Module 2

(x2, y2)

(x2+w2, y2+h2)

Module 3

(x3, y3)

(x3+w3, y3+h3)
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LP-Based Floorplanning

• Analytical formulation

– Boundary conditions

• 𝑥𝑖 ≥ 0, 𝑥𝑖 + 𝑤𝑖 ≤ 𝑊

• 𝑦𝑖 ≥ 0, 𝑦𝑖 + ℎ𝑖 ≤ 𝐻

– No overlap conditions

• i is to the left of k: 𝑥𝑖 + 𝑤𝑖 ≤ 𝑥𝑘
• i is to the right of k: 𝑥𝑘 +𝑤𝑘 ≤ 𝑥𝑖
• i is below k: 𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘
• i is above k: 𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖 Module i

(xi, yi)

(xi+wi, yi+hi)

Module k

(xk, yk)

(xk+wk, yk+hk)
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LP-Based Floorplanning

• Linear programming formulation for no overlaps

– i is to the left of k: 𝑥𝑖 + 𝑤𝑖 ≤ 𝑥𝑘
– i is to the right of k: 𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖
– i is below k: 𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘
– i is above k: 𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖

– Introduce two binary variables, 𝑥𝑖𝑘 and 𝑦𝑖𝑘.

𝑥𝑖𝑘 𝒚𝑖𝑘 Meaning

0 0 i is to the left of k

0 1 i is below k

1 0 i is to the right of k

1 1 i is above k
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LP-Based Floorplanning

• Linear programming formulation for no overlaps

𝑥𝑖𝑘 𝒚𝑖𝑘 Meaning

0 0 i is to the left of k

0 1 i is below k

1 0 i is to the right of k

1 1 i is above k

𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑘 +𝑊 𝑥𝑖𝑘 + 𝑦𝑖𝑘
𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘 + 𝐻 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘
𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖 +𝑊 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘
𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖 + 𝐻 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘
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LP-Based Floorplanning

• Formulation

Minimize Y
Subject to

𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑊 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 + ℎ𝑖 ≤ 𝑌 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑘 +𝑊 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑖 + ℎ𝑖 ≤ 𝑦𝑘 + 𝐻 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖 +𝑊 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑘 + ℎ𝑘 ≤ 𝑦𝑖 + 𝐻 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
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LP-Based Floorplanning

• Analytical approach

– Case 2) All modules are rigid and rotatable.

• Module 1: (width, height) = (w1, h1) or (h1, w1)

• Module 2: (width, height) = (w2, h2) or (h2, w2)

• …

• Constraints

– The width and the height of the floorplan are given 

(fixed-outline floorplanning)
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LP-Based Floorplanning

• Formulation

– Introduce a new binary variable for each module.

• zi

– 0: un-rotated (w = wi, h = hi)

– 1: rotated (w = hi, h = wi)

𝑤𝑖 => 𝑧𝑖ℎ𝑖 + (1 − 𝑧𝑖) 𝑤𝑖
ℎ𝑖 => 𝑧𝑖𝑤𝑖 + (1 − 𝑧𝑖) ℎ𝑖
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LP-Based Floorplanning

• Formulation

– Introduce a new binary variable, zi, for each module.

• 0: un-rotated

• 1: rotated

Minimize Y
Subject to

𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 + 𝑧𝑖ℎ𝑖 + (1 − 𝑧𝑖) 𝑤𝑖 ≤ 𝑊 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 + 𝑧𝑖𝑤𝑖 + (1 − 𝑧𝑖) ℎ𝑖 ≤ 𝑌 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 + 𝑧𝑖ℎ𝑖 + (1 − 𝑧𝑖) 𝑤𝑖 ≤ 𝑥𝑘 +𝑀 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑖 + 𝑧𝑖𝑤𝑖 + (1 − 𝑧𝑖) ℎ𝑖 ≤ 𝑦𝑘 +𝑀 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑥𝑘 + 𝑧𝑘ℎ𝑘 + (1 − 𝑧𝑘) 𝑤𝑘 ≤ 𝑥𝑖 +𝑀 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑘 + 𝑧𝑘𝑤𝑘 + (1 − 𝑧𝑘) ℎ𝑘 ≤ 𝑦𝑖 +𝑀 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑀 = max 𝑊,𝐻 𝑜𝑟 (𝑊 + 𝐻)
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LP-Based Floorplanning

• Analytical approach

– Case 3) Some modules are flexible (soft).

