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Abstract—Buffer insertion is an effective technique to reduce inter-
connect delay. In this paper, we give a simple O(mn) time algorithm
for optimal buffer insertion, where m is the number of sinks and n is
the number of buffer positions. When m is small, our algorithm is a
significant improvement over the recent O(n log2 n) time algorithm by
Shi and Li, and the O(n2) time algorithm of van Ginneken. For b buffer
types, our algorithms runs in O(b2n + bmn) time, an improvement of the
recent O(bn2) algorithm by Li and Shi. The improvement is made possible
by an innovative linked list that can perform addition of a wire, addition
of a buffer in amortized O(1) time, and smart design of pointers. We then
present the extension of our algorithm for the buffer cost minimization
problem, which improves the previous best algorithm. On industrial test
cases, the new algorithms is faster than previous best algorithms by an
order of magnitude.

Index Terms—Buffer insertion, data structure, Elmore delay, intercon-
nect, routing.

I. Introduction

Delay optimization techniques for interconnect are increas-
ingly important for achieving timing closure of high perfor-
mance designs. One popular technique to reduce interconnect
delay is buffer insertion. Saxena et al. [1] projected that 35%
of all cells would be intrablock repeaters for the 45 nm node.
Consequently, algorithms that can efficiently insert buffers are
essential for the design automation tools.

This paper studies buffer insertion in interconnect with a
set of possible buffer positions and a discrete buffer library.
In 1990, van Ginneken [2] proposed an O(n2) time dynamic
programming algorithm for buffer insertion with one buffer
type, where n is the number of possible buffer positions. His
algorithm finds a buffer insertion solution that maximizes the
slack at the source. In 1996, Lillis et al. [3] extended van
Ginneken’s algorithm to allow b buffer types in time O(b2n2).
In 2003, Shi and Li [4] used a number of techniques to
improve the time complexity to O(b2n log n) for two-pin nets,
and O(b2n log2 n) for multipin nets. To improve the efficiency
of the merging operation, Chen and Zhou [5] proposed a
data structure based on skip list, while keeping the same
complexity. To reduce the quadratic effect of b, Li and Shi [6]
proposed an O(bn2) algorithm. However, all these algorithms
do not utilize the fact that most nets have small numbers of
pins and large number of buffer positions in real applications.

In this paper, we first propose a new algorithm that performs
optimal buffer insertion for two-pin nets in time O(b2n). The
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speedup is achieved by an observation that the best candidate
to be associated with any buffer must lie on the convex hull
of the (Q, C) plane, a clever bookkeeping method and an
innovative linked list that allow O(1) time update for adding a
wire or a candidate. The new data structure, which is a simple
implicit linked list, is much simpler than the candidate tree
used in [4] and the skip list used in [5]. We then extend the
algorithm to m-pin nets in time O(b2n + bmn). Experimental
results show that our algorithm is faster than previous best
algorithms by an order of magnitude. Note that all previous
research assumed m and n are of the same order. But in fact, m

is often much less than n. Even if m > n, we can merge sinks
in a branch that contains no buffer position, without changing
the problem. Therefore in this paper we assume m ≤ n.

The van Ginneken [2] algorithm does not control buffer
costs. Lillis et al. [3] presented an pseudopolynomial time
algorithm to control buffer cost. Later, the min-cost buffer
insertion problem was proven to be NP-hard in [8] and a poly-
nomial time approximation scheme algorithm was presented
in [9]. In this paper, we present how to extend our max-slack
algorithm for buffer cost minimization problem on two-pin and
multipin nets. Our experimental results show that we can get
significant speedup compared to the state-of-the-art optimal
algorithm and implementation [8].

Note that the buffer insertion algorithm for the max-slack
problem still has its practical value in physical synthesis
ecosystem for timing driven placement [10], [11], multiobjec-
tive optimizations with buffer-interconnect delay model [13],
[14], where the virtual buffering model is used.

In this paper, Elmore delay is used as interconnect delay
model due to its high fidelity for the buffer location decision
(though the final solution acceptance/rejection can be deter-
mined with real timer) and speed [10], [16]. Some adjustments
can be used to improve the accuracy [15] without changing
the optimality of our algorithms. We also assume a Steiner
tree is given, which could be a buffer-aware Steiner tree [12],
or directly from global or detail wires. One can insert buffers
along the routed wires to minimize the congestion or fixed
postrouting timing problems from detour wires.

The preliminary version of this paper is shown in [17],
and the main differences are: 1) two new Lemmas added to
complete the proof of the algorithm for the multipin nets;
2) the extension to the buffer cost minimization problems; and
3) new implementation of all previous algorithms with state-
of-the-art speedup techniques. The algorithms presented in this
paper can also be applied to layer assignment algorithm in [7].

II. Preliminary

A net is a tree T = (V, E), where V = {v0} ∪ Vs ∪ Vn,
and E ⊂ V × V . Vertex v0 is the source vertex and also the
root of T , Vs is the set of sink vertexes, and Vn is the set
of internal vertices. Each sink vertex s ∈ Vs is associated
with sink capacitance C(s) and required arrival time RAT(s).
A buffer library B contains b types of buffers. For each buffer
type Bi ∈ B, the intrinsic delay is K(Bi), driving resistance is
R(Bi), and input capacitance is C(Bi). A function f : Vn → 2B

specifies the types of buffers allowed at each buffer position.
0278-0070/$31.00 c© 2012 IEEE
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Each buffer type Bi also has a buffer cost weight W : B →
[0, +∞). Each edge e ∈ E is associated with lumped resistance
R(e) and capacitance C(e).

For each edge e = (vi, vj), signals travel from vi to vj . The
Elmore delay of e is D(e) = R(e)

(
C(e)

2 + C(vj)
)
, where C(vj)

is the downstream capacitance at vj . If vi is inserted a buffer
of type Bk, then the buffer delay is D(vi) = R(Bk) · C(vi) +
K(Bk), where C(vi) is the downstream capacitance at vi, and
the capacitance viewed from the upper stream is C(Bk). For
any vertex v, let T (v) be the subtree downstream from v, and
with v being the root. Once we decide where to insert buffers
in T (v), we have a candidate α for T (v). The delay from v to
sink si ∈ T (v) under α is D(v, si, α) =

∑
e=(vj,vk)(D(vj)+D(e)),

where the sum is over all edges in the path from v to si. If
vj is inserted a buffer in α, then D(vj) is the buffer delay,
otherwise, it is zero. The slack of v under α is Q(v, α) =
minsi∈T (v){RAT (si) − D(v, si, α)}.

Max-Slack Buffer Insertion Problem: Given a net T =
(V, E), possible buffer position function f , and buffer library
B, find a candidate α for T that maximizes Q(v0, α).

The effect of a candidate α for tree T (v) at v to the upstream
is traditionally described by slack Q(v, α) and downstream
capacitance C(v, α) [2]. For any two candidates α1 and α2

of T (v), we say α1 dominates α2, if Q(v, α1) ≥ Q(v, α2)
and C(v, α1) ≤ C(v, α2). The set of nonredundant candidates
of T (v), which we denote as N(v), is the set of candidates
such that no candidate in N(v) dominates any other candidate
in N(v), and every candidate of T (v) is dominated by some
candidates in N(v).

Min-Cost Buffer Insertion Problem: Given a net T =
(V, E), possible buffer position function f , and buffer library
B, buffer cost function W : B → (0, +∞), find a candidate
α for T that satisfies Q(v0, α) ≥ RAT(v0) and the total buffer
cost is minimum.

A pseudopolynomial algorithm was presented in [3] that
uses (Q, C, W) to describe each candidate. We will first
discuss the max-slack problem.

III. Two-Pin Nets

In this section, we show how to compute optimal buffer
insertion for two-pin nets in O(b2n) time.

A. Convex Pruning
The concept of convex pruning was first proposed in [6].
Definition 1: Let α1, α2 and α3 be three nonredundant

candidates of T (v) such that C(α1) < C(α2) < C(α3) and
Q(α1) < Q(α2) < Q(α3). If Q(α2)−Q(α1)

C(α2)−C(α1) < Q(α3)−Q(α2)
C(α3)−C(α2) , then

we call α2 nonconvex, and prune it.
Lemma 1: For two-pin nets, convex pruning preserves op-

timality.
This lemma (see [17] for the complete proof) only applies

to two-pin nets. For multipin nets nonredundant candidates
that are pruned by convex pruning could still be useful for the
upstream.

