A CLASS OF MIN-CUT PLACEMENT ALGORITHMS*

by

Melvin A. Breuