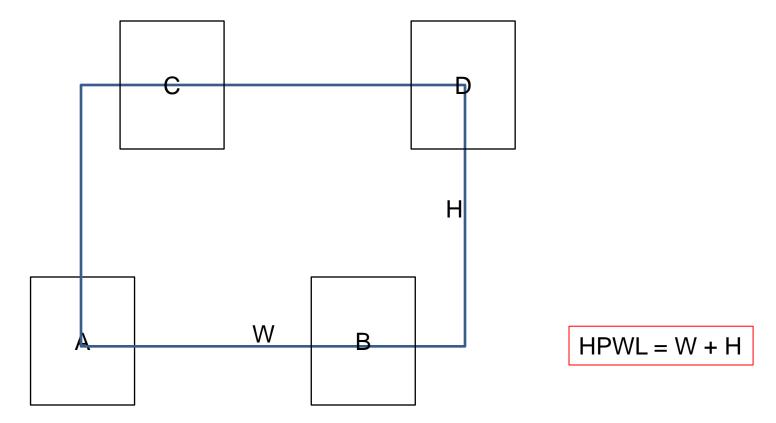
EE582

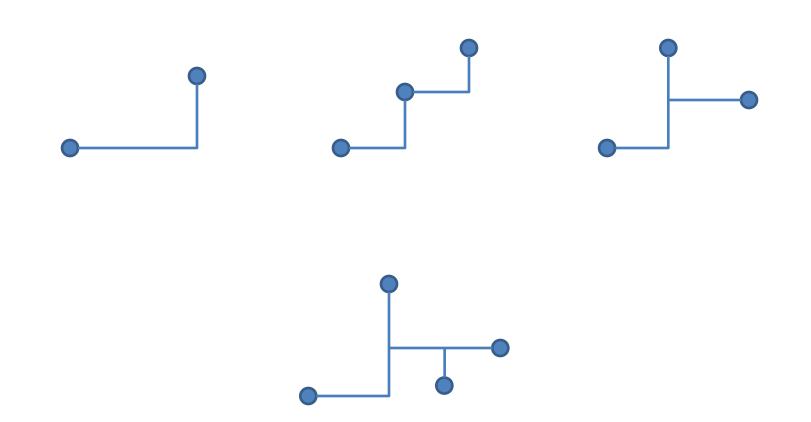
Physical Design Automation of VLSI Circuits and Systems

Prof. Dae Hyun Kim School of Electrical Engineering and Computer Science Washington State University

Placement

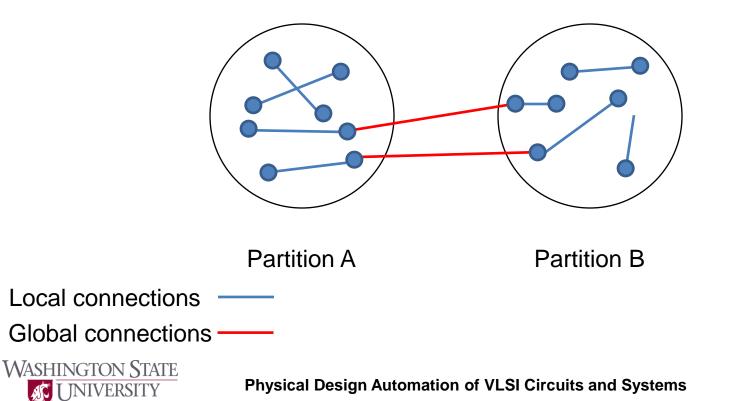

Metrics for Placement

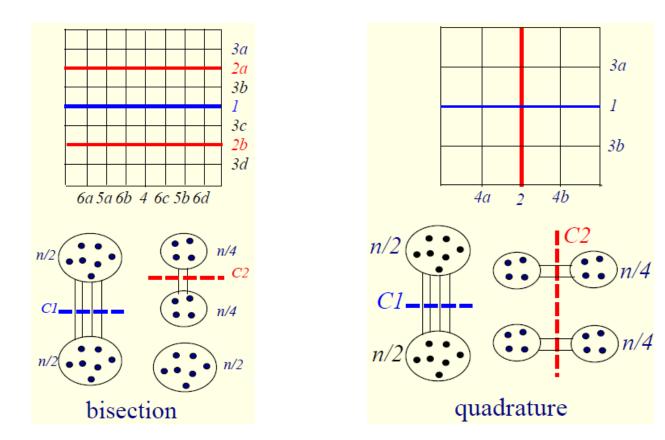
- Wirelength
- Timing
- Power
- Routing congestion


Wirelength Estimation

• Half-perimeter wirelength (HPWL)

Wirelength Estimation




Placement Algorithms

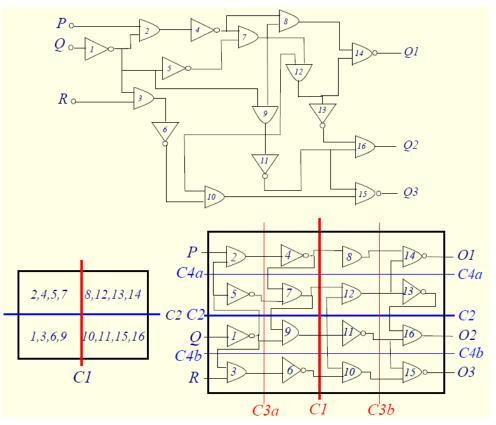
- Constructive
 - Min-cut based placement
 - Force-directed
- Analytical
 - Gordian
 - Kraftwerk
- Iterative improvement
 - Simulated annealing (Timberwolf)
 - Pairwise exchange

- Idea
 - Cutsize minimization ≈ Reduction of global wires

• Partitioning

- Algorithm
 - Min_Cut_Placement (N, n, C)
 - /* N: layout
 - n: # cells to be placed
 - n_0 : # cells in a slot
 - C: connectivity matrix (netlist) */
 - begin

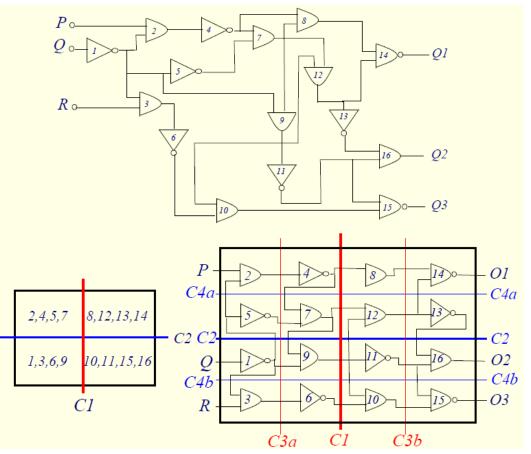
```
if ( n \le n_0 ) then
```


```
place_cells (N, n, C);
```

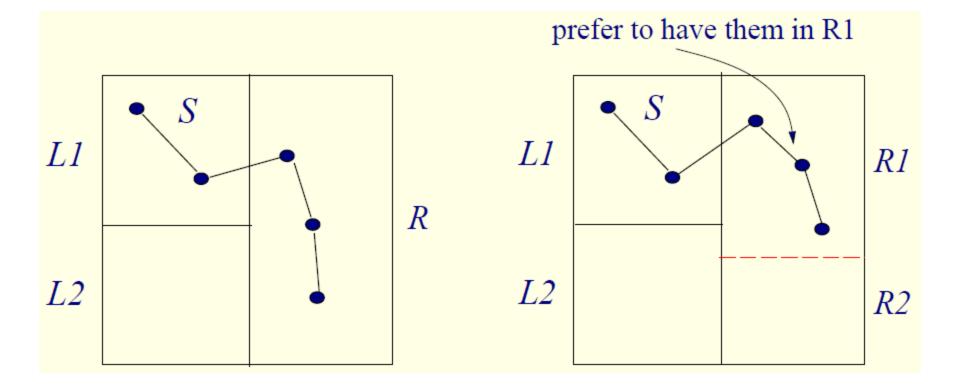
else

```
      (N_1, N_2) = cut\_surface (N); \\       (n_1, C_1), (n_2, C_2) = partition (n, C); \\       Min\_Cut\_Placement (N_1, n_1, C_1); \\       Min\_Cut\_Placement (N_2, n_2, C_2); \\ end
```

