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Abstract—The classic buffer insertion algorithm of van Gin-
neken has time and space complexity ( 2), where is the
number of possible buffer positions. For more than a decade, van
Ginneken’s algorithm has been the foundation of buffer insertion.
In this paper, we present a new algorithm that computes the same
optimal buffer insertion, but runs much faster. For 2-pin nets, our
time complexity is ( log ) and space complexity is ( ).
For multipin nets, our time complexity is ( log2 ) and space
complexity is ( log ). The speedup is achieved by four novel
techniques: predictive pruning, candidate tree, fast redundancy
check, and fast merging. On industrial test cases, the new algo-
rithms is 2–80 times faster than van Ginneken’s algorithm and
uses 1 4–1 500 of the memory. Since van Ginneken’s algorithm
and its variations are used by most existing algorithms on buffer
insertion and buffer sizing, our new algorithm significantly im-
proves the performance of all these algorithms. The predictive
pruning technique has been applied to buffer cost minimization
(Shi et al., 2004), and significantly improved the running time.

Index Terms—Buffer insertion, data structure, Elmore delay,
interconnect, routing.

I. INTRODUCTION

AS the feature size continues to shrink, delay optimization
of interconnect becomes increasingly important. One pop-

ular technique for reducing interconnect delay is buffer insertion
[1], [2], [7]–[9], [14], [15]. The objective of the optimal buffer
insertion problem is to find where to insert buffers in the inter-
connect so that the timing requirements are met.

For buffer insertion under a given routing tree, van Ginneken
[14] in 1990 proposed a dynamic programming algorithm. His
algorithm gives the optimal slack and has time and space com-
plexity , where is the number of possible buffer po-
sitions. Lillis et al. [8] extended van Ginneken’s algorithm to
allow buffer types in time .

Some researchers consider simultaneous routing tree con-
struction and buffer insertion, which is an NP-hard problem.
Okamoto and Cong [9] combined A-tree construction with van
Ginneken’s algorithm. Kang et al. [7] constructed a bounded
delay tree, and then used van Ginneken’s algorithm to optimize
buffers. Zhou et al. [15] combined the shortest path algorithm
with van Ginneken’s algorithm.

For buffer insertion on a single line allowing continuous
buffer positions and continuous buffer sizes, Dhar and Franklin
[6] proposed a closed form solution, and Chu and Wong [4]
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proposed a quadratic programming approach. It should be
pointed out that the discrete version of the buffer insertion
problem, which is studied by van Ginneken and us, is more
difficult than the continuous version of the problem. In addition,
the continuous methods can not be applied to trees.

The performance of the above algorithms are limited by
the quadratic time complexity of van Ginneken’s algorithm,
as pointed out by the researchers [1], [8], [15]. For large nets
or large number of wire segments, van Ginneken’s algorithm
becomes the bottleneck.

Van Ginneken’s algorithm consists of three major operations:
1) adding a buffer in time; 2) adding a wire in time;
and 3) merging two branches in time, where and

are the numbers of buffer positions in the two branches. As
a result, van Ginneken’s algorithm has time complexity .
Our algorithm performs the three operations in much less time:
1) adding a buffer in time; 2) adding a wire in
time; and 3) merging two branches in time, where

.
As a result, our algorithm has time complexity

for 2-pin nets and for multipin nets. Our speedup is
achieved by four novel ideas: 1) predictive pruning; 2) candidate
tree; 3) fast redundancy check; and 4) fast merging. Together,
the four ideas make the improvement possible.

We also extend the basic algorithm to buffer sizing by al-
lowing buffer types in time for 2-pin nets
and for multipin nets, an improvement of

time algorithms of Lillis et al. [8]. Furthermore, our
algorithm allows the user to specify for each vertex the set of
possible buffer sizes, which immediately implies an
time solution for the driver selection problem studied by Alpert
et al. [2]. For algorithms that use van Ginneken’s algorithm
as an inner subroutine, the new algorithm may significantly
improve the running time of these algorithms.

It is interesting to note that van Ginneken’s algorithm is sim-
ilar to the time floorplan minimization algorithms of
Stockmeyer [13] and Otten [10]. Using a similar data structure
and a fast merging scheme, Shi improved the time complexity of
floorplanning to [11]. However, the buffer insertion
problem is much more difficult due to the delay calculation.