• Module 1: area = A1 = w1*h1. w1 = [w1_min, w1_max]

• Module 2: area = A2 = w2*h2. w2 = [w2_min, w2_max]

• …

• Constraints

– The width and the height of the floorplan are given 

(fixed-outline floorplanning)
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LP-Based Floorplanning

• Formulation

– wi and hi are variables.

– wi*hi ≥ Ai is not linear.

• Linear formulation (Linearization)

– First-order approximation

• hi = Δiwi + ci (y = mx+c)

• Δi = (hi,min – hi,max) / (wi,max – wi,min)

• ci = hi,max – Δiwi,min
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LP-Based Floorplanning

• Linear formulation (Linearization)

– First-order approximation

• hi = Δiwi + ci (y = mx+c)

• Δi = (hi,min – hi,max) / (wi,max – wi,min)

• ci = hi,max – Δiwi,min

wi,min wi,max

hi,min

hi,max

hi = Ai/wi

Δi = (hmin – hmax) / (wmax – wmin)
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LP-Based Floorplanning

• Formulation

Minimize Y
Subject to

𝑥𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑊 1 ≤ 𝑖 ≤ 𝑛
𝑦𝑖 + (∆𝑖𝑤𝑖 + 𝑐𝑖) ≤ 𝑌 1 ≤ 𝑖 ≤ 𝑛
𝑤𝑖 ≥ 𝑤𝑖,𝑚𝑖𝑛 1 ≤ 𝑖 ≤ 𝑛

𝑤𝑖 ≤ 𝑤𝑖,𝑚𝑎𝑥 1 ≤ 𝑖 ≤ 𝑛
𝑥𝑖 +𝑤𝑖 ≤ 𝑥𝑘 +𝑊 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑖 + (∆𝑖𝑤𝑖 + 𝑐𝑖) ≤ 𝑦𝑘 + 𝐻 1 + 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑥𝑘 + 𝑤𝑘 ≤ 𝑥𝑖 +𝑊 1 − 𝑥𝑖𝑘 + 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
𝑦𝑘 + (∆𝑘𝑤𝑘 + 𝑐𝑘) ≤ 𝑦𝑖 + 𝐻 2 − 𝑥𝑖𝑘 − 𝑦𝑖𝑘 1 ≤ 𝑖 < 𝑗 ≤ 𝑛
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Floorplanning Algorithms

• Deterministic algorithms

– Linear-programming

• Stochastic algorithms

– Simulated-annealing

• Polish expression

• Sequence pair



27Physical Design Automation of VLSI Circuits and Systems

Simulated Annealing

• Similar to the simulated annealing algorithm 

used for partitioning.
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Simulated Annealing

• Algorithm

T = T0 (initial temperature)

S = S0 (initial solution)

Time = 0

repeat

Call Metropolis (S, T, M);

Time = Time + M;

T = α · T;  // α: cooling rate (α < 1)

M = β · M;

until (Time ≥ maxTime);
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Simulated Annealing

• Algorithm

Metropolis (S, T, M)  // M: # iterations

repeat

NewS = neighbor(S);  // get a new solution by perturbation

Δh = cost(NewS) – cost(S);

If ((Δh < 0) or (random < e-Δh/T))

S = NewS;  // accept the new solution

M = M – 1;

until (M==0)
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Simulated Annealing

• How can we represent floorplans?

– Polish expression (slicing floorplan)

– Sequence pair (non-slicing floorplan)

1

6

2
3

4
7 5

1 6

2

3

4

7

5
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Polish Expression

• Polish expression ↔ post-order traversal

1

6

2
3

4
7 5

V

H

V V

H 2 7 5

1 6

H

3 4

E = 1 6 H 2 V 7 5 V H 3 4 H V
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Polish Expression

• Polish expression

– E = e1 e2 … e2n-1 where ei ϵ {1, 2, …, n, H, V} is a 

Polish expression of length (2n-1) if and only if

• Every operand j (1 ≤ j ≤ n) appears exactly once

• (balloting property) for every subexpression Ek = e1 … ek, 

#operands > #operators.