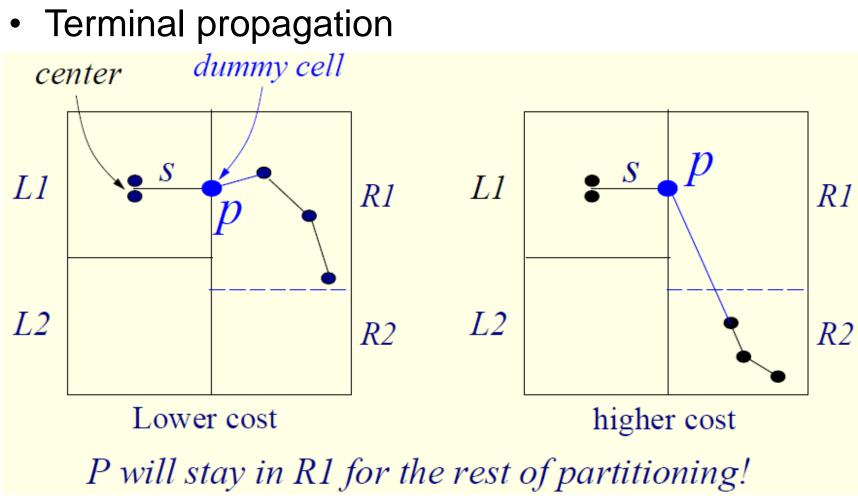

- Example (Quadrature placement)
 - KL partitioning + Quadrature placement



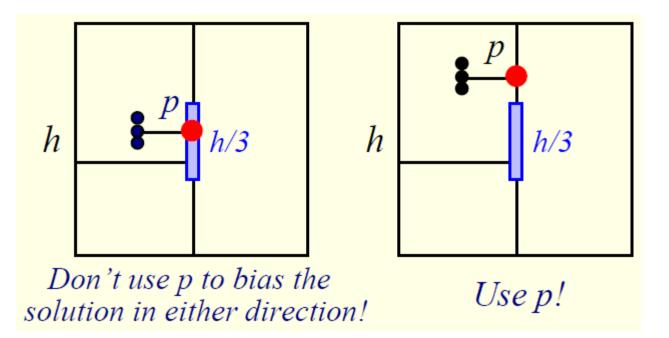
- Terminal propagation
 - Dunlop and Kernighan, TCAD'85
- Original min-cut placement algorithm
 - Does not consider the locations of terminal pins.

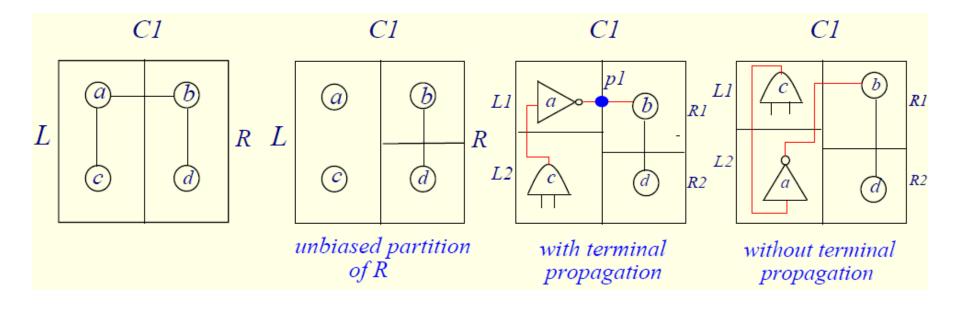


• What if we swap {1,3,6,9} and {2,4,5,7}?