Convex pruning of a list of nonredundant candidates sorted
in increasing (Q, C) order can be performed in linear time,
and the insertion of a new candidate is O(1) [6].

Fig. 1. (a) T (v′) consists of buffer position v′ and T (v). (b) T (v) consists of
T (v1) and T (v2).

B. Best Candidates
Assume we have computed the set of nonredundant candi-

dates N(v) for T (v), and now reach a buffer position v′, see
Fig. 1. Wire (v′, v) has 0 resistance and capacitance. Define
Pi(α) as the slack if we add a buffer of type Bi at v′ for any
candidate α: Pi(α) = Q(v, α) − R(Bi) · C(v, α) − K(Bi).

If we do not insert any buffer at v′, then every candidate for
T (v) is a candidate for T (v′). If we insert a buffer at v′, then
for every buffer type Bi, i = 1, 2, . . . , b, there will be a new
candidate βi: Q(v′, βi) = maxα∈N(v){Pi(α)}, C(v′, βi) = C(Bi).
Define the best candidate for Bi as the candidate α ∈ N(v)
such that α maximizes Pi(α) among all candidates in N(v). If
there are multiple αs that maximize Pi(α), choose the one
with minimum C. From Lemma 1, it is easy to see that
all best candidates are on the convex hull. The following
lemma says that if we sort candidates in increasing Q and
C order from left to right, then as we add wires to the
candidates, we always move to the left to find the best
candidates.

Lemma 2: For any T (v), let nonredundant candidates after
convex pruning be α1, α2, . . . , αk, in increasing Q and C order.
Now add wire e to each candidate αj and denote it as αj + e.
For any buffer type Bi, if αj gives the maximum Pi(αj) and
αk gives the maximum Pi(αk + e), then k ≤ j.

The following lemma says the best candidate can be found
by local search, if all candidates are convex.

Lemma 3: For any T (v), let nonredundant candidates after
convex pruning be α1, α2, . . . , αk, in increasing Q and C order.
If Pi(αj−1) ≤ Pi(αj), Pi(αj) ≥ Pi(αj+1), then αj is the best
candidate for buffer type Bi and Pi(α1) ≤ · · · ≤ Pi(αj−1) ≤
Pi(αj), Pi(αj) ≥ Pi(αj+1) ≥ · · · ≥ Pi(αk).
Please see [17] for the complete proof of Lemmas 2 and 3.

C. Data Structure
We store all nonredundant candidates of T (v) in a linked

list L(v) of the following data structure:

typedef struct Candidate {
double q, c;
Candidate *next, *prev;

} Candidate;

We also have three global variables: double Qa, Ca, and
Ra. L(v) is organized in increasing C and Q order, and pruned
by convex pruning. The value of Q and C of each candidate
α, pointed by a, are given by fields a->q and a->c, as well
as global variables Qa, Ca, and Ra: Q(α) = (a->q) − Qa −
Ra · (a->c), C(α) = (a->c) + Ca.

To facilitate the search for best candidates and the in-
sertion of new candidates, we have two arrays of pointers:
Candidate *best[b], *new[b], where best[i] points
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Algorithm 1 Algorithm Two-Pin
Input Routing tree T (v1) consists of path v1, . . . , vn+1,

where vn+1 is the sink.
Output Nonredundant candidates of T (v1) stored in

linked list L.
Begin
1: Let Qa=0, Ca=0, Ra=0;
2: Let L contain one candidate (Q, C), where

Q = RAT(vn+1) and C = C(vn+1);
3: Let all best and new pointers point to the only

candidate in L;
4: For i = n to 1 do
5: AddWire(e), where e = (vi, vi+1);
6: For each buffer type Bj allowed at vi do
7: AddBuffer(j);
8: Return L;
End.

Algorithm 2 Algorithm M-Pin
Input Routing tree T (v) with root v.
Output List A(v) that contains all nonredundant

candidates of T (v).
Begin
1: If T (v) consists of path v to v1, where v1 is a branch

vertex then
2: Recursively compute A(v1) for T (v1);
3: A(v) = 2PinSubroutine(A(v1));
4: Else T (v) consists of subtrees T (v1) and T (v2),

where wires (v, v1) and (v, v2) have zero resistance
and capacitance;

5: Recursively compute A(v1) and A(v2);
6: Merge A(v1) and A(v2) to form A(v);
7: Return A(v);
End.

to the most recent best candidate for Bi, and new[i] points
to the most recent new candidate for Bi.

D. Algorithm

When we reach an edge e with resistance e->R and
capacitance e->C, we update Qa, Ca, and Qa to reflect the
new values of Q and C of all candidate in L in O(1) time,
without actually touching any candidate: Qa = Qa + e->R*e-
>C/2 + e->R*Ca, Ca = Ca + e->C, Ra = Ra + e->R.
This is similar to Shi and Li’s algorithm [4], but much simpler.

When we reach a buffer position, we may generate a new
candidate for each buffer type Bi. But first, we have to find
the best candidate for Bi, which is done by pointer best[i].
After the best candidate is found, form the new candidate a,
where a->c = B[i]->C − Ca, a->q = P(i,\,best[i])
+ Qa + Ra*a->c. It is easy to verify that the above transfor-
mation of q and c fields will make the new candidate consis-
tent with every other candidate in L(v). Now insert the new
candidate into L. The location to insert new candidates also
moves to the left in L, because the capacitances of all candi-
dates increase when wires are added. Finally, we perform con-
vex pruning around the new candidate. The entire algorithm is
illustrated in Algorithm 1, where the details of AddBuffer,
AddWire, and the proof of Theorem 1 are in [17].

Theorem 1: Algorithm 1 finds the optimal buffer insertion
of any two-pin nets in worst-case time O(b2n).

IV. Multipin Nets

We now extend the two-Pin algorithm to multipin nets. In a
multipin net, a candidate for a two-pin segment may be merged
with a candidate of a different branch, before associated with

a buffer. In this case, optimal solution could come from a
nonconvex candidate. Therefore, we need all nonredundant
candidates of every two-pin segment, not only the convex ones.

This is done by a subroutine 2PinSubroutine(...)
for two-pin segments. The subroutine is similar to Algorithm
1, but in addition to list L(v), maintains a second list A(v).
A(v) contains All nonredundant candidates of T (v), including
nonconvex ones. So A(v) is a superset of L(v). Best candidates
are still found through L, yet new candidates are inserted to
both L and A. For any two-pin segment u1, u2, . . . , uk, the
subroutine takes as input A(uk), prunes nonconvex ones to
get L(uk), find the best and new pointers from L(uk), and
computes each L(ui) and A(ui) as it moves all the way to u1.
Note that the merging process is still performed on A(v) lists
for both branches.

To get the best complexity, for multipin nets, we require that
buffers are sorted in nonincreasing driving resistance R(B1) ≥
R(B2) ≥ · · · ≥ R(Bb).

The following lemmas show important properties for the lo-
cations of new pointers generated after merging two branches,
which are the key to the complexity proof of M-Pin algorithm
later. Some notations are defined here that will be used for
both lemmas. For any T (v) with two subtrees T (v1) and T (v2),
as shown in Fig. 1, where edges (v, v1) and (v, v2) have
zero resistance and capacitance, let the list of nonredundant
candidates (including nonconvex ones) α1, α2, . . . , αk of T (v1)
be A(v1), the list of nonredundant candidates β1, β2, . . . , βl

of T (v2) be A(v2), and the list of nonredundant candidates
γ1, γ2, . . . , γt of T (v) after merging be A(v). All candidates
are in increasing Q and C order.

Lemma 4: For buffer type Bi, if the best[i] pointer
of A(v1) points to αo, best[i] pointer of A(v2) points
to βp, and best[i] pointer of A(v) points to γq, then
q ≤ p + o − 1.

Proof: We first show how the merging process is per-
formed. When two subtrees are merged, for each candidate
αa in A(v1), we find a candidate βb in A(v2) such that
Q(v1, βb) ≥ Q(v2, αa), and C(v1, βb) is the minimum among
all such βbs. We then form a new candidate γ in A(v) with
Q(v, γ) = min{Q(v1, αa), Q(v2, βb)}, C(v, γ) = C(v1, αa) +
C(v2, βb). Do the same for each candidate in A(v2). Therefore,
Q of each new candidate is either decided by A(v1) or
A(v2).