Section II formulates the problem. Section III describes the
techniques to speedup the three operations in van Ginneken’s
algorithm. The complete algorithm is in Section IV, the time
and space complexity analysis is in Section V, and extension
to multiple buffer types is in Section VI. Simulation results are
given in Section VII and the conclusion is given in Section VIII.

II. PRELIMINARY

A net is given as a routing tree , where
, and . Vertex is the source vertex
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and also the root of is the set of sink vertices, and is
the set of internal vertices. Each sink vertex is associated
with sink capacitance and required arrival time .
A buffer library contains different types of buffers. For each
buffer type , the intrinsic delay is , driving resistance
is , and input capacitance is . A function
specifies the types of buffers allowed at each internal vertex.
Each edge is associated with lumped resistance
and capacitance .

Following previous researchers [1]–[2], [4], [7], [8], [9], [14],
[15], we use the Elmore delay for the interconnect and the linear
delay for buffers. For each edge , signals travel from

to . The Elmore delay of is

where is the downstream capacitance at . For any buffer
at vertex , the buffer delay is

where is the downstream capacitance at . When a buffer
is inserted, the capacitance viewed from the upper stream is

.
For any vertex , let be the subtree downstream

from , and with being the root. Once we decide where to
insert buffers in , we have a candidate for . The
delay from to sink under is

where the sum is over all edges in the path from to . If is
a buffer in , then is the buffer delay. If is not a buffer
in , then . The slack of under is

Buffer Insertion Problem: Given a routing tree ,
sink capacitance and for each sink , capacitance

and resistance for each edge , possible buffer posi-
tion , and buffer library , find a candidate for that max-
imizes .

An example of the buffer insertion problem is shown in Fig. 1
and one of its candidate solutions is shown in Fig. 2.

The effect of a candidate to the upstream is traditionally de-
scribed by slack and downstream capacitance [14]. De-
fine as the downstream capacitance at node under
candidate . For any two candidates and of , we
say dominates , if and

. The set of nonredundant candidates of , which
we denote as , is the set of candidates such that no candi-
date in dominates any other candidate in , and every
candidate of is dominated by some candidates in .
Once we have , the candidate that gives the maximum

can be found easily.
Finally, we briefly review the three major operations in van

Ginneken’s dynamic programming algorithm.

Fig. 1. Example of buffer insertion problem.

Fig. 2. One candidate solution for Fig. 1.

Fig. 3. T (v) consists of buffer position v and T (v ).

Assume we have computed nonredundant candidates for
, and now reach a buffer position , see Fig. 3. Wire

has 0 resistance and capacitance. If we do not insert
a buffer at , then every candidate for is a candidate
for . If we insert a buffer at , then there will be a new
candidate

where is taken over all nonredundant candidates of
. The new candidate may make other candidates re-

dundant, or may be redundant itself. Using a linked list to
store nonredundant candidates, van Ginneken’s algorithm takes

time to generate , insert into the list of nonredundant
candidates, and delete redundancy.

Example 1: Assume there are three nonredundant candi-
dates , and for with their values being

, and , respectively. Further, assume
a buffer with and . The
values of the three candidates after inserting the buffer will be
as follows:

with buffer

with buffer

with buffer

Therefore, the best candidate to insert a buffer is , and the
value of the new candidate is . By inserting

into the original list of nonredundant candidates, we have

In this case, all candidates are nonredundant.
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Fig. 4. T (v) consists of wire (v; v ) and T (v ).

Fig. 5. T (v) consists of T (v ) and T (v ).

When a wire is added as shown in Fig. 4, every
candidate for becomes a candidate for where

Using a linked list, it takes time to update candidates and
check redundancy.

Example 2: Assume the values of nonredundant can-
didates for are

If we add a wire with and , then these
candidates become

Clearly, the last candidate is redundant and should be deleted.
Finally, when two subtrees are merged as shown in Fig. 5,

things are more complicated. Both edges and
have zero resistance and capacitance. For each candidate in

, we find the best candidate in to form a new
candidate for

Do the same for each candidate in . Then, take the union
of all candidates and delete redundancy. Using linked list, the
process takes time, where and are the number
of nonredundant candidates for and .