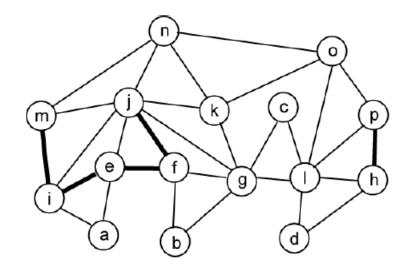


Terminal propagation

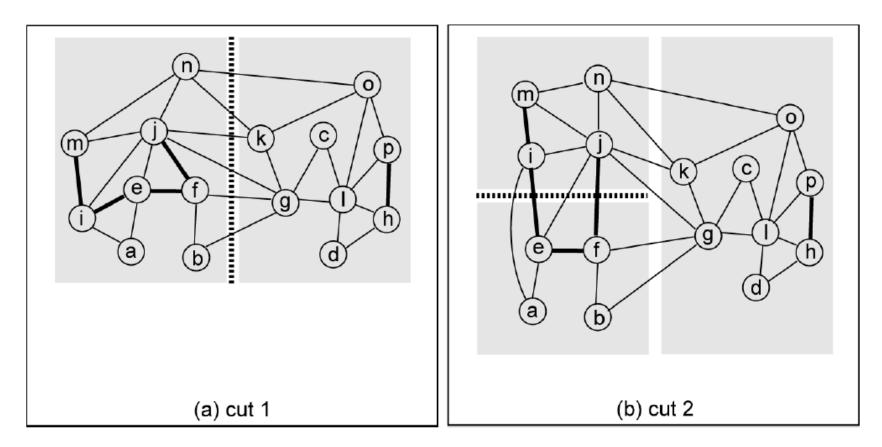




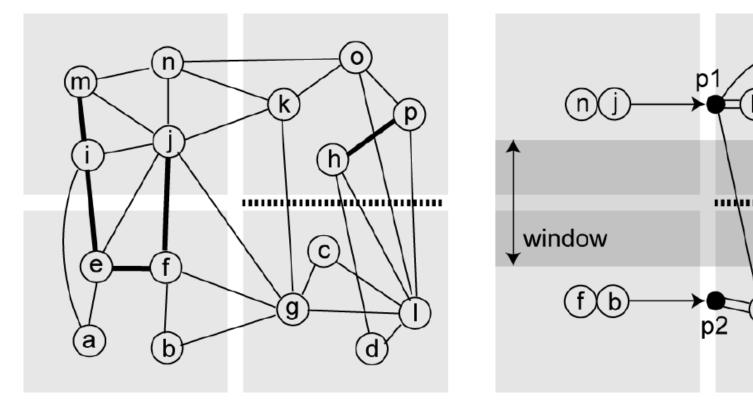
Terminal propagation


Terminal propagation

• Example

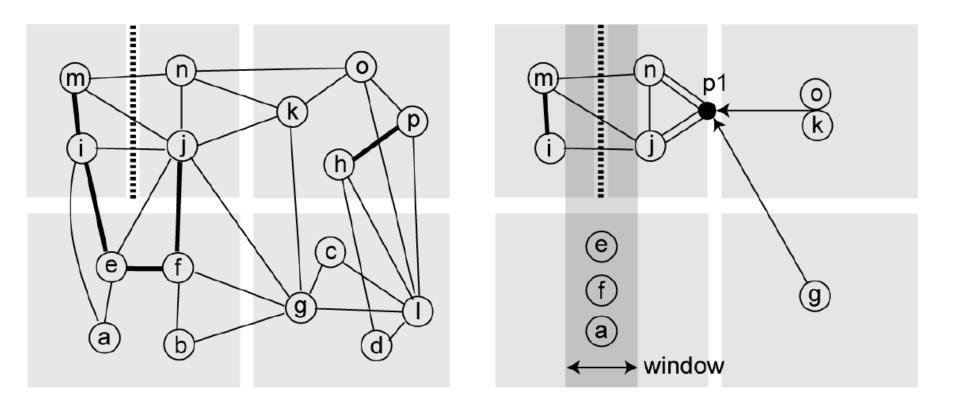

$$\overline{n_1} = \{e, f\} \\
n_2 = \{a, e, i\} \\
n_3 = \{b, f, g\} \\
n_4 = \{c, g, l\} \\
n_5 = \{d, l, h\} \\
n_6 = \{e, i, j\} \\
n_7 = \{f, j\} \\
n_8 = \{g, j, k\} \\
n_9 = \{l, o, p\} \\
n_{10} = \{h, p\} \\
n_{11} = \{i, m\} \\
n_{12} = \{j, m, n\} \\
n_{13} = \{k, n, o\}$$

undirected graph model w/ k-clique weighting thin edges = weight 0.5, thick edges = weight 1