If there is a candidate γh in A(v) that is formed by
the best candidate αo in A(v1) and another candidate βg in
A(v2), where Q(v1, αo) ≤ Q(v2, βg), Q(v, γh) = Q(v1, αo),
C(v, γh) = C(v1, αo) + C(v2, βg), then for any new candidate
γ in A(v) that is formed by a candidate αa in A(v1) and a
candidate βb in A(v2), where a > o, b ≥ g, we show that
Pi(γh) ≥ Pi(γ) as follows.

Since αo is the best candidate for buffer type Bi, we have
R(Bi) ≥ Q(v1,αa)−Q(v1,αo)

C(v1,αa)−C(v1,αo) . If the Q of γ is decided by αa, we
have

Q(v, γ) − Q(v, γh)

C(v, γ) − C(v, γh)

=
Q(v1, αa) − Q(v1, αo)

C(v1, αa) − C(v1, αo) + C(v2, βb) − C(v2, βg)

≤ Q(v1, αa) − Q(v1, αo)

C(v1, αa) − C(v1, αo)
≤ R(Bi).
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If the Q of γ is decided by βb, we know that Q(v2, βb) ≤
Q(v1, αa), and

Q(v, γ) − Q(v, γh)

C(v, γ) − C(v, γh)
=

Q(v2, βb) − Q(v1, αo)

C(v1, αa) − C(v1, αo) + C(v2, βb) − C(v2, βg)

≤ Q(v1, αa) − Q(v1, αo)

C(v1, αa) − C(v1, αo)
≤ R(Bi).

So no matter how the Q of γ is decided, we have
Q(v,γ)−Q(v,γh)
C(v,γ)−C(v,γh) ≤ R(Bi), which means Pi(γh) ≥ Pi(γ).

Similarly, it is easy to show that if there is a candidate
γs in A(v) that is formed by the best candidate βp in A(v2)
and another candidate αf in A(v1), where Q(v1, αf ) ≥
Q(v2, βp), Q(v, γs) = Q(v2, βp), C(v, γs) = C(v1, αf ) +
C(v2, βp), then for any new candidate γ in A(v) that is formed
by a candidate αa in A(v1) and a candidate βb in A(v2), where
a ≥ f , b > p, we have Pi(γs) ≥ Pi(γ).

Therefore, for any candidate γ in A(v) with Q(γ) ≥
Q(γmin(s,h)), we have Pi(γmin(s,h)) ≥ Pi(γ). So q ≤ min(s, h) ≤
p + o − 1.

From the above lemma, the total number of times that
best[i] moved in A(v1), A(v2), and may move in A(v)
in the future is bounded by q + k − o + l−p ≤ k + l− 1, which
is the total number of candidates so far.

Lemma 5: For buffer type Bi, if the new[i] pointer
of A(v1) points to αo, new[i] pointer of A(v2) points
to βp, and new[i] pointer of A(v) points to γq, then
q ≤ p + o − 1.

Proof: During the merging process, the capacitance of
new merged candidate is always bigger than the capacitance of
individual candidate from either branches. Therefore, new[i]
pointer of A(v) will always point to the candidate in A(v)
whose Q is decided by αo or βp or the candidate at its left
side. So we have q ≤ p + o − 1.

From the above lemma, the total number of times that
new[i] moved in A(v1), A(v2), and may move in A(v) in
the future is bounded by q + k − o + l − p ≤ k + l − 1, which
is the total number of candidates so far.

Theorem 2: Algorithm 2 computes the optimal buffer in-
sertion of an m-pin net in time O(b2n + bmn).

Proof: We compute the same set of all nonredundant
candidates as previous algorithms, so the algorithm is correct.

At each branch vertex, merging A(v1) and A(v2) takes
O(bn). Generating L list from A list takes O(bn) by convex
pruning. Since buffers are sorted in nonincreasing driving
resistance, it takes O(bn) to find all best pointers [6]. Since
both A and L are sorted in increasing C order, finding all new
pointers takes O(bn) time. In addition, from Lemmas 4 and 5,
for any buffer type Bi, the number of times that best[i]
pointers and new[i] pointers moved in all branches is
bounded by the total number of candidates, O(bn). Since there
are b buffer types, the total time is bounded by O(b2n) for all
two-pin segments.

Therefore, the time complexity of M-Pin algorithm is
O(b2n + bmn).

Our new algorithm can be easily integrated with predictive
pruning [4], [8], and inverting buffer types [3].

V. Buffer Cost Minimization

Now we consider the min-cost buffer insertion problem. We
assume all costs are integers. For two-pin nets, let integer ω

TABLE I

Simulation Results for a 2-mm Two-Pin Net

CPU Time (s)
n b New Li–Shi [6] Shi–Li [4] LCL [3]

O(b2n) O(bn2) O(b2n log n) O(b2n2)
1 0.01 0.02 0.01 0.01

404 4 0.02 0.03 0.10 0.03
8 0.03 0.04 0.35 0.05
16 0.07 0.05 1.37 0.10
1 0.01 0.59 0.06 0.34

2044 4 0.06 0.66 0.62 0.66
8 0.16 0.71 2.14 1.08
16 0.35 0.81 7.67 2.00
1 0.09 16.75 0.51 9.48

10 404 4 0.38 18.00 3.68 18.54
8 0.80 18.41 13.92 29.88
16 1.79 18.89 50.83 52.47

TABLE II

Simulation Results for Multipin Nets

CPU Time (s)
m n b New Li–Shi [6] Shi–Li [4] LCL [3]

O(b2n + bmn) O(bn2) O(b2n log2 n) O(b2n2)
1 0.02 0.06 0.04 0.04

25 1337 4 0.07 0.18 0.44 0.17
8 0.14 0.30 1.75 0.43

16 0.30 0.46 7.38 1.06
1 0.04 0.22 0.07 0.13

2567 4 0.14 0.60 0.91 0.57
8 0.29 0.99 3.66 1.54

16 0.58 1.45 15.31 3.76
1 0.19 4.77 0.44 2.58

12 407 4 0.71 12.86 5.22 13.41
8 1.41 21.19 21.82 38.39

16 2.92 29.99 88.33 97.83
1 0.12 0.17 0.15 0.11

5647 4 0.37 0.47 1.77 0.42
8 0.68 0.76 7.15 0.94

16 1.29 1.15 27.67 2.06
1 0.20 0.50 0.30 0.31

337 10 957 4 0.70 1.30 3.57 1.25
8 1.29 2.09 14.4 2.82

16 2.47 3.04 56.58 6.36
1 1.03 9.17 1.74 5.08

53 437 4 3.56 23.82 20.5 24.08
8 6.87 36.99 83.09 64.94

16 13.10 50.07 332.26 162.85

TABLE III

Simulation Results for Min-Cost Buffer Insertion, Where n is

the Multiplying Factor of the Number of Candidate Locations

n Library CPU Time (s) Speedup
LCL with Predictive Pruning [3], [8] New

Small(8) 19.46 21.93 0.89
1X Large(14) 44.86 39.52 1.14

All(24) 86.76 72.54 1.20
Small(8) 346.81 331.88 1.04

5X Large(14) 614.67 446.61 1.38
All(24) 1109.36 671.61 1.65

Small(8) 736.54 678.38 1.09
8X Large(14) 1202.18 851.67 1.41

All(24) 2304.04 1206.82 1.91

be the maximum possible cost of any candidate, while the
minimum nonzero cost is scaled to 1. The algorithm in [3]
performs the following operations for two-pin nets: at each
buffer position, insert b · ω new candidates. Since there are n

buffer positions, the total number of nonredundant candidates
is O(bnω). Therefore, the time complexity of their algorithm is
O(b2n2ω). In [6], the complexity can be reduced to O(bn2ω).
In this section, we reduce the time complexity to O(b2nω).