Example 3: Let the values of the nonredundant can-
didates for be

and the candidates for be

Then, the above process will produce the following candidates
of whose is determined by candidates in

Fig. 6. If � b-dominates � at v ; � dominates � at v.

and the following candidates of whose is determined by
candidates in

After deleting redundancy, the set of nonredundant candidates
for is

III. SPEEDUP TECHNIQUES

To illustrate the main ideas, we assume for now that there is
only one noninverting buffer type , and is also driven by
a buffer of type . Extensions to multiple buffer types are in
Section VI.

A. Predictive Pruning

When we insert buffer at , we want to associate the buffer
with a candidate that maximizes slack

among all candidates. However, such a candidate is not nec-
essarily the candidate with the maximum as shown in
Example 1.

For any candidates and of , we say -dominates
if and .

Lemma 1: If -dominates , then is redundant.
Proof: The general situation is shown in Fig. 6, where

and are candidates for and are candidates
for and is the first buffer upstream from in s. The
only difference between and is that contains for

, while contains for . It is sufficient to show
if -dominates , then

Using instead of will not increase delay from to sinks
in . If at is determined by , let be
the resistance of the wire(s) from to .

It is easy to see if dominates , then -dominates .
From now on, we say a candidate is redundant if it is -domi-
nated by another candidate. We call this predictive pruning since
it prunes the future redundant solutions. The nonredundant can-
didates after predictive pruning are in the same order as the tra-
ditional nonredundant candidates under pruning, except
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that some candidates that are nonredundant under are re-
dundant under . It is easy to show the following.

Lemma 2: If and do not -dominate one another, then
if and only if .

Predictive pruning not only gives a better pruning criteria, but
also allows us to find the candidate that gives the maximum
in time. For the candidates in Example 1, we have

Since the values of the three candidates are

the last candidate is redundant under predictive pruning and
should be deleted. So the remaining nonredundant candidates
are and , with their values

Therefore, the best candidate to insert the buffer is .
Note that we assumed the source is driven by a buffer type of

. However, Lemma 1 and 2 are true for any source with driving
resistance greater than . In general, if the upstream resis-
tance of every node is at least , then we can define a corre-
sponding and use it to prune.

B. Candidate Tree

We assume the readers are familiar with balanced binary
search trees, such as red-black trees [5]. Given a balanced
binary search tree of keys, the search, insertion and deletion
of any key can be done in time. In practice, simple
binary search trees that do not rebalance work almost as well
as balanced search trees.

We will use a balanced binary search tree , which we
call a candidate tree, to efficiently store nonredundant candi-
dates of . Please do not confuse routing tree with the
candidate tree . The former is a topology while the latter
is a data structure. For each candidate of , there is a cor-
responding node in . is organized in increasing

order and increasing order, and pruned by . This is
possible because the candidates in are nonredundant. For
each routing tree, we have a candidate tree to store the nonre-
dundant candidates for that routing tree. Since our dynamic pro-
gramming algorithm is bottom up, initially there will be many
candidate trees, one for each sink. As the sinks and branches are
merged, the candidate trees are merged as explained later in the
paper. Finally when we merge all the branches, there is only one
candidate tree.

When an edge is inserted, see Fig. 4, the values of
and of each candidate for must be updated. Van

Ginneken spends linear time to update each candidate, which is
necessary for him since he stores and explicitly.

The candidate tree is an implicit representation that allows
time insertion of wires and buffers. In the candidate

tree, and are not explicitly stored in the cor-
responding node . Instead, the information is stored in the

Fig. 7. Candidate tree A(v ) of four candidates. Fields qa; ca; and ra are 0
for all candidates.

Fig. 8. Candidate tree A(v) of four candidates after the wire is added.

path from to the root of . Each node contains
five fields: and . When and are all 0,
and give and , respectively. Fig. 7 is an ex-
ample candidate tree where and fields are all 0.

Assume , and for the root. When edge
is added, the following information is inserted to the fields of

the root:

1) , meaning that of every candidate in the
tree will be increased by ;

2) , meaning that of every candi-
date in the tree will be decreased by ;

3) , meaning that of every candidate in the
tree will be decreased by , where
is the value before adding edge .

The implicit representation is used recursively on each node
in the candidate tree. The actual update of and for each can-
didate will take place later, whenever that candidate is visited.
This delayed update can save a great amount of computation
time.

In general, let be a candidate of be the node for
in be the root of , and ,

be the path from the root to . Then

Fig. 8 shows the candidate tree after adding a wire in
Fig. 7.
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The following C code defines the data structure of each can-
didate tree node.

typedef struct A node
float q, c, qa, ca, ra;
struct TypeLoc *b, *ba;//type & location
char dirty; // whether to update
int size; // candidates in subtree
struct A_node *left, *right;
struct L_node *l;// to expiration list
char color; // for red-black tree
A node;

Although the definition of and is recursive, the values
can be computed in time for each candidate, whenever
each candidate is visited. The search of a candidate tree is sim-
ilar to the search of any binary search tree. The only difference
is that when a node is dirty, fields and will be updated to give
the current value of and , and fields and are prop-
agated one level down to the children. The delayed propagation
is crucial to the reduction of the running time. The following C
code illustrates the update process. Function up-
dates all fields of node , and propagates information to the chil-
dren. It reflects how (1) is evaluated.

void update(A_node *x)
// propagate to left subtree
x left qa x left qa x qa

(x ra) (x left ca);
x left ca x left ca x ca;
x left ra x left ra x ra;
x left dirty TRUE;
// propagate to right subtree
x right qa x right qa x

qa (x ra) (x right ca);
x right ca x right ca x

ca;
x right ra x right ra x

ra;
x right dirty TRUE;
// update x
x q x q x qa x ra*x c;
x c x c x ca;
x ca x qa x ra 0;
x dirty FALSE;

Fig. 9 is an example showing how the candidate tree is up-
dated when node is visited.

The following C code illustrates the search. Function
searches a candidate tree with node being the

root, for a node such that . For simplicity,
we illustrate a recursive version, though the implemented
algorithm is nonrecursive [5].

A node search(A node x, float y)
if (x NIL)
return NIL;

Fig. 9. Update of candidate tree A(v) when some nodes are visited.

if (x dirty TRUE)
update(x);

if (x q y)
return x; // found

else if (x q y)
return search(x left, y);

else
return search(x right, y);

Note that whenever a node is visited, the path from root to
that node is “cleaned up,” meaning that every node on this path
is not dirty.

C. Buffer Location and Type

In the original van Ginneken’s algorithm [14], the lists
are stored at each node in the bottom-up phase. After the best
slack is found, the buffer locations and types for the best can-
didate are determined in the top-down phase by recomputing
the partial solutions. Therefore, van Ginneken’s algorithm uses

memory since each list may take storage,
and there are such lists.

In our algorithm, we use the candidate trees to store buffer
location and type information in memory for 2-pin nets,
and for multipin nets. This is a significant reduction
over the traditional van Ginneken’s algorithm that uses
memory.

Similar to the fields of and , the location and type are
implicitly stored. For each candidate , the information is stored
in the path from the root to . In the above definition of

, there are two pointers and of type , which
is defined as follows.

typedef struct TypeLoc //type & location
int btype; // buffer type
int bloc; // buffer location
int used; // number of times used
struct TypeLoc *left, *right;
TypeLoc;

Assume we create a new candidate from candidate and
a new buffer at position . Let point to the candidate tree
node for and point to the candidate tree node for . Further-
more assume contains the type and location of buffers in
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, and is empty. Then, the following process will create
the type and location information for

TypeLoc *p;
p malloc (sizeof (TypeLoc));
p btype bi;
p bloc vj;
p left y b;
p right NULL;
x b p;
x ba NULL;
p used 1;
y b used ;

Since may contain buffers, any explicit recording of
the the types and locations of these buffers will require
memory. However in our algorithm, we simply use one pointer

b to share the buffer information from , thereby
using only memory. The field is to keep track
how many candidates point to . When a candidate that refer-
ences is deleted, will be decreased by 1. When

equals 0, we delete .
Now, assume we create a new candidate by merging can-

didates and . Let point to candidate tree node for and
point to the candidate tree nodes for and respec-

tively. Then, we do the following to store the buffer type and
locations of

TypeLoc *p;
p malloc (sizeof (TypeLoc));
p btype MERGE;
p bloc NULL;
p left y1 b;
p right y2 b;
x b p;
x ba NULL;
p used 1;
y1 b used ;
y2 b used ;

Field is used for more complicated merging. Let point
to a node in the candidate tree and assume field
is nonempty. Then, every candidate in the subtree with
being the root is associated with the buffer types and locations
of . The following C code illustrates additional work of

to update the buffer type and location. The omitted
part was shown earlier.