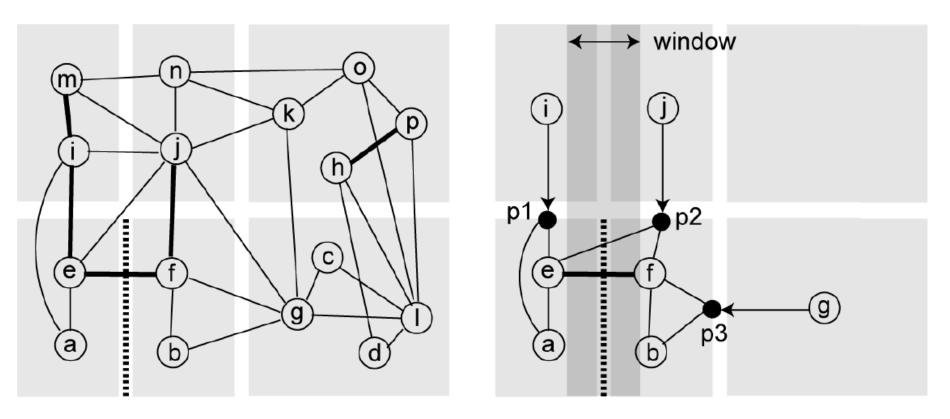
• Example

• Example

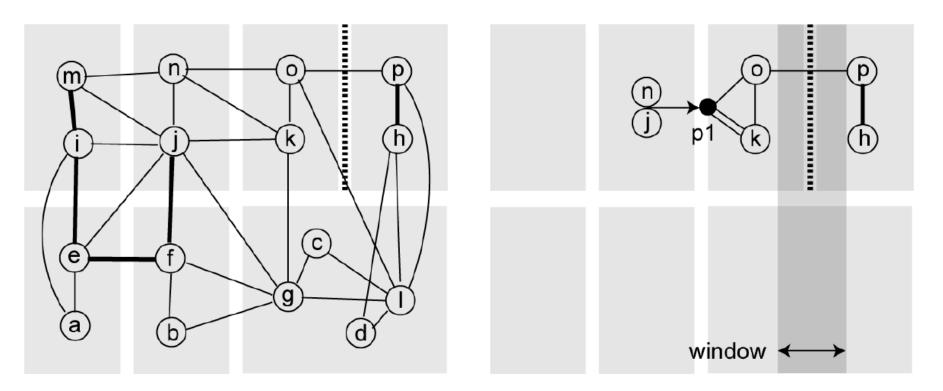


Physical Design Automation of VLSI Circuits and Systems

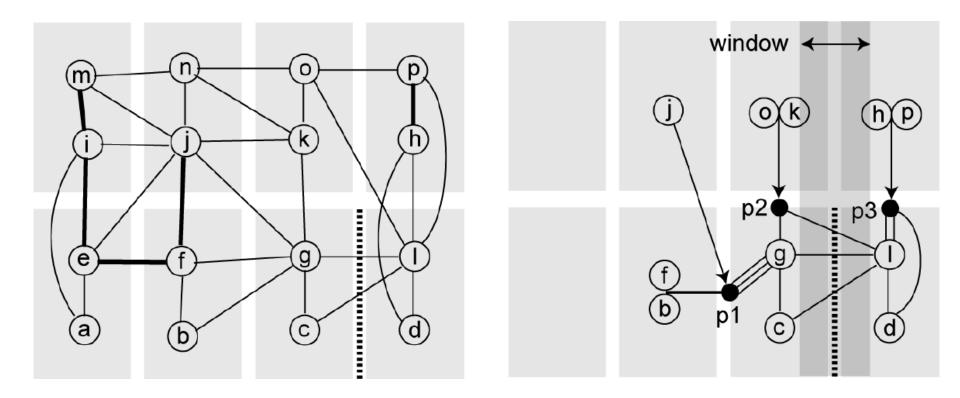
p


g

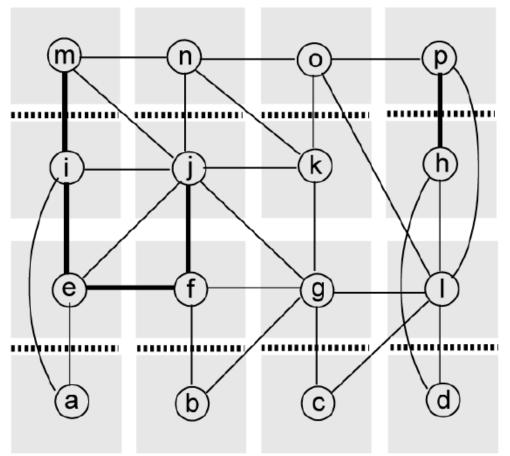
• Example



• Example



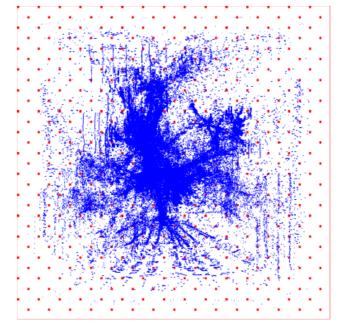
• Example

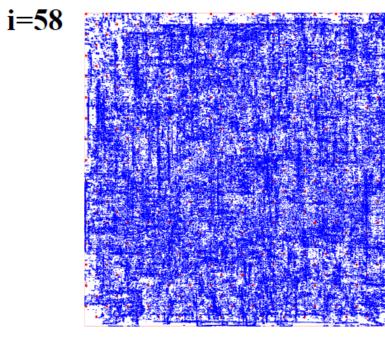


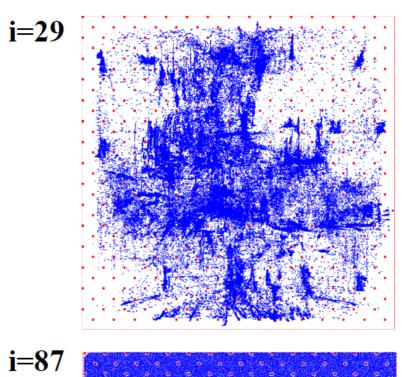
• Example

• Example

• This page is intentionally left blank.




Analytical Placement


- Kraftwerk2
 - Spindler, "Kraftwerk2 A Fast Force-Directed Quadratic Placement Approach Using an Accurate Net Model", TCAD'08

i=0

- Net model
 Two-pin nets
- Connectivity matrix $\begin{pmatrix} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$
- Ideal wirelength cost function $-\Gamma = |x_1 - x_2| + |y_1 - y_2|$
- Quadratic placement

 Cost function Γ is quadratic.

- Quadratic cost function $-\Gamma = (x_1 - x_2)^2 + (y_1 - y_2)^2 = \Gamma_x + \Gamma_y$
- Γ_x: x-component
- Γ_y: y-component
- How can we optimize the cost function?

$$-\frac{\partial\Gamma_{x}}{\partial x_{1}} = 0, \frac{\partial\Gamma_{x}}{\partial x_{2}} = 0$$
$$-\frac{\partial\Gamma_{y}}{\partial y_{1}} = 0, \frac{\partial\Gamma_{y}}{\partial y_{2}} = 0$$

WASHINGTON STATE

• Example

$$\begin{aligned} &\Gamma_x = (x - p_1)^2 + (x - p_2)^2 \\ &\frac{\partial \Gamma_x}{\partial x} = 0 = 2(x - p_1) + 2(x - p_2) \\ &x = \frac{p_1 + p_2}{2} \end{aligned}$$

