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An Analytical Approach to Floorplan Design and
Optimization

Suphachai Sutanthavibul, Eugene Shragowitz, Member, IEEE, and J. B. Rosen

Abstract—An analytical method for general floorplan design
and optimization is proposed. This method is based on a mixed
integer programming model and application of a standard
mathematical software. The method allows arbitrary combi-
nations of rigid and flexible modules. Various objective func-
tions such as chip area, interconnection length, timing delays
or any combination of them are permitted. Routing space is
estimated by the global router. Experimental data are pro-
vided.

I. INTRODUCTION

LOORPLANNING is one of the first steps of VLSI

design. It is assumed, that at this step, rough estima-
tions of the module areas and interconnections between
them are known, while topology of the chip and exact
dimensions of the modules should be defined. Common
goals in the floorplan design are minimization of the chip
area, minimization of interconnections length, or a com-
bination of them. Another common problem definition is
to minimize the floorplan area for the given topology. A
method described in this paper covers all formulations of
the floorplanning problems mentioned above without re-
stricting a class of solutions to the slicing structures. In
addition, it allows consideration of realistic situations
when some modules have rigid shapes and remaining
modules are of flexible shapes, or all modules have rigid
shapes, i.e., it can be applied to solving placement prob-
lems.

Like other methods for this kind of problem, the pro-
posed method provides a suboptimal solution. This sub-
optimal solution is obtained by the consecutive solution
of subproblems of smaller size. Unlike many other meth-
ods, our method obtains the optimal solution for each sub-
problem. Each subproblem is solved as a 0-1 mixed in-
teger programming problem. The final solution is achieved
by successive augmentation of new elements to the al-
ready constructed partial solution. In the process, the par-
tial solution is reformulated to reduce the number of vari-
ables in the mixed integer programming problem. That
makes it possible to keep the number of variables close to
a constant in each step of the process. The timing com-
plexity of this method is linear with respect to the number
of partitions. This allows solution of the floorplanning
problems of any practical dimensions. Benchmarks con-
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structed for the Workshop on Physical Design, organized
by MCNC in May 1988, are used to illustrate the perfor-
mance of this methodology.

The text of this paper is structured as follows. Section
II reviews the related literature on floorplanning. Section
III describes the mixed integer programming formulation
of floorplanning. The solution method is described in Sec-
tion IV. Experimental results are given in Section V.

II. PrREVIOUS WORK

Starting from the early 1970’s a substantial number of
papers on floorplanning have been published. Several fun-
damental papers on floorplan design belong to Otten [1],
[2]. Otten used the connectivity information to define
“‘distances’’ between modules and then used a two-step
procedure to obtain a floorplan satisfying these distances.
He used the linear algebra technique known as the
Schoenberg method to produce a two-dimensional config-
uration, which retains given intermodule distances. At this
point he applied a hierarchical rectangular decomposition

(named ‘‘slicing’’) to obtain the final floorplan.

Starting from Otten, almost all authors use slicing to
produce floorplans. Our methodology does not require the
slicing technique. Among the most recent work based on
slicing is the paper by Wong and Liu [3], [4]. They pre-
sented a floorplan design algorithm using simulated an-
nealing. The floorplan is described by the normalized Pol-
ish expressions for slicing structures. The algorithm
considers simultaneous minimization of the bounding
rectangle area and the total wirelength. Experimental re-
sults showed near optimal solutions with respect to the
area of the bounding rectangle for the cases where all
modules were flexible. However, when all modules were
rigid, only 79% area utilization was achieved.

Mueller et al. [5] described a bottom-up iterative al-
gorithm for the floorplan design. The floorplan represen-
tation used in this algorithm is also based on the normal-
ized Polish expressions and slicing structures. The greedy
algorithm attempts to restructure the subtrees of the slic-
ing floorplan tree from the leaves to the root in order to
improve the solution. The experimental results showed
significant improvement in execution time over simulated
annealing [3], but the size of the chips are 7-31% larger
than those obtained by the simulated annealing algorithm
[3].