void update(A node x)
TypeLoc *p;
// propagate to left subtree

p malloc(sizeof(TypeLoc));
p left x ba;
p right x left ba;
p btype MERGE;
x ba used ;

Fig. 10. Four candidates with their buffer types and locations: � has no
buffer, � has one buffer at v ; � has one buffer at v , and � consists of �
and a buffer at v as shown in Fig. 7.

x left ba used ;
x left ba p;
p used 1;
// propagate to right subtree

p malloc(sizeof(TypeLoc));
p left x ba;
p right x right ba;
p btype MERGE;
x ba used ;
x right ba used ;
x right ba p;
p used 1;
// update x

p malloc(sizeof(TypeLoc));
p left x ba;
p right x b;
p btype MERGE;
x ba used ;
x b used ;
x b p;
p used 1;
x ba NULL;

The following C code illustrates how the buffer assignment
is retrieved. Function report(y) prints the buffer type and
location information of TypeLoc pointer .

void report(TypeLoc *y)
if (y NULL)
return;

if (y btype MERGE)
printf(“buffer type %d location

%d\n”, y btype, y bloc);
report(y left);
report(y right);

Fig. 10 is an example showing how the buffer assignment are
stored in the candidate tree.
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D. Fast Redundancy Check

For every , we also maintain an expiration list to
tell if a candidate in is redundant under predictive pruning
when a wire is added to . Let contain nonredundant can-
didates in increasing and order. The expiration
list contains , where

(2)

Intuitively, is the threshold such that with such a resistance
added, is dominated by .

Lemma 3: Let and be two nonredundant candidates
of , where and

. Define according to (2). If we attach an edge
at , then is -dominated by for if and

only if .
Proof: For or 2

Therefore,

Hence, if and only if . On the
other hand, we always have

Therefore, is -dominated if and only if .
is also organized as a balanced search tree in increasing

order. The following C code defines the data structure for each
expiration list node.

typedef struct L node
float l; // threshold
float la; // additional info
struct A node a; // to candidate

tree
char dirty; //whether to update
struct L_node *left, *right;
L node;

Using balanced search trees or priority queues, finding the
minimum , insertion and deletion of any can be done in

time. Similar to the candidate tree, if a node is dirty,
is added to and propagated to of the two children. Note

the cross reference with the candidate tree.
Figs. 11–13 are examples showing how the candidate tree and

expiration list change when a wire is added.

E. Fast Merge

The case for merge in Fig. 5 is more involved. Assume we
have computed all nonredundant candidates for and

Fig. 11. Candidate tree and expiration list before adding a wire.

Fig. 12. After adding a wire with R = 2; C = 2, (400, 70) is redundant.

Fig. 13. Final candidate tree and expiration list.

, and stored the results in , , and
respectively. Now we want to merge and to form

. Let the number of candidates in and be
and , and assume without loss of generality .

First, we generate nonredundant candidates of whose
are decided by . For each candidate in , we want
to find a candidate in such that ,
and is the minimum among all such s. This can be
done by searches to in total time . The
result candidates are stored in a list .

Then, we generate nonredundant candidates of whose
are decided by . We will turn candidate tree to

store these new candidates, using field . For each candidate
in , the candidates that can be combined with form an
interval in . The interval boundaries can be found through
two searches of , and updates can be made to the bound-
aries. The total time is also .

Finally, we insert list of size into the modified can-
didate tree of size . We also check redundancy, and
update expiration list. When we finish, candidate tree is

. The total time is .
Figs. 14–17 are an example of the fast merge process. For

simplicity, fields of all candidates are initially 0.
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Fig. 14. Two candidates trees A(v ) (right) and A(v ).

Fig. 15. List Z of candidates of T (v) whose Q are decided by T (v ).

Fig. 16. Candidate tree A(v ) now stores candidates of T (v) whose Q are
decided by T (v ).

Fig. 17. Insert candidates in Z to the updated candidate tree and delete
redundancy. Final candidate tree.

IV. ALGORITHM

We will compute all nonredundant candidates for the
given tree . Our fast buffer insertion (FBI) algorithm starts
from the sinks, and builds nonredundant candidates bottom-up.

Algorithm .
Input Routing tree with root .
Output Candidate tree that contains
all nonredundant candidates of .

Begin
1: If is a sink then
Create a candidate tree to store
the only candidate of ;
Return .

2: Else if consists of edge and
then ;

Modify to include delay due to

wire ;
Delete redundancy;

Return the modified .
3: Else if consists of buffer
position and then ;
Find candidate in that has max

;
Form a new candidate and insert it into

;
Delete redundancy;
Return the modified .

4: Else
;

Assume without loss of generality
;

4.1: nonredundant candidates of
whose are determined by ;

4.2: Compute nonredundant candidates of
whose are determined by ;

Change to store the resulting
candidates;

4.3: Insert into and delete
redundancy;
Return the modified .

End of Algorithm.

We now explain the details.

A. Sink

If is sink , then we create a candidate tree that
contains only one node. Let be the pointer point to the root,
then the fields are set as follows.

x c C(si);
x q RAT(si);
x qa x ca x ra 0;
x dirty FALSE;

The expiration list is empty.

B. Buffer

Consider the case in Fig. 3, where and wire
has zero resistance and capacitance. Assume all

nonredundant candidates for have been computed and
stored in candidate tree , and a corresponding expiration
list is created.

If we do not add a buffer at , then all nonredundant candi-
dates for become nonredundant candidates for . If
we add a buffer at , then there is a new candidate such that

and . From Lemma 2, can be found in
time from . Once we form , we search for and

such that . Then check
if is -dominated by , and if -dominates . If is
-dominated by , delete . If -dominates , insert
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into in time and delete , and check ,
etc. Each deletion can be done in time. We will dis-
cuss time for deletion in Theorem 1.

The insertion of between and will cause the fol-
lowing updates to : Delete old , and insert two new s
corresponding to and , respectively. This can be
done in time.

C. Wire

Consider the case in Fig. 4, where is a wire. As-
sume all nonredundant candidates for have been com-
puted and stored in candidate tree , and a corresponding
expiration list is created.

Each candidate of with wire is a new
candidate for . We modify the root of .

if (x dirty TRUE)
update(x);

x ca C(e);
x qa R(e)*C(e)/2;
x ra R(e);
x dirty TRUE;

Now, all candidates for become candidates for .
Call the new candidate tree .

However, we are not done yet. Wire may make some s
redundant. We compare with the minimum in . If

, according to Lemma 3, the corresponding candidate
is redundant and should be deleted from . Repeat the

process, until . Each deletion from and
takes time. We will discuss the total deletion time in
Theorem 1.

From (2), it can be seen that the addition of decreases the
value of all s by . Therefore, we add to the field
of the root of in time. The order of s in does
not change. This gives us the new expiration list .

D. Merge

Assume we have computed all nonredundant candidates for
and , and stored the results in ,

and respectively. Now we want to merge and
to form .

Let the number of candidates in and be and
respectively. Assume without loss of generality ,

otherwise exchange and . Field size tells us in
time which tree contains more candidates.

Step 1: Consider nonredundant candidates of whose
are decided by . We also include nonredundant candidates
whose are decided by both and simultaneously.
For each candidate in , we want to find a candidate
in such that , and is the
minimum among all such s. In other words, we want to find
index

Fig. 18. Nodes u(� ); u(� ); . . . ; u(� ) in candidate tree A(v ) form an
interval.

Given , we can find the corresponding by searching .
Together, is a candidate of with slack
and capacitance .

To quickly generate all nonredundant candidates of
whose s are decided by , we traverse every in
in increasing order, and search for the corresponding

. The total time to traverse is , and the total
time to search is . The newly generated
candidates are stored in a temporary list in increasing
order for Step 3. The size of is at most . Expiration list

is freed.
Step 2: Now consider nonredundant candidates of

whose are decided by . For each candidate in ,
we want to find candidates in such that

This can be done through two searches of using
and . If no such and are found,

increment by 1 and repeat. Otherwise, we form the following
candidates of :

To store the newly generated candidates, we change the fields
of nodes in . Step by step, we will turn

into an candidate tree of . However, we cannot
afford time to explicitly change the nodes. Instead,
we change fields . Fig. 18 illustrates the general situation of
nodes . These nodes form a contin-
uous interval in . Let be the nearest common
ancestor of and . Let the left boundary be the set
of candidates such that is on the path from to

and . In Fig. 18, nodes with
“L” are the left boundary. Let pointer point to the node for
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. For every left boundary node pointed by in , not
including , we make the following changes:

// c values
u c u c x c;
u right ca u right ca x
c;
u right dirty TRUE;
// buffer type and location
TypeLoc *p;
p malloc(sizeof(TypeLoc));
p left u b;
p right x b;
p btype MERGE;
u b used ;
x b used ;
u b p;
p used 1;
p malloc(sizeof(TypeLoc));
p left u right ba;
p right x b;
p btype MERGE;
u right ba used ;
x b used ;
u right ba p;
p used 1;

Similarly, let the right boundary be the set of candidates
such that is on the path from to and

. In Fig. 18, nodes with “R” are the
right boundary. For every right boundary node , not including

, we make the following changes.