• Example

$$\begin{split} &\Gamma_x = (x_1 - p_1)^2 + (x_1 - x_2)^2 + (x_2 - p_2)^2 \\ &\frac{\partial \Gamma_x}{\partial x_1} = 0 = 2(x_1 - p_1) + 2(x_1 - x_2) \\ &\frac{\partial \Gamma_x}{\partial x_2} = 0 = -2(x_1 - x_2) + 2(x_2 - p_2) \\ &x_1 = \frac{2p_1 + p_2}{3} \\ &x_2 = \frac{p_1 + 2p_2}{3} \end{split}$$

- The location of each cell is represented by - (x, y)
- The x-locations of M movable cells

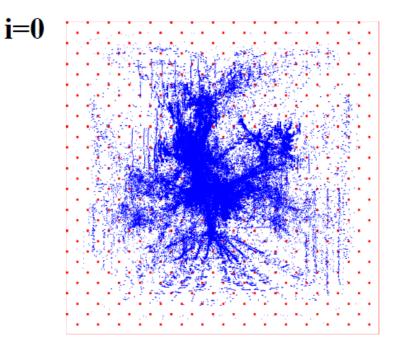
$$- x = (x_1, x_2, ..., x_M)^T$$

- C_x: cell-to-cell connectivity matrix
- d_x: cell-to-pin connectivity matrix (constant)

$$\Gamma_x = 0.5 x^T C_x x + x^T d_x + const.$$

• Wirelength minimization

$$-\frac{\partial\Gamma_x}{\partial x_1} = 0, \frac{\partial\Gamma_x}{\partial x_2} = 0, \dots, \frac{\partial\Gamma_x}{\partial xM} = 0$$


- i.e.,
$$\nabla_{\mathbf{x}}\Gamma_{\mathbf{x}} = \mathbf{C}_{\mathbf{x}}\mathbf{x} + \mathbf{d}_{\mathbf{x}} = \mathbf{0}$$

• where $\nabla_{\mathbf{x}} = (\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \dots, \frac{\partial}{\partial xM})^{\mathsf{T}}$

- Net force:
$$F_x^{net} = \nabla_x \Gamma_x = C_x x + d_x$$

$$\Gamma_x = 0.5 \text{ x}^T \text{C}_x \text{x} + \text{x}^T \text{d}_x + \text{const.}$$

• Applying only the net force makes a lot of overlaps.

- Move force
 - Removes overlaps = spread cells out.
- x: current location (to be computed)
- x': last location
- Change in the cell location

 $-\Delta x = x - x'$

- Density function
 - $D^{cell}(x, y)$
 - Cell density at each location
- Move force

$$-\mathsf{F}_{x,i}^{\mathsf{move}} = \mathsf{W}_i \cdot (\mathsf{X}_i - \mathsf{X}_i^{\mathsf{o}})$$

$$\overset{\circ}{x}_{i} = x_{i}' - \frac{\partial}{\partial x} \Phi(x, y) \bigg|_{(x_{i}', y_{i}')}$$
 Density

- x_i: current location (to be computed)
- x_i^o: target location

• Net force

$$F_x^{net} = C_x x + d_x$$

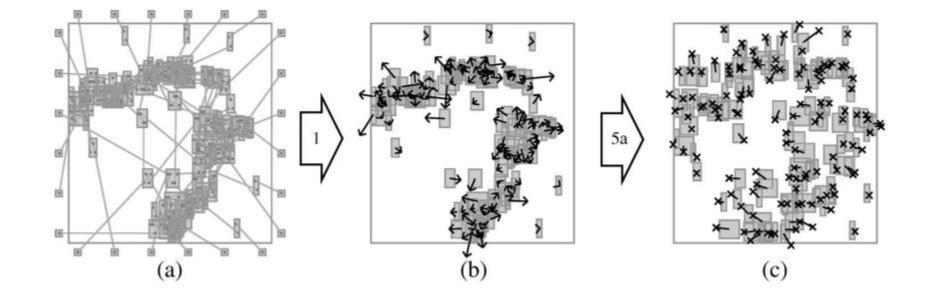
• Move force

$$F_x^{move} = C_x^{o} (x - x^{o}) = C_x^{o} (x - x' + \Phi_x)$$

- Net force is used for wirelength minimization
- Do not collapse the cells back to their initial locations.
- Hold force

$$F_x^{\text{hold}} = -(C_x x' + d_x)$$

• Final equation $F_x^{net} + F_x^{move} + F_x^{hold} = 0$


$$[C_x x + d_x] + [C_x^{\circ} (x - x' + \Phi_x)] + [-(C_x x' + d_x)] = 0$$

$$(C_x + C_x^{\circ}) \cdot (x - x') = -C_x^{\circ} \cdot \Phi_x$$

$$(C_x + C_x^{\circ}) \cdot \Delta x = -C_x^{\circ} \cdot \Phi_x$$

$$\mathbf{x} = \mathbf{x}' + \Delta \mathbf{x}$$

TABLE II
RESULTS IN THE ISPD 2005 CONTEST BENCHMARK SUITE

	Kraftwerk2		2 FastPlace3		RQL		NTUPlace3		APlace2	mFAR	Dragon	mPL5	Саро	FengShui
Circuit	HPWL	CPU	HPWL	CPU	HPWL	CPU	HPWL	CPU	HPWL	HPWL	HPWL	HPWL	HPWL	HPWL
adaptec1	82.43	262	79.38	353	77.82	751	80.93	883	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
adaptec2	92.85	349	93.08	559	88.51	1247	89.85	906	87.31	91.53	94.72	97.11	99.71	122.99
adaptec3	227.22	713	217.80	2275	210.96	2405	214.20	1944	n.a.	n.a.	n.a.	n.a.	n.a.	n.a.
adaptec4	199.43	709	201.36	1411	188.86	2096	193.74	2325	187.65	190.84	200.88	200.94	211.25	337.22
bigblue1	97.67	407	95.68	604	94.98	1160	97.28	1675	94.64	97.70	102.39	98.31	108.21	114.57
bigblue2	154.74	559	155.10	1380	150.03	2261	152.20	3352	143.82	168.70	159.71	173.22	172.30	285.43
bigblue3	343.32	2070	379.88	4642	323.09	4864	348.48	6256	357.89	379.95	380.45	369.66	382.63	471.15
bigblue4	852.40	4147	832.88	6862	797.66	12410	829.16	11308	833.21	876.28	903.96	904.19	1098.76	1040.05
Average	1.000	1.00	1.000	2.00	0.959	3.12	0.979	3.48	0.967	1.028	1.046	1.053	1.126	1.438

TABLE III

Results in the ISPD 2006 Contest Benchmark Suite. (a) Kraftwerk's Results. As Required in This Benchmark Suite, the CPU Factor Is Limited to $\pm 10\%$. The "Raw" CPU Factors Are -13.50% and -10.98%, Respectively. (b) Results of Other Placers

						Score	
Circuit	HPWL	Overflow factor	CPU	CPU factor	HPWL	HPWL+ Overflow	HPWL+ Overflow+ CPU
adaptec5	433.84	3.606%	1618	- 9.35%	1.071	1.032	0.939
newblue1	65.92	0.415%	603	- 8.38%	1.057	1.043	0.956
newblue2	203.91	1.286%	508	- 10.00%*	1.033	1.082	0.975
newblue3	278.51	0.382%	526	- 10.00%*	1.018	1.067	0.961
newblue4	304.24	1.709%	1553	- 8.63%	1.068	1.033	0.945
newblue5	548.38	2.694%	2622	- 9.50%	1.109	1.054	0.957
newblue6	528.59	1.702%	2579	- 9.89%	1.048	1.036	0.936
newblue7	1126.58	3.155%	4828	- 9.06%	1.053	1.051	0.958
Average		1.869%		- 9.35%	1.057	1.050	0.953

			Score							
Placer	Overflow factor	CPU factor	HPWL	HPWL+ Overflow	HPWL+ Overflow+ CPU					
Kraftwerk2	1.87 %	- 9.35 %	1.057	1.050	0.953					
NTUPlace3	6.26 %	- 2.61 %	0.976	1.007	0.990					
RQL	6.80 %	n.a. %	0.981	1.018	n.a.					
Fastplace3	n.a.	- 8.17 %	n.a.	n.a.	1.040					
mPL6	1.36 %	1.58 %	1.035	1.020	1.040					
mFAR	2.71 %	- 0.12 %	1.108	1.107	1.108					
APlace3	3.83 %	5.31 %	1.097	1.107	1.165					
Dragon	0.12 %	- 5.90 %	1.331	1.300	1.232					
DPlace	9.32 %	- 4.54 %	1.343	1.414	1.364					
Саро	0.32 %	2.69 %	1.375	1.344	1.385					

(a)

(b)

TABLE IV RESULTS IN MIXED-SIZE AND FLOORPLACEMENT BENCHMARK SUITES. (a) ICCAD 2004 MIXED-SIZED BENCHMARK SUITE. (b) IBM-HB⁺ FLOORPLACEMENT BENCHMARK SUITE

