Buffer Placement in Distributed RC-tree
Networks for Minimal Elmore Delay

Lukas P.P.P. van Ginncken

International Business Machines Corporation
Thomas J. Watson Rescarch Center
Yorktown Heights, New York

ABSTRACT: This paper presents an algorithm for choosing
the buffer positions for a wiring tree such that the “Elmore-
delay” is minimal. For given required arrival times at the sinks
of the wiring tree, the algorithm chooses buffers such that the
required departure time at the source is as late as possible. The
topology of the wiring tree, a steiner tree, is assumed given, as
well as the possible (legal) positions of the buffers. The algo-
rithm uses a depth first search on the wiring tree to construct
a set of time/capacitance pairs that correspond to different
choices. The complexity of the algorithm is O(B?) where B is
the number of possible buffer positions. An extension of the
hasic algorithm allows minimization of the number of buffers
as a secondary objective.

INTRODUCTION

Often some gates on a chip have to drive many sinks or long
wires. The propagation delay of such a signal can be im-
proved by repowering the signal by little amplifiers, called
buffers [1, 2]. The tree structure with the buffers, which
distributes the signal over the chip is called the fanout tree.
An algorithm to design such fanout trees is described in [3].
However, this algorithm does not take physical information,
such as the capacitance and RC cffects of the wires, into ac-
count.

A large portion of the delay in an integrated circuit is due to
the time it takes to charge and discharge the capacitance of
the wires and the gates of the transistors. The resistance
R =1/ of a wire increases lincarly with its length ¢ and so
does its capacitance C=c¢/. The RC dclay of the wire is
1D = 1J2RC = 1/2r¢f? |, so it increases quadratically with the
length of the wire.

As the scale of integration continucs to grow [4] the wire de-
lay will relatively increase and become the dominant factor.
Therefore buffering of wiring trees after placement or floor
planning will become increasingly important.

The growth of the delay with the length of a wire can be re-
duced to lincar by introducing buffers at fixed distances. In
practice, most connections have a tree structure with multiple
sinks. In this paper we will present an algorithm for placing
the buffers in such a trec structure such that the delay is
minimal. The special propertics of the Elmore delay model
[5, 6] allow the usc of a hicrarchical algorithm. The algo-
rithm follows the general two phase bottom-up prediction and
top-down decision approach [77.

We will show that the complexity of the algorithm is only lin-
car in the number of possible positions of the buffers. A

simple extension of the algorithm allows optimization of the
cost of the buffers used.

THE BUFFER PLACEMENT PROBLEM

The task of the new algorithm is to put buffers into an cxist-
ing wiring trec. On the wiring tree there are legal positions
where the algorithm may place a buffer. In the actual imple-
mentation only global placement and routing information is
used, so that small modifications like placing a buffer are al-
lowed.

The capacitance C; of each sink i and the required arrival time
T, of the signal at cach sink are given. Each buffer is char-
acterized by an input capacitance C,, an internal delay Dy,
and an output impedance Ry,. A wirc with length ¢ has a
distributed resistance r£ and a distributed capacitance cf.

Let D, be the delay between the source of the signal (the root
of the tree) and the sink i. The algorithm places buffers such
that the resulting required departure time T, of the signal
at the source is as latc as possible. The reguired departure
time can be expressed as:

T = min(T; — D))

source

DELAY CALCULATION FOR WIRING TREES

The wiring trees arc modceled by a tree of distributed RC
scctions [8]. The capacitance to the surrounding wires is
modeled as an extra contribution to the capacitance to
ground. The root of the trce is the source of the signal, and the
leafs of the trce arc the sinks of the signal.

Computing the delay of a wiring tree exactly is difficult, and
requires the solution of a sct of differential equations for the
distributed RC scctions. It is however possible to derive easily
computed estimates for the delay. The pivotal paper [6] pre-
sents some easily calculated bounds on the waveform of the
step response in a distributed RC trec network; [9] shows
that the bounds arc also valid for RC meshes and [10] ex-
tends the bounds in [6] with non-linear resistors. [6] also
presents a simple calculation for RC tree networks of the
“Elmore delay” [5]. The Elmore dclay has been extended for
nonlinear resistors [11] and for an initial charge condition
[12]. For reasons of algorithmic complexity, we will use the
Elmore delay as the objective function of our algorithm.