// c values
u c u c x c;
u left ca u left ca x c;
u left dirty TRUE;
// buffer type and location
TypeLoc *p;
p malloc(sizeof(TypeLoc));
p left u b;
p right x b;
p btype MERGE;
u b used ;
x b used ;
u b p;
p used 1;
p malloc(sizeof(TypeLoc));
p left u left ba;
p right x b;
p btype MERGE;
u left ba used ;
x b used ;
u left ba p;
p used 1;

Finally, for . Let it be pointed by . We make the
following changes.

// c value
u c u c x c;
// buffer type and location
TypeLoc *p;
p malloc(sizeof(TypeLoc));
p left u b;
p right x b;
p btype MERGE;
u b used ;
x b used ;
u b p;
p used 1;

Among the newly generated candidates, no one dominates
another. The total search time for s and s is . It
is easy to see all the ncas can be found in the same time. The total
number of nodes in the left and right boundaries, for all intervals,
is at most the number of nodes visited. Therefore, the total time
to update fields and for all intervals is . The
expiration list does not change.

Step 3: Insert list of size generated in Step 1 into the
candidate tree of size obtained in Step 2. For each

in , we search in , such that
. Then check if is -dominated by , and

if -dominates . Delete redundancy if any, then insert
into . When we finish, candidate tree is .

Since there are searches and insertions, the total
time for search and insertion is .

The insertion of between and will cause the fol-
lowing updates to : delete old and insert two new s
corresponding to and , respectively. This can be
done in time.

V. ANALYSIS

We first prove a fact we need later in the estimation of the
time complexity.

Lemma 4: For any node , if contains possible buffer
positions, then there are at most nonredundant candidates
for .

Proof: By induction on . When , the lemma is
clearly true.

If is a buffer position and is connected to subtree by
an edge , and contains buffer positions. From
the induction hypothesis, has at most nonredundant
candidates. Adding a buffer at , we can get at most one more
nonredundant candidate.

If is connected to subtrees and , where
and contain and buffer positions respectively,
where . From the induction hypothesis, and

have at most and nonredundant candidates
respectively. The value of each candidate of is decided
by or by or by both. If the value of a candidate
of is decided by an candidate of , then there is at
most one choice for the candidate of , and vice versa.
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The value of maximum among all candidates in and
can not appear in . Therefore, there are at most

nonredundant candidates for
.

Theorem 1: Algorithm FBI correctly finds all nonredundant
candidates in worst case time for 2-pin nets, and

for multipin nets, where is the number of buffer
positions. The worst-case space complexity is .

Proof: The correctness proof is similar to that of van Gin-
neken’s algorithm. From Lemma 1, using -dominate to prune
candidates will produce the same final result as van Ginneken’s
algorithm. Now consider the time complexity. Assume without
loss of generality, the number of edges is the same as the number
of sinks and the number of buffer positions . Otherwise, we
can preprocess the routing tree in time by shrinking
any two edges and , where is degree 2 and

, into one edge . Since each wire can be
added in time, we will only consider the time for inserting
buffer and merging.

For 2-pin nets, our algorithm has time complexity
since adding a buffer and wire only take time. The
space complexity is only since both the candidate tree
and the expiration list have only element, and the buffer
assignment storage is also size since we use the pointer
structure shown earlier to store the assignment and there is no
merging operation.

Now consider the multipin nets, which need merging opera-
tion. Let be the worst case time complexity of the algo-
rithm on search and insertion operations only, where is the
number of buffer positions. From Lemma 4, there are at most

nonredundant candidates. Therefore, we have the fol-
lowing recurrence relation:

if is a sink
if is a wire or
a buffer position

is a branch

where is a constant, and are the number of buffer po-
sitions of and , respectively, and the maximum is
taken over all such that and

. We prove by induction that

(3)

Obviously, . Assume (3) is true for all
, then

To show the total time for deletion is , we use an
argument known as the amortization. Each deletion uses at most

time. From Lemma 4, there are at most insertions,
so there are at most deletions.