	Kraftw	Kraftwerk2		FDP		NTUPlace3		APlace2		mPL5		Circuit	Kraftw	erk2	SCAMPI	
Circuit	HPWL	CPU	HPWL	CPU	HPWL	CPU	HPWL	CPU	HPWL	CPU		Circuit	HPWL	CPU	HPWL	CPU
ibm01	2.24	11	2.42	145	2.17	33	2.14	381	2.22	91		ibm-HB+01	2.82	10	3.4	68
ibm02	4.90	27	5.11	284	4.63	63	4.65	872	4.68	264		ibm-HB ⁺ 02	5.87	26	8.0	154
ibm03	6.61	24	7.08	337	6.65	72	6.71	1015	6.86	300		ibm-HB ⁺ 03	9.23	16	9.5	115
ibm04	7.63	29	7.69	317	7.21	89	7.57	977	7.69	261		ibm-HB ⁺ 04	9.98	21	12.3	158
ibm05	9.79	33	n.a.	n.a.	9.66	160	9.69	766	10.09	130		ibm-HB ⁺ 06	8.79	12	11.0	187
ibm06	6.11	40	6.20	389	5.94	95	6.02	967	6.16	520		ibm-HB ⁺ 07	14.80	16	15.7	110
ibm07	10.42	52	10.57	607	9.90	219	10.00	1296	9.96	692		ibm-HB ⁺ 08	21.27	19	20.5	207
ibm08	12.97	85	13.30	719	12.29	235	12.50	1484	11.92	1133		ibm-HB ⁺ 09	17.44	18	22.2	200
ibm09	11.98	71	13.30	713	12.00	213	12.13	1837	13.15	1363		ibm-HB ⁺ 10	47.51	47	55.2	351
ibm10	30.15	232	30.70	924	28.49	351	28.83	2649	29.36	1654		ibm-HB ⁺ 11	25.92	23	27.8	159
ibm11	17.59	107	18.41	950	17.54	336	18.67	3814	17.87	1071		ibm-HB ⁺ 12	51.38	43	67.6	447
ibm12	31.42	124	36.46	1472	32.07	332	33.42	3663	33.43	1419				23		
ibm13	22.48	147	23.60	1175	22.16	536	22.80	3845	22.52	1079		ibm-HB+13	34.90		42.2	231
ibm14	35.13	308	37.84	2185	35.36	1274	35.92	4723	34.99	1588		ibm-HB+14	63.11	42	66.4	295
ibm15	47.58	468	47.69	2468	45.38	1251	46.81	5419	50.88	4989		ibm-HB ⁺ 15	92.88	46	88.2	414
ibm16	54.17	527	61.27	2792	57.59	1595	54.53	6109	55.21	6200		ibm-HB ⁺ 16	95.60	54	106.2	337
ibm17	66.63	474	69.45	3577	66.73	2123	65.67	6635	66.96	2131		ibm-HB+17	148.16	- 96	152.7	424
ibm18	42.36	609	44.88	4369	41.58	2874	41.99	10925	43.99	2477		ibm-HB ⁺ 18	73.95	52	77.8	211
Average	1.000	1.00	1.056	9.02	0.982	3.25	0.995	23.93	1.010	9.67		Average	1.000	1.00	1.140	8.03

Kraftw	erk2	SCAMPI				
HPWL	CPU	HPWL	CPU			
2.82	10	3.4	68			
5.87	26	8.0	154			
9.23	16	9.5	115			
9.98	21	12.3	158			
8.79	12	11.0	187			
14.80	16	15.7	110			
21.27	19	20.5	207			
17.44	18	22.2	200			
47.51	47	55.2	351			
25.92	23	27.8	159			
51.38	43	67.6	447			
34.90	23	42.2	231			
63.11	42	66.4	295			
92.88	46	88.2	414			
95.60	54	106.2	337			
148.16	- 96	152.7	424			
73.95	52	77.8	211			
1.000	1.00	1.140	8.03			
	HPWL 2.82 5.87 9.23 9.98 8.79 14.80 21.27 17.44 47.51 25.92 51.38 34.90 63.11 92.88 95.60 148.16 73.95	$\begin{array}{c ccccc} 2.82 & 10 \\ \hline 5.87 & 26 \\ \hline 9.23 & 16 \\ \hline 9.98 & 21 \\ \hline 8.79 & 12 \\ \hline 14.80 & 16 \\ \hline 21.27 & 19 \\ \hline 17.44 & 18 \\ \hline 47.51 & 47 \\ \hline 25.92 & 23 \\ \hline 51.38 & 43 \\ \hline 34.90 & 23 \\ \hline 63.11 & 42 \\ \hline 92.88 & 46 \\ \hline 95.60 & 54 \\ \hline 148.16 & 96 \\ \hline 73.95 & 52 \\ \end{array}$	HPWLCPUHPWL2.82103.45.87268.09.23169.59.982112.38.791211.014.801615.721.271920.517.441822.247.514755.225.922327.851.384367.634.902342.263.114266.492.884688.295.6054106.2148.1696152.773.955277.8			

(b)

(a)

Physical Design Automation of VLSI Circuits and Systems