Another direction in floorplanning was introduced by
Heller et al. [6]. It is rectangular dualization and rectan-
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gular dissection. This technique was developed by Koz-
minski, Kinnen, and others [7], [9]. The problem of rect-
angular dualization is to find a dissection of a rectangle
into rectangles that satisfies the adjacency relation among
component rectangles and has the smallest area. The main
results in this theory are achieved for planar graphs, de-
scribing connectivity of modules. However, real connec-
tivity graphs are not planar, so various techniques are pro-
posed for planarization. These techniques are based on
different assumptions about the adjacency of connected
modules. In the most recent work based on this approach,
Lokanathan and Kinnen [10] started from clustering mod-
ules into a set of superblocks. Then a planar graph was
produced and used to represent the connectivity between
these superblocks. A rectangular dual of this planar graph
represents the topology of the general floorplan. Mutual
relations of modules are formulated as a system of linear
inequalities. This system is solved by a linear program-
ming method. After the floorplan for the superblocks is
found, the floorplan of each superblock is obtained by ap-
plication of a constructive two-dimensional bin-packing
heuristic algorithm.

The most elaborate comparison of experimental results
appeared in [11] for the benchmark test case known as
AMI33 or PrimBBL2. The same benchmark was also used
in many other works on floorplanning and placement [12]-
[14]. A discussion on this subject will be presented in the
experimental part of this paper.

A mixed integer programming model of placement dif-
ferent from ours was proposed in [15]. Several transfor-
mations of the original placement problem were made
there. For example, any rectangular block with the aspect
ratio that is less than or equal to a user-specified number
is replaced by a group of square blocks with an edge size
equal to the minimal edge of the original block. Then these
squares are made contiguous. Conditions for nonoverlap-
ping are formulated as quadratic inequalities. Integer
variables are introduced to describe rotation. The result-
ing model in this work can be characterized as a nonlinear
mixed integer programming problem. It is difficult to
judge the effectiveness of this technique because only one
simple example with three blocks was provided. Unlike
that model, our model does not require the simplifications
mentioned. In addition, we are using a linear mixed in-
teger programming model instead of nonlinear. Qur so-
lution technique for the mixed integer programming prob-
lem allows us to solve placement problems with a

_ substantial number of blocks.

There are several advantages of our algorithm over the
existing algorithms mentioned above. Our algorithm con-
siders simultaneously all factors involved in the devel-
opment of the workable floorplans. Shape and area infor-
mation for modules, areas for routing, assignment of
connections to channels, and constraints on timing—all
these factors can be taken into consideration. Unlike many
other algorithms, our method provides the proven optimal
solution for each subproblem solved in the process of con-
struction of a global solution.

III. MiXEp INTEGER PROGRAMMING MODEL OF
FLOORPLANNING

3.1. Problem Definition

Given a set of K, flexible modules and X, rigid mod-
ules, K; U K, = K. For each flexible module i (i € X))
area §; is given, i.e., w;h; = §;, where w; and h; are the
unknown width and height of the module i. Constraints
are imposed on the acceptable aspect ratios for each flex-
ible module. For each i € K the inequality a; < w;/h; <
b; must be satisfied. For rigid modules (i € K,) w; and A;
are given and it is assumed that the 90° rotation of mod-
ules is allowed. This is equivalent to conditions a; < w; /h;
< b;or 1/a; = w;/h; = 1/b;. The connectivity infor-
mation is given in the form of the netlist, where for each
module a set of nets incident to the module is presented.
This allows us to define a number of common nets c;; for
each pair of modules i and j. We define a floorplan by
positions of the lower left corner of each module (x;, y;)
in the system of coordinates with the center in the lower
left corner of the chip. Nets are assigned to routing chan-
nels and estimations of channel widths are performed.
Additional constraints on the length of critical nets can
also be included. Among input information are the widths
and spacings of wires for routing in both horizontal and
vertical directions. This information is technology depen-
dent. The optimal floorplan corresponds to a minimal
covering rectangle R of a set of K nonoverlapping rect-
angles presenting modules and spaces between them re-
served for interconnections.

3.2. First Mixed Integer Programming Formulation

Let us consider the constraints preventing overlapping
of any pair of rectangular modules i and j. Let (w;, h;),
(w;, h;) (assumed to be known at this point) denote the
dimensions (width and height) of modules i and j, respec-
tively. Let (x;, y), and (x;, y;) (unknown variables) de-
note the position of the lower left corners of the modules
i and j with respect to the center of coordinates.

To prevent overlapping of modules i and j, it is required
that at least one of the following linear inequalities holds:

X +w < X, i is to the left of j

X — w2 X, i is to the right of j
yi+ h <y, iisbelowj
i — h =y, i is above j. €8}

In order to ensure that at least one of these inequalities
always holds we introduce two additional 0-1 integer vari-
ables x;; and y;;, which take only O to 1 values. Let us
define bounding functions W and H, such that we always
have |x; — x;| < Wand |y, — y;| < H.

Possible choices for Wand H are: W = W_,, (maximal
width of the chip allowed) and H = H,,, (maximal al-
lowed height of the chip). If W, and H,,, are not known,
then W = X, w,and H = X | = h; can be used. Now
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consider the following system of linear inequalities for
any pair of modules i and j:

X; + w; < .x]' + W(x,'j + yl])

v

X — W x]' - W(l - xij + ylj)

i+t h <y +HI+x; —y)

i —h =y — HQ — x; — yy). )

It is easy to see that for each of the four possible choices
of valug:s for the integer variables, (x;;, y;;) = (0, 0), (0,
1), (1, 0), (1, 1), only one of the four inequalities in (2)
is active. For example, with x;; = 0, y;; = 1, only the
third constraint applies, which allbws module i to be any-
where below module j. The othét three constraints are al-
ways satisfied for any permitted values of (x;, y;) and (x;,
»)-

! Let us assume that one dimension of the chip is known,
say W, and that we need to determine a floorplan which
corresponds to the minimal height. Then we can impose
the following additional constraints:

.x,'ZO, y‘*ZO, iekK
x+w < W, iek
y*ZYi+hi,

where y* is the height to be minimized.
3

Hence, the first mixed integer programming formula-
tion of the floorplanning problem for the case where all
modules are rigid can be formulated as follows: find min-
imum y* subject to constraints (2) and (3). This mixed
integer programming formulation requires 2K continuous
variables, K(K — 1) integer variables, and 2K? linear
constraints. For example, if the number of modules K =
25, then the number of continuous variables is equal to
50, the number of integer varjables is equal to 600, and
the number of linear constraitits is equal to 1250.

It is obvious that a better floorplan can be achieved if
rotation of the rigid blocks is allowed. Our model can be
easily extended to permit this. Let us introduce for each
module i an additional 0-1 integer variable z;, where z; =
0 when rigid module i is placed in its initial orientation
and z; = 1 when module i is rotated 90°. The constraints
of nonoverlapping for two rigid modules can be rewritten
in the following form:

x+zh + (1 —2)w < x5+ Mx; +y)
xi—zh— (1 —z)w, 2 x— MUA —x; + )
yitzwi+ (1 =)k <y + M1+ x;—y)

Yi—ugwi— (L —h =y, — M2 —x; —y) @
where

M = max (W, H).

To keep the rotated rectangles within chip boundaries,
the constraints (3) have to be réwritten as

x=0, =0, iekK

xi+(1_zi)wi+z,'hiSW, iek

y*zy + (1 —z)w + zh;,
where y* is the height to be minimized. (5)

This initial model does not allow flexible modules, does
not consider routing space and connection lengths, and
requires substantial numbers of variables and constraints
for an optimal solution. All these problems will be ad-
dressed next.

3.3. Flexible Modules in Integer Programming
Formulation

The flexible model ailows w; and #; to vary, but re-
quires that the area S; remain fixed, that is w;h; = §;. We
linearize this nonlinear relation about the point w;,,, to
give h; as a linear function of w; (see Fig. 1) by applying
the first two members of the Taylor series:

S; S;
: i — W) —— 6
+ (wxmax 1) szmax ( )

h,'=

Wimax

hi = hiO + AW,')\,'

S.
hio = s N = Wz' s AW; = Wipay — Wi

Wimax imax

Therefore, we need one additional continuous variable
Aw; for each flexible module. Then the condition of non-
overlapping of flexible module i and rigid module j can
be rewritten in the following manner:

AW,‘ é X;

X+ Wimax — ;, 1 s to the left of j

yi + hio + Aw)\; = y;,  iis below j

X — W = x;,

yi — h =y, iisabovej. @)

To make only one of these constraints active, two 0-1
integer variables x;;, y;; should be introduced for each pair
of modules. A system of constraints emerging in this sit-
uhtion is very similar to the one described by the system
of constraints (2). \

If both modules i and j have flexible shapes, then con-
ditions of nonoverlapping will look as follows:

i is to the right of j

Xt Wimax — Aw; < x;, i is to the left of j

yi + hig + AwiN; < y;, i is below j

X+ Wimax — Aw; < Xx;, i is to the right of j

yi + hig + Aw\ <y, i is above j. ®8)

The same technique shown in (4) is used to make only
one of these constraints active.
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Fig. 1. Approximation function for 4; .

3.4. Constraints on Interconnection Length

A problem of identification of potentially critical paths
and nets prior to physical design goes beyond the scope
of this paper. This problem was addressed in [16]. We
rely on the methodology described there to identify criti-
cal paths and nets. When critical paths are identified, this
information can be used in floorplanning. The maximal
allowed timing delay on interconnections for paths and
nets is translated into maximal allowable length of inter-
connections for respective nets. Let L, be a maximal al-

- lowable length of net 5, and N, be a set of pins connected
by the net 5. Let us introduce 6 new continuous positive
variables for each net s X, £, y,, 9, x;, y;, such that

X = max x;, Vi € N,

X, = min x;, Vi € N,

Yy = max y;, Vi € N,

Y = min y;, Yi € N,

Xy = X, — X

Ys = ys - S}y &)

Then a half of perimeter (x;, + y,) of a covering rect-
angle can be used as an approximation of a Steiner tree
connecting pins of the net s, and the length of the Steiner
tree can be constrained by the L, where:

X+ y, < L. (10)

These constraints can be added for each critical net to
the previously formulated sets of constraints for the floor-
planning problem. Any increase in dimensionality of the
model does not significantly affect the solution time for
the following reasons. First, the number of critical nets
represents only a small portion of all nets. Second, the
time dependence on the number of continuous variables
in a mixed integer linear programming problem is at most
linear.

3.5. Constraints on Routability

First, we will consider design styles where routing is
performed over the functional modules. Sea-of-gates de-
sign style and standard cells design style belong to this

group. It is a well-known fact in the physical design that

"a chip is routable if the length of routing tracks available

for routing is 1.5-2.0 times higher than the actual length
of routed interconnections. It is also well known that the
Manhattan distance between two terminals presents a
lower bound on the net length. Therefore, the number of
the tracks available for routing should be at least 2 times
higher than the number of required tracks for Manhattan
routing. This means that bin-packing algorithms cannot
be used for floorplanning when the number of available
routing tracks for routing over the modules is not suffi-
cient to accommodate interconnections. Empty area
around the modules should be reserved for routing. Let
us introduce two additional continuous variables £;;, and
€ij for each pair of modules i and j such that |x; — x;| <
Ejrand |y, — y;| < &p, i

=& =X — x5 = &y
=& = -y = S (11)
Then the conditions of balancing for supply and de-

mand of routing tracks in both dimensions will have the
following forms:

2 2eyky < 0.5y W

L

2 ¢k < 0.5y*n,W. (12)
LI

Here c;; is the number of common nets between mod-
ules i and j. n), and n, are the numbers of routing tracks
per unit length in horizontal and vertical directions re-
spectively. y* is the unknown height of the chip and W is
the given width of the chip. The conditions (12) should
be added to the set of conditions for the floorplanning
problem.

If the width of the chip W is also unknown, then the
desired aspect ratio a = w/y* for the chip can be used.
The constraints (12) can be rewritten as

zi: ; ciiéiy = 0.5a(y*’n,

Zi: ; cijija

IA

0.5a(y*)n,. (12a)

To preserve linearity of the constraints (12a), ( y"‘)2 can
be presented as ()’*)2 = yrznin + (¥ — Ymin) Ymin» Where
Ymin 18 the minimal reasonable height of the chip, which
is consistent with the aspect ratio a. Then balancing con-
ditions can be rewritten again:

; /Z i1 < 0.5am[Yoin + (V% = Ymin) Yminl

2 2 ek < 0.5an, [ + (O = Yain)Yminl.  (12b)
i

In this form, constraints (12b) are linear with respect to
y*

3.6. Floorplanning with Routing Around the Modules

Very often modules are designed in such a way that all
terminals are located on the periphery and interconnec-



SUTANTHAVIBUL er al.: APPROACH TO FLOORPLAN DESIGN AND OPTIMIZATION 765

tions are expected to be positioned in channels around the
modules. In this situation additional space for routing
should be included in the evaluation of the chip size. To
keep this additional requirement to a minimum we include
in the objective function the member F, with the weight
o,

F, = Zl: ? ¢ilwnéipn + mokijn) (13)
where c;;, &;1, and §;;, are, as before, the connectivity,
the horizontal, and the vertical components of the inter-
connections between modules i and j. They obey the con-
straints (11) given in Section III-3.5. p; and p, are widths
of tracks on horizontal and vertical layers, respectively.

3.7. Optimization of the Floorplan with the Given
Topalogy

One of the often mentioned formulations of the floor-
planning problem assumes that the topology of the chip is
given and only shapes of the modules should be opti-
mized. When the mixed integer programming formulation
is applied to this problem, it results in elimination of all
integer variables. These variables will assume values 0 or
1 according to the mutual positions of modules. It means
that it is known for any two modules i and j which one of
them is on the top of another, or to the right of another.
For example, if module j is on the right from module i
according to the given topology, then x;; = 0, y;; = 0,
and only one inequality x; + w; < x; is needed. As a
result, the number of integer variables for this formulation
is equal to zero. The NP-hard problem of floorplanning
becomes polynomially solvable when topology is defined.
The number of continuous variables is 2K and the number
of linear constraints is O (K) with the coefficient depen-
dent on the average number of neighbors for each module
for the given topology. A solution for such a problem can
be easily obtained by an application on any standard lin-
ear programming software.

3.8. More on Objective Functions for Mixed Integer
Programming Formulations

a) The optimal solution of the floorplanning problem is
characterized by the minimal chip area F = x* X y*,
where x* and y* are the optimal width and height of the
chip, respectively. However, very often the desired as-
pect ratio a = x* /y* is given for the chip. This allows a
description of the chip area as a function of one variable
F = a(y*)*. The minimum of the function F(y* = 0) is
achieved for the same value of y* as the minimum of the
function F, = y*. This fact allows the use of a linear ob-
jective function instead of the quadratic one and presents
the constraints (3) from original integer programming
problem formulation in the following form:

x =0, 520, iekK

x; +w; < ay*, iek

v

yE =y + k. (14)

All other constraints on nonoverlapping will be the same
as listed before.

b) One possible definition of the problem can be to find
a floorplan described by the minimal resulting intercon-
nection length. This can be achieved by using an objec-
tive function F = Z; (x, + y,) — min and constraints on
nonoverlapping given by (2) and (3), and the constraints
on interconnection length (10). Here x, and y, are defined
by (10). Another reasonable objective function for floor-
planning is a linear combination of the chip size and the
total interconnection length F = y*W + o L, (x; + y,),
where « is a weight coefficient. This formulation can be
extended to emphasize critical nets. Then F = I o (x,
+ y,), where « is the weight coefficient for the net s.

c) As was mentioned in Section III-3.6, an additional
term can be included in the objective function to provide
space for interconnections. This term (13) can be added
to all other terms in the objective function mentioned
above.

IV. SoLuTioN METHOD FOR MIXED INTEGER
PROGRAMMING MODEL OF FLOORPLANNING

The solution for the mixed integer linear programming
models described in the previous paragraph can be ob-
tained by the standard mathematical programming soft-
ware. There are several software packages available. We
applied the widely used LINDO [17] package for this pur-
pose. This version of LINDO allows the introduction of
up to 200 0-1 integer variables and a few thousand linear
constraints. As was mentioned earlier, the number of in-
teger variables used by the floorplanning model is signif-
icant. It was shown in the example given in Section III-
3.2 that this number is 600 for a floorplan problem with
25 modules. The solution time for the integer program-
ming problems grows exponentially (in the worst case)
with the number of integer variables. In practical cases
this growth is not exponential, but still can be very fast.
This dictates a necessity for a technique that will consider
only a limited number of modules (say 10-12) at a time.
This technique is called successive augmentation (see Fig.
2). The main idea of the successive augmentation is to
create a final floorplan by adding a new group of modules
to a partial floorplan in an optimal way until all the mod-
ules are positioned. The successive augmentation does not
guarantee an optimal solution for the original mixed in-
teger programming problem. It guarantees optimality on
each step of the process and, as a result, a suboptimal
solution of the original problem. This method represents
generalization of the greedy idea from one variable to a
group of variables. Application of the successive aug-
mentation in conjunction with the mixed integer program-
ming requires solutions for several problems:

1) how to select a new group of modules to be added
to the partial floorplan?
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New group of modules to be added

N

n\;odules .

g
- Fixed

i10 il1

i3 Mg |16

Fig. 2. Floorplanning by successive augmentation.

2) how to minimize the number of integer variables for
each solved integer programming problem?

These questions will be answered in the following sec-
tions.

4.1. An Algorithm for Solving the Floorplanning
Problem

As it was stated above a new group of modules is added
to the partial floorplan on each step of the successive aug-
mentation algorithm. Different criteria can be applied to
their selection. One popular technique is to perform clus-
tering of modules based on the connectivity prior to floor-
planning and then add a cluster to the partial floorplan at
each step of the process. Another technique is to apply a
linear ordering procedure [18], using as a seed one of the
modules with the highest number of I/0 connections. A
new group of modules for floorplanning is selected ac-
cording to their position in the linear order. Both cluster-
ing and linear ordering techniques allow weighting factors
to emphasize critical nets. As a result, timing problems
can be addressed on three steps of the algorithm. The first
time is when a new group of modules is selected. Modules
of the critical nets may have priority in the order. The
second time is in the formulation of the integer program-
ming problem by assigning weight coeflicients to critical
nets. The third time is by routing critical nets first when
global routing is performed. All of these techniques are
available to users of our package. The description of the
floorplanning algorithm is given in Fig. 3.

4.2. Covering Rectangles for the Partial Floorplan

The number of integer variables in the problem depends
on the number of modules. Their mutual positions should
be described by constraints. One resource in reducing di-
mensionality for the integer programming problem is re-
placement of aiready positioned modules by a set of cov-
ering rectangles. If the number of covering rectangles
produced is less than the number of modules replaced,

Procedure FloorplanDesign;

begin
(1)  Select a group of m modules as a seed;
(2) Formulate a system of linear inta for these
(3)  Call an integer programming procedure to obtain the first partial floorplan;
(4) while (m = k) do /* k is the total number of modules */

PYCTU S W |

(5} Select a new group of e modules based on the connectivity to the
already fixed modules in the partial floorplan and timing i i
(7) Find a set of d covering rectangles for the partial floorplan, where d < m;
8) Formulate a system of linear ints for d ing !
and ¢ unpositioned modules;
(9) Call an integer programming procedure to obtain a new partial floorplan;

(10) m = m+ ¢
{11)  endwhile
(12)  Perform global routing;
(13)  Adjust floorplan;
end; /* Procedure FloorplanDesign */

Fig. 3. An algorithm for flobiplan design.