E = 1 6 H 2 V 7 5 V H 3 4 H V

# operands: 3

# operators: 1

# operands: 7

# operators: 4

operators
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Polish Expression

• Redundancy in the solution representation

1

2

3

4

V

1

2 3

V

H 4

V

V

2 3

4

H1
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Polish Expression

• Non-skewed vs. Skewed

V(H)

V(H)

Non-skewed

(… VV …)

or

(… HH …)



35Physical Design Automation of VLSI Circuits and Systems

Polish Expression

• Normalized polish expression

– E = e1 e2 … e2n-1 is called normalized if and only if

• E has no consecutive operators of the same type (H or V).

• In other words, it’s skewed.

– Using the normalized polish expression, we remove 

the redundancy and construct a unique 

representation.
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Polish Expression

• Solution perturbation
– Chain: HVHVH … or VHVHV …

– Adjacent
• 1 6: adjacent operands

• 2 7: adjacent operands

• 5 V: adjacent operand and operator

– Moves
• Move 1 (Operand swap): Swap two adjacent operands.

• Move 2 (Chain invert): Complement a chain (V→H, H→V)

• Move 3 (Operator/operand swap): Swap two adjacent 
operand and operator.

1   6   H   3   5   V   2   H   V   7   4   H   V
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Polish Expression

• Effects of perturbation

1

3
4

1 2 V 4 H 3 V

2

M1

1

3

4
2

1 2 V 3 H 4 V

1

3

4

2

1 2 H 3 H 4 V

M2

1 3

42

1 2 H 3 4 H V

M3
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Polish Expression

• Does the balloting property hold during moves?

– (balloting property) for every subexpression Ek = e1 … 

ek, #operands > #operators.

– Moves

• Move 1 (Operand swap): Swap two adjacent operands. (Yes)

• Move 2 (Chain invert): Complement a chain (H↔V) (Yes)

• Move 3 (Operator/operand swap): Swap two adjacent 

operand and operator.

– Reject “illegal” moves.

– How can we find “illegal” moves?
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Polish Expression

• Operator/operand swap

– Assume that the type-3 move swaps operand ei with 

operator ei+1, (1 ≤ i ≤ k-1). Then, the swap will not 

violate the balloting property iff 2Ni+1 < i.

• Nk: # operators in the Polish expression E=e1e2…ek.
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Polish Expression

• Cost function

– Cost = Area + λ·W

• Area computation

w1

1
2

h1

w2

h2
1 2

V

1 2

H

1
2

1

2

w1 + w2

h1 + h2

Max(h1, h2)

Max(w1, w2)
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Polish Expression

• Example

H

1 6
(2,3) (1,2)

(2,5)

V

2
(3,4)

(7,5) V

7 5
(2,4) (3,3)

(5,4)

H(7,9) H

3 4
(4,2) (3,3)

(4,5)

V(11,9)
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Polish Expression

• Wirelength estimation

A

C

D

B(x1, y1)

(x2, y2)

x1 = min(xa1, xb1, xc1, xd1)

x2 = max(xa2, xb2, xc2, xd2)

y1 = min(ya1, yb1, yc1, yd1)

y2 = max(ya2, yb2, yc2, yd2)

(xa1, ya1)

(xa2, ya2)
Half-Perimeter WireLength

HPWL = (x2 – x1) + (y2 – y1)
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Polish Expression

• Incremental cost computation

V

H

V V

H 2 7 5

1 6

H

3 4

E = 1 6 H 2 V 7 5 V H 3 4 H V

M1

V

H

V V

H 2 7 3

1 6

H

5 4

E = 1 6 H 2 V 7 3 V H 5 4 H V
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Polish Expression

• Example

H

1 6
(2,3) (1,2)

(2,5)

V

2
(3,4)

(7,5) V

7 5
(2,4) (3,3)

(5,4)

H(7,9) H

3 4
(4,2) (3,3)

(4,5)

V(11,9)

H

1 6
(2,3) (1,2)

(2,5)

V

2
(3,4)

(7,5) V

7 3
(2,4) (4,2)

(6,4)

H(7,9) H

5 4
(3,3) (3,3)

(3,6)

V(10,9)

M1
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Floorplanning Algorithms

• Deterministic algorithms

– Linear-programming

• Stochastic algorithms

– Simulated-annealing

• Polish expression

• Sequence pair
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Sequence Pair

• P-admissible solution space for a problem
– The solution space is finite.