We use the same (Q, C, W) paradigm, where W is the total
buffer cost. For each T (v), candidates are stored in ω lists
L1, L2, . . . , Lω. List Li contains candidates with cost i. In
each list, candidates are stored as (Q, C) pairs using implicit
representation described above, and pruned through convex
pruning. The same global variables are used: Qa, Ca, and Ra.
When we reach each wire, we perform the same operation
as before in O(1) time. When we reach a buffer position,
we perform the same operation for each list Li; form b new
candidates with each buffer Bj and insert the new candidates
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TABLE IV

Simulation Results for Max-Slack Buffer Insertion

n Library CPU Time (s)
New Li–Shi [6] Shi–Li [4] LCL [3]

O(b2n + bmn) O(bn2) O(b2n log2 n) O(b2n2)
Small(8) 1.32 1.81 17.38 2.12

8X Large(14) 2.38 2.24 40.33 3.55
All(24) 4.77 2.93 110.45 5.98

Small(8) 7.37 71.45 136.36 121.65
50X Large(14) 13.45 75.29 321.32 196.67

All(24) 25.86 83.82 904.49 341.09
Small(8) 11.89 186.27 238.79 327.11

80X Large(14) 21.76 196.11 564.97 535.12
All(24) 41.71 212.77 1585.86 918.61

into list Li+W(Bj). We do not perform pruning across different
lists. This gives the total time as claimed.

For multisink nets, the problem is NP-hard [8]. Our algo-
rithm can improve the practical runtime when we reach each
wire or a buffer position, though the time complexity is still
dominated by the merging part.

VI. Simulation

The first set of experiments are for max-slack buffer inser-
tion problem. All algorithms (O(b2n2) [3], O(b2nlog2n) [4],
O(bn2) [6], and the new algorithm) are implemented in C and
run on a Sun SPARC workstations with 400 MHz clock and
2 GB memory. For all algorithms, the memory management
is done in the way similar to [4], which means for the two-
pin net, all algorithms take O(bn) memory, and for the net
with m sinks, except for O(b2nlog2n) algorithm, all other
algorithms take O(bmn) instead of O(bn2) memory. Therefore,
the implementation of O(b2n2) in this paper produce much
better running time than the one in [4]. Also, predictive
pruning [4], [8] has been implemented in all algorithms to
get the fastest running time for each algorithm. This is the
first experiment to compare all optimal buffering algorithms
with the state-of-the-art of the implementation.

Table I shows for a 2-mm long two-pin net with different
possible buffer insertion locations, the new algorithm is up to
20 times faster than previous best algorithms. Table II shows
for large industrial multipin nets where m is as high as 337, the
new algorithm is still faster than previous best algorithms, and
the speedup could be 16 times even for 16 types of buffers. All
algorithms generate same slacks. The device and interconnect
parameters for these two experiments are based on TSMC
180 nm technology and can be found in [17].

The second set of experiments are for min-cost buffer
insertion problem. We test our new algorithm on nets extracted
from an industrial ASIC chip with 300k+ gates [8]. The gates
have been placed and buffers are required to optimize timing.
This group consists 429 nets with two to five pins among 1000
most time consuming nets. Each net has tens to hundreds of
buffer positions with different metal layers and vias. The buffer
library consists of 24 buffers, in which 8 are noninverting
buffers and 16 are inverting buffers. The range of driving
resistance is from 120  to 945 , and the input capacitance
is from 6.27 fF to 121.56 fF. In this case, our new algorithm
could get to 2X faster than previous best optimal algorithm [8].
The result is shown in Table III. Note that when the number of
buffer positions is small and the buffer library size is small, the
new algorithm could be a little slower due to its data structure
overhead.

For the same 1000 nets, another experiment is done to
compare algorithms O(b2n2) [3], O(b2nlog2n) [4], O(bn2)
[6], and the new algorithm for the max-slack buffer insertion
problem. The result is shown in Table IV. This set of ex-
periment is run on a Red Hat Linux machine with 2.93 GHz
clock and 128 GB memory, because the original machine for
the other experiments is not available to the authors when
this experiment is performed. All algorithms for the max-
slack buffer insertion problem run much faster than those
for min-cost buffer insertion problem after CPU scaling. We
also choose 8x, 50x, and 80x as multiplying factors of the
number of candidate locations to show the meaningful runtime
comparison of different algorithms. The new algorithm is up
to 17 times faster than previous best algorithms.

The source codes of the O(mn) algorithm and all previous
fast buffer insertion algorithms that are presented in this paper
have been released to the public at [18].
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