(a) )

3 l o4 R4 ‘ [ RS
............... .-,2 USSR & ”
. -
R1

(© (d

Fig. 4. Partitioning of a partial floorplan. (a) A partial floorplan. (b) A
covering polygon for the floorplan. (¢) Horizontal edge-cuts. (d) Partition-
ing of the polygon.

then reduction of the number of integer variables is
achieved and the execution time is reduced.

Fig. 4(a) shows a set of six fixed modules which can
be represented as a hole-free polygon in Fig. 4(b). This
polygon is then partitioned in the horizontal direction as
shown in Fig. 4(c). A set of five covering rectangles of
this polygon is presented in Fig. 4(d).

The following theorems show that the number of the
covering rectangles produced by decomposition of the
polygon is always less than or equal to the number of fixed
modules forming the polygon. In our €hse, the polygon of
the partial floorplan always has a special feature—a flat
bottom. Holes at the bottom of the polygon are ignored
because new modules are added only from the open side
of the chip. Some properties of this procedure are given
below.

Let N be a number of the fixed modules of the partial
floorplan and n be a number of horizontal edges of the
polygon covering the partial floorplan. A horizontal edge-
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cut is a horizontal line that comprises at least one hori-
zontal edge and cuts from the polygon one rectangle.

Theorem 1: n < N + 1.

Proof: There are 2 N horizontal edges for a set of N
rectilinear modules. According to the floorplan design
procedure, each module is placed either on the bottom
edge of the chip or on top of another module. Then the
bottom edge of each module is overlapping with the top
edge of the module below, except for the modules placed
on the bottom of the chip. The overlapping edges are
merged into one edge which is a union of component
edges. The number of horizontal edges produced by such
procedure is at most 2N — (N — 1) = N + 1. The number

of horizontal edges n of the covering rectangle cannot ex-

ceed this number.

Let N* be the number of partitions produced by the
partitioning procedure.

Theorem 2: N* < n — 1.

Proof: The procedure starts from the bottom of the
chip and produces a cut line for the first from the bottom
horizontal edge of the covering. This procedure separates
from the polygon a rectangle where the bottom edge is the
bottom of the chip and the top edge is an edge-cut line.
This process is repeated for each horizontal edge with an
increased y-coordinate. Because this process starts not
from the bottom but from the first horizontal edge with y
> 0, then at most n — 1 steps will be executed and n —
1 rectangles are generated. Therefore, N* < n — 1.

Corollary: N* < N.

Proof: Sincen < N + land N* <n — 1, it follows
that N* < N.

Reduction of the number of rectangles for the integer
programming step is usually very substantial. A further
reduction can be achieved if a set of overlapping parti-
tions is used instead of nonoverlapping partitions to cover
the partial floorplan.

4.3. Global Routing and Final Chip Area Computation

It is clear that a workable floorplan should allocate an
area for interconnections. Different floorplans should be
compared not by the area produced by close packing of
modules, but by the area, which includes modules and
space occupied by routing. This is especially true for de-
sign styles with routing around the modules. However,
there are very serious obstacles for the accurate prediction
of space required for interconnections. We will list some

" of these obstacles. Flexible modules are given only by -

their areas, bounds on the aspect ratios, and their connec-
tivity to other modules. Dimensions of such modules are
not known prior to floorplanning, and therefore, it is not
known how many pins can be assigned to each side of the
module. This situation cannot be described analytically

because many additional factors are involved in the pin
assignment. A major role here is played by the internal
structure of each module.

In our floorplanning methodology it is assumed that
eight potential locations are available for generalized pins
(two locations on each side). Preliminary pin assignment
takes place during global routing. Instead of considering
a center of a module as a generalized pin position for all
nets, we consider one of these eight generalized pins on
sides for each net. A combination of pin positions on dif-
ferent modules which corresponds to the shortest net
length is selected. A number of nets connected to one gen-

“eralized pin does not exceed |[n;l;;/2L;], where n; is a

number of nets connected to modules i, /;; is a length of
side k of module i (k = 1, 2, 3, 4), and L, is a perimeter
of module i. This model provides a more realistic evalu-
ation of the routing space required for interconnections
than the one with pins located at the center of the module.