The Elmore delay is defined as the lirst order moment of the
impulse responsc h(t), also known as the inertia:

D= [h{t)tdt
Jo

CH2868-8/90/0000-0865$1.00 © 1990 IEEE

The model that we consider preserves charge (no lcakage to
ground). If this model is excited with a negative step function,
the Elmore delay is the average arrival time of the electrons
at the sink capacitor.

Figure 1. RC tree network with discrete elements

Consider an RC tree network with k resistors and k capacitors
(Figure 1). Let C, be the capacitance of node k and R, the
resistance of branch k. Lct n(k) be the set of nodes on the
path from the root to node k. Let Ry; be the resistance of the
common sections of the path from k to the root and the path
from i to the root: Ry=2Z, mpnRs (For instance in
Figure 1 R,5=R;+ R;). The Elmore delay from the root
to sink i is a sum over all sections k in the tree:

D; = ZRkiCk
¥

The delay through a single resistor is the product of its resist-
ance times all the capacitance that is charged through it. Let
L, be the total capacitative load in the sub-tree rooted at k.

)

Ry L,
ken(i)

For distributed RC lines the summation should be replaced
by integration over the length of the line. For uniform lines
we can simply replace the distributed capacitance by a lump
capacitor in the middle of the line (Figure 2).

Figure 2. A distributed section and its replacement circuit

Using the Elmore delay model, T, can easily be computed
recursively. A sub-trec rooted at k can be modeled by two
numbers: the required time T, if the sub-tree would be driven
by a buffer of zero impedance, and the load of the sub-tree
L,. When a piece of wire of length ¢ is added at the root of
the sub-tree, the new values can be computed by

866

Ty =T —rfLy — 1/2rc* (1a)

Ly =Ly +cf (1b)

When a sub-tree is buffered the new values can be computed
by

T« =Ty = Dyur = Rpurli (2a)

L'k = Crur (20)

When two sub-trees respectively rooted at n and m are joined
by node k, the new values for the whole sub-tree rooted at k
are

(3a)
(3b)

T =min {T,, T}

Ly=L,+L,

THE ALGORITHM

The buffer placement algorithm works by computing the de-
lay using the recursive formulas above. The buffer placement
algorithm computes all the different (T, L,) pairs for possible
assignment of buffers. We will call these pairs options.

The combinations of the options is done according to
equations (3a) and (3b). An option is strictly worse if the load
is larger and the required time is earlier. Because some of the
options are strictly worse then others, they need not be saved.

When the load is represented as a function of the required
time, the process can be viewed as the addition of two func-
tions (Figure 3). Obviously, the number of steps in the new
function is not larger than the sum of the number of steps in
both terms. We will show later that although the number of
possible buffer assignments is 2%, where B is the number of
legal positions for buffers, the number of options at the root
cannot exceed B + 1.

L(n L{k)

0123456
T(k

(k)

Figurc 3. Addition of the loads

The algorithm consists of two phascs. During the first phase
the function “bottom_up” computes all options for each node
in the tree. These options are stored in a global data structure
for the sccond phasc. For the options for the root of the tree,
the actual delay is calculated, using the output resistance

R, of the gate which produces the signal:
Touree = To + LoRyye - The option with the best Ty, is cho-
sen. The second phase traces back the computations of the

first phase that led to this option. While it does that, it places
buffers, This phase is similar to the first phase except that
now the options are reconstructed to determine which buffer
placement led to the optimal solution.

1 function bottom_up(k);
2 begin if isleaf(k)

3 then Z: = ((Lk, Tk))

4 else

5 begin (* compute options for sub-trees *)
6 Z1 := bottom_up(left(k));

7 72 := bottom_up(right(k));

8 (* join two sub-trees *)

9 AR

10 for pe Z1u Z2 do

11 begin if BquTp then

12 begin L: =1TLp + miH(quTq > Tp);
13 Z: =2 UL, Ty

14 end;

15 end;

16 (* add wire delay of length #(k) *)
17 for zeZ do

18 begin Ty,: =T, ~ 1/2rct2(k) — ré(k)Ty,
19 Ly: =Ly + cf(k);

20 end;

21 (* add buffer option *)

22 T: =min, _7(T ~ Dy £ ~ Rpuglyz)s

23 Z: =20 {(Chug> T3

24 return Z;

25 end;

26 end;

The function “bottom_up” first check whether node k is a leaf
node (line 2). If not, the function is called recursively to com-
pute the options for the right and left sub-trecs (line 6-7). The
oplions are combined by adding the loads of both sub-trees
(linc 12) for each different required time (line 10-15). Then
for cach option the RC influence of wire segment k is is cal-
culated (line 17-20). An extra option is finally added for an
optional buffer at the root of the sub-tree (line 22-24). In this
implementation the legal positions for the buffers are directly
after the branching points of the tree. This is done to be able
to unload the critical path as much as possible.