TABLE I
SIMULATION RESULTS FOR A 20-mm 2-PIN NET WITH ONE BUFFER TYPE

TABLE II
SIMULATION RESULTS FOR A 20-mm 2-PIN NET WITH FIVE BUFFER TYPES

TABLE III
SIMULATION RESULTS FOR INDUSTRIAL TEST CASES WITH ONE BUFFER TYPE

The space complexity is bounded by , due to
the fact that the number of nodes in the boundary in Fig. 18 is

as shown in Brown and Tarjan [3].

if is a sink
if is a wire or
a buffer position

if is a branch

Using a similar induction, it can be shown the space complexity
. However, if we just compute the

pairs instead of the buffer locations, then the space complexity
can be reduced to by omitting fields related to the buffer
locations.

VI. MULTIPLE BUFFER TYPES

For multiple buffer types, the pruning is defined for
each type of buffer :

. In other words, is the slack before an imagi-
nary buffer of type at . For any two candidates and
of , we say -dominates if
and . For each buffer type , there will
be one candidates tree to store candidates of that
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TABLE IV
SIMULATION RESULTS FOR INDUSTRIAL TEST CASES WITH FIVE BUFFER TYPES

are nonredundant under pruning. For each buffer type
, there is also one expiration list to tell if a candidate

in will be redundant when a wire is attached to . The
algorithm is similar to the algorithm for one buffer type. The
differences are explained as follows.

In the sink case, if is sink , then for every buffer type ,
we create a candidate tree that contains only one node
and all are same. All expiration lists are empty.

In the wire case, let contain nonredundant candidates
in increasing and order. The expiration list

contains , where

We need compare with the minimum in .
In the buffer case, when is a possible buffer position, then

for each buffer type , we need to form a new candidate
from . For every , it should be inserted to all nonredun-
dant candidates trees and check the redundancy and update the
expiration list .

In the merge case, for each buffer type , candidate trees
and are merged to form the new candidates tree

.
Now consider the time complexity. Each step we have to per-

form times as much work as the single buffer case, and the
number of nonredundant candidates is . Therefore, for
2-pin nets, the time complexity is

. For multipin nets, the time complexity is
.

VII. SIMULATION

Both van Ginneken’s algorithm and the new algorithm are im-
plemented in C an run on a Sun SPARC workstations with 400
MHz and 2 GB of memory. The device and interconnect pa-
rameters are based on TSMC 180 nm technology. Five different
buffer types are used from 1X to 16X. For 1X buffer,

fF, ps. For other buffer types,
and scale accordingly, and intrinsic delay is iden-

tical for all buffers. The sink capacitances range from 2 to 41

fF. The wire resistance is 0.076 m and the wire capacitance
is 0.118 fF m. The implemented algorithms include buffer as-
signments. Table I shows for 2-pin nets with 20 mm long and one
buffer type (16X), the new algorithm is 9–87 times faster than
van Ginneken’s algorithm and uses – of memory.
Table II shows for 2-pin nets with five buffer types, the new algo-
rithm is 10 times faster than van Ginneken’s algorithm and uses

of memory. Table III shows for large industrial circuits
with one buffer type (16X), the new algorithm is 2–80 times
faster than van Ginneken’s algorithm and uses – of
memory. Table IV shows for large circuits with five buffer types,
the new algorithm can be 16 times faster than van Ginneken’s
algorithm and uses of memory.

In both cases, for multiple buffer type, when is small, the
new algorithm is slower than van Ginneken’s algorithm due to
multiple candidate trees overhead.

VIII. CONCLUSION

We presented a new algorithm for optimal buffer insertion of
worst case time and space for 2-pin nets, and
worst case time and space for multipin
nets. This is an improvement, both in time and in space, of the
classic van Ginneken’s time and space algorithm [14].
For multiple buffer types, we also presented an
algorithm for 2-pin nets, and algorithm for
multipin nets. This is an improvement of the previous best

algorithm [8]. Simulation results show our new
algorithms are significantly faster than van Ginneken’s and

algorithms for large industrial circuits.
Since van Ginneken’s algorithm and its variations are used by

most existing algorithms on buffer insertion and buffer sizing,
our new algorithm significantly improves the performance of all
these algorithms.
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