The next important question is how to define positions
and widths of routing channels. In our methodology this
problem is solved in several steps. As the first step, we
include the area for interconnections F, given by (13) in
the objective function of the integer programming prob-
lem. Then the minimized objective is a combined area of
the modules and interconnections. In addition, if pin as-
signment is known, each module is placed into an enve-
lope, which exceeds the initial size of each side on the
value p, L; ¢;, ,, Where p, (o« = h, v) is metal width plus
spacing for one routing track in horizontal (vertical) di-
rection. c;,, is a connectivity of module i 0 =1, -+ -,
K) to side p of module g (p = 1, 2, 3, 4).

For example, if 6 pins were assumed on the top side of
the module and 4 pins on the bottom side, then an enve-
lope exceeds the vertical dimension of the module on the
value 10y, and the widths of the channels on the top and
on the bottom would be 6y, and 4 y,,, respectively. These
enhanced dimensions of modules are used to solve a
placement problem for the partial floorplans by an integer
programming technique. On the next step of the algorithm
a global routing is performed for the system of channels
defined by the use of extended or original modules. Our
global router is graph based. It uses the channel position
graph [11], [12] obtained from the floorplan produced by
the integer programming step. It uses the shortest path
algorithm to find a route between two generalized pins. It
also uses a penalty function for utilization of a heavily
used channel. Nets with the tight timing requirements are
routed first. On the final step of the algorithm, widths of
channels are adjusted to accommodate results of the global
routing and final chip area, and wirelength is computed.

V. EXPERIMENTAL RESULTS

Our methodology of floorplanning was implemented in
a Fortran77 program running on Apollo DN3550 work-
stations (4 Mips). It performs periodic calls to the LINDO
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TABLE I
RESULTS ON PACKING OF THE BENCHMARK AMI33 (PriM BBL2)

Algorithm Chip Utilization (%) Wirelength (m)
GORDIAN 79.5 76.26
BEAR 90.09 106.07
Minnesota 96.23 71.27

: TABLE II

RESULTS ON FINAL FLOORPLAN WITH ROUTING SPACE

Algorithm Chip Area (mm?) Wirelength (mm)
MOSAICO 3.16 151.824
VITAL 3.12 134.599
Seattle Silicon 2.94 125.000
BEAR 2.83 131.244
Delft )

(Manual Placement) 2.60 151.656
Minnesota 2.54 139.810

[17] package, which runs on the same computer and is
executed as a procedure. For easy comparisons of our re-
sults with those published earlier, a benchmark provided
by the Workshop on Physical Design 1988, has been used.
This benchmark, AMI33, (also known as PrimBBL2), in-
cludes 33 modules and 123 nets. As was mentioned in
Section II, this benchmark is widely used by many re-
searchers [11]-[13], and others.

The first set of experimental data describes application
of different algorithms to packing of the benchmark
AMI33. It is assumed that routing is performed over the
modules. Analogous assumption is made in [11] and [13].
Wiring length is measured as a net half perimeter. Com-
parative data on obtained solutions are given in Table 1.
A solution provided by our system, called Minnesota, ob-
tained the highest level of area utilization and smallest
wiring length by effectively utilizing the flexible shape
option. It took 6 min to construct this 33-module floor-
plan.

The second set of experimental data on a floorplan with
around-the-module routing, which was assembled at the
1988 Workshop on Placement and Routing, was pub-
lished in [11]. We added our experimental data to the data
presented there and merged them into Table II. The so-
lution is also presented in the Fig. 5. The Minnesota sys-
tem took 16 min to construct the floorplan and route it.

VI. CoNCLUSION

A system described in this paper utilizes a standard
mathematical software as a major subroutine for solving
floorplanning problems. Experiments demonstrated the ef-
fectiveness of this approach. Results can be further im-
proved by an application of detailed routing procedure
followed by a compaction.
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Fig. 5. The final floorplan with routing space.
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