The complexity of the algorithm is quadratic in the number
of legal positions for the buffers and the number of leafs.
Consider the three kinds of operations. Joining two sub-trecs
gives at most the sum of the options of the sub-trees. Adding
a wire to the root of a sub-trec adds no options. Adding an
optional buffer to a sub-tree adds one option. Therefore the
number of options at the root of the tree will be B + 1. Since
there are some foops that iterate through the options in the
procedure the complexity is quadratic: O(B> + N) , where N
is the number of leafs in the trec. Notice that the minimiza-
tion in finc 12 does not need a loop if the options are stored
in ordered by time.

Many technologics have a limit on the fanout that a gatc or
a buffer may drive. This limit is specified as a capacitance
limit. This limit is casily taken into account by climinating the
options that violate the fanout limit.

In addition to the optimization of the timing, the number of
buffers used can be optimized. This is done by using triples
of numbers rather than pairs for the options. Each option has
in addition to the required time and the load also a number
for the cost of the solution. When comparing options, an op-
tion can only be discarded if it is worse in all three respects.
Unfortunately this makes the algorithm no longer polynomial.
However the experiments show that the number of options
that results from (his cxtra objective is small.

867

Another extension of the algorithm allows for different kinds
of buffers. Somc buffers have a larger internal delay, or a
larger input capacitance, but they have a smaller output
impedance. A set of different buffers can be used to generate
different new options for a buffer position.

RESULTS

The algorithm was implemented as a part of IBM’s Logic
Synthesis System and it was coded in PL/I. The placement
information was obtained from a global placement tool. The
placement tool partitions the chip in a rough grid of rectan-
gular areas.

The global routing was done by a steiner tree heuristic, with-
out taking congestion into account. Global routing and
placement of the buffers arc done on a net by net basis since
the database cannot store the wire topology.

The topology of the wires was unknown during the timing
analysis of the design, but the placement of the gates and
buffers was known. Therefore a lower bound for the Elmore
dclay was used which does not depend on the topology of the
wire. The lower bound consists of two terms.

The first term is the delay resulting from the lump
capacitance of the wire. This capacitance is directly propor-
tional to the wire length. The wire length is estimated as half
the perimeter of the smallest box containing all pins of the
wire. This, multiplied by the output impedance of the gate is
the first term of the dclay.

To take the resistance into account, the RC-delay of an un-
branched linc to each sink is added. This is an optimistic (low)
estimate of the delay due to the resistance in the wires. Let
¢£; be the distance from the source to sink i then

Di~Ry o0l + | [2rct;

A test example of several thousand CMOS standard cells with
wires of up to approximately Icm long, filled with random
logic was used for the experiments. The chip was partitioned
in a grid of 6 x 10 rectangular areas. Using the above method
to compute the chip cycle time, the new algorithm produced
a result that was 6.8% better than the result of a heuristic
that did not use placement information. This number is ex-
pected to grow with increase of the scale of integration.

The following table gives a list of pairs of primary inputs and
and primary outputs of logic with the worst delay. Delays are
expressed as a percentage of the worst chip delay. The table
shows that the improvements are consistent, and range from
0.3% to 10.0%. Notice that thc worst pair remained the worst
after the buffer placement.

WORST DELAY PIN PAIRS
PRIMARY PRIMARY OLD NEW GAIN
INPUT OUTPUT DELAY DELAY
A0 A0 100.0 93.2 6.8
A0 BO 97.1 90.3 6.8
AO co 94.5 89.7 4.8
AD Ch 94.5 89.4 4.8
AD C5 94.5 89.4 4.8
BO DO 93.9 89.8 4.1
A0 C1 93.7 88.6 5.1
A0 Cc2 93.7 88.6 5.1
A0 c3 93.7 88.6 5.1
A0 Cé 93.6 88.5 5.1
A0 G7 93.6 88.5 5.1
A0 EO 93.0 88.4 4.6
BO FO 92.1 88.0 4.1
A0 B4 88.8 83.9 4.9
co L0 87.8 75.8 2.0
BO G5 86.1 82.4 3.7
BO G6 85.5 81.6 3.9
BO H1 85.5 81.8 3.7
BO H2 85.0 81.3 3.7
BO I0 85.0 81.3 3.7
BO H3 84.7 81.0 3.7
BO JO 84.2 83.1 1.1
BO B5 84.1 83.8 0.3
Co K1 83.7 73.7 10.0
co Ko 83.7 75.8 7.9

When also the cost of the solution is included in the opti-
mization, the worst case complexity of the algorithm is no
longer polynomial. Figure 4 shows however that the growth
of the number of options with the'number of sinks is limited.
In practice the complexity of the algorithm seems to be limited
by O(n?)

—

10000
TTT]

Number of options
100 1000
T

10

Number of sinks

Figure 4. Growth of the number of options

CONCLUSIONS

We presented an algorithm that will place buffers on an ex-
isting wiring tree. The algorithm is not a heuristic. Within the
Elmore delay model and a finite set of legal buffer positions
it finds the optimal solution for a given trce topology. The
special properties of the Elmore delay model allows the use
of a hierarchical algorithm.

868

The complexity of the algorithm is polynomial: O(B? + N)
where B is the number of legal positions for the buffers and
N is the number of leafs in the tree.

The algorithm takes the RC cffects due to long wires fanout
constraints into account. It can handle different kinds of
buffers and it can minimize the number of buffers.

A possible future extension of the algorithm is to allow
inverters as buffers. This would allow the signal and its in-
verse to be distributed on a single wire, thus reducing the
wiring congestion. This would require an extra bit for each

option to indicate the polarity of the signal.

(1

2]

[3]

(4]

(5]

(o]

(7]

(81

[9]

(1ol

(il

[12]

REFERENCES

D. Strochle, “Avoiding the pittfalls in CMOS design,” New
electronics, vol. 20, no. 12, p. 30, June 1987.

K. Keutzer, “Timing optimization in a logic synthesis
system,” in G. Saucier, editor, Proc. int. workshop on logic
and arch. synthesis for silicon, Grenoble, I'rance: Inst. nat.
polytechnique, May 1988.

C.L. Berman, I.I. Carter, and K.I'. Day, “The fanout
problem: from thecory to practice,” Proc. Caltech VISI
conf., pp. 69-99, 1989.

W.C. Holton and R.K. Cavin, “A perspective on CMOS
technology trends,” Proc. of the IELE, vol. 74, no. 12, pp.
1646-1668, 1986.

W.C. Elmore, “The transient response of damped linecar
networks,” Jowrnal of applied physies, vol. 19, pp. 55-63, Jan
1948.

J. Rubinstein, P. Penficld Jr., and M.A. llorowitz, “Signal
delay in RC tree networks,” ILEEE trans. on computer aided
design, vol. CAD-2, no. 3, pp. 202-211, July 1983.

L.P.P.P. van Ginneken, The predictor-adaptor paradigm,
PhDD thesis, Eindhoven university of technology, Ilindhoven
April 1989.

[.T. Ho and S.K. Mullick, “Analysis of transmission lines
on integrated circuit chips,” IEEL J. solid-state circuits, vol.
SC-2, no. 4, pp. 201-208, Dccember 1967,

J.1.. Wyatt Jr., “Monotone sensitivity of nonlincar nonuni-
form RC transmission,” TEEE trans. on circuits and
systems, vol. CAS-32, no. 1, pp. 28-33, January 1985.

Q. Yu and O. Wing, “Wavelorm bounds of nonlinear RC
trees,” Proc. int. symp. circuits and systems, pp. 356-359,
Montreal, Canada, May 1984,

P.K. Chan, “An extension of Iilmore’s delay and its appli-
cations for timing analysis of MOS pass transistor
networks,” IEELE trans. on circuits and systems, vol. CAS-33,
no. 11, pp. 1149-1152, November 1986.

T.-M. Lin and C.A. Mcad, “Signal dclay in general RC
networks,” JLEEE trans. on computer aided design, vol.
CAD-3, no. 4, pp. 331-349, October 1984.