– Every solution is feasible.

– Implementation and evaluation of each configuration are 
possible in polynomial time.

– The configuration corresponding to the best evaluated 
solution in the space coincides with an optimal solution of 
the problem.

• Slicing floorplan is not P-admissible.

• Sequence pair is P-admissible.
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Sequence Pair

• Represent a solution by a pair of module-name 
sequences.
– (1 2 3 4 5), (3 5 1 4 2)

• Conversion of a sequence pair into its 
corresponding floorplan.
– x is after y in both Γ+ and Γ- ⇔ x is right to y.

– x is before y in both Γ+ and Γ- ⇔ x is left to y.

– x is after y in Γ+ and before y in Γ- ⇔ x is below to y.

– x is before y in Γ+ and after y in Γ- ⇔ x is above to y.

Positive seq.

(Γ+)

Negative seq.

(Γ-)
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Sequence Pair

• (Γ+, Γ-)-Packing

– Constraint graphs

• Horizontal constraint graph (HCG)

• Vertical constraint graph (VCG)
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Sequence Pair

• Horizontal constraint graph

– ( 1 7 4 5 2 6 3 8 ) ( 8 4 7 2 5 3 6 1)

(..y..x..) (..y..x..) ⇔ x is right to y.

(..x..y..) (..x..y..) ⇔ x is left to y.

(..y..x..) (..x..y..) ⇔ x is below to y.

(..x..y..) ( .y..x..) ⇔ x is above to y.
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Sequence Pair

• Vertical constraint graph

– ( 1 7 4 5 2 6 3 8 ) ( 8 4 7 2 5 3 6 1)

(..y..x..) (..y..x..) ⇔ x is right to y.

(..x..y..) (..x..y..) ⇔ x is left to y.

(..y..x..) (..x..y..) ⇔ x is below to y.

(..x..y..) ( .y..x..) ⇔ x is above to y.
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Sequence Pair

• Computation of the location of each block

– HCG: determines the x-coordinates.

– VCG: determines the y-coordinates.

Modules (w, h)

m1 = (2, 4)

m2 = (1, 3)

m3 = (3, 3)

m4 = (3, 5)

m5 = (3, 2)

m6 = (5, 3)

m7 = (1, 2)

m8 = (2, 4)
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Sequence Pair

• Use longest source-to-module path length

Modules (w, h)

m1 = (2, 4)

m2 = (1, 3)

m3 = (3, 3)

m4 = (3, 5)

m5 = (3, 2)

m6 = (5, 3)

m7 = (1, 2)

m8 = (2, 4)

0

0

3

3

6

6

0

0

11

0

4 4 4

9 7 7

11

15

m1 = (0, 11)

m2 = (3, 4)

m3 = (6, 4)

m4 = (0, 4)

m5 = (3, 7)

m6 = (6, 7)

m7 = (0, 9)

m8 = (0, 0)
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Sequence Pair

• Floorplan

m1 = (0, 11)

m2 = (3, 4)

m3 = (6, 4)

m4 = (0, 4)

m5 = (3, 7)

m6 = (6, 7)

m7 = (0, 9)

m8 = (0, 0)
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Sequence Pair

• Solution perturbation

– Move 1: Swap two cells in the positive sequence

• Γ+ : (..x..y..) → (..y..x..)

– Move 2: Swap two cells in the negative sequence

• Γ- : (..x..y..) → (..y..x..)

– Move 3: Swap two cells both in the pos/neg sequence

• Γ+ : (..x..y..) → (..y..x..)

• Γ- : (..y..x..) → (..x..y..)
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Sequence Pair + Simulated Annealing

• Algorithm

T = T0 (initial temperature)

S = S0 (initial solution)

Time = 0

repeat

Call Metropolis (S, T, M);

Time = Time + M;

T = α · T;  // α: cooling rate (α < 1)

M = β · M;

until (Time ≥ maxTime);
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Sequence Pair + Simulated Annealing

• Algorithm

Metropolis (S, T, M)  // M: # iterations

repeat

NewS = neighbor(S);  // get a new solution by perturbation

Δh = cost(NewS) – cost(S);

If ((Δh < 0) or (random < e-Δh/T))

S = NewS;  // accept the new solution

M = M – 1;

until (M==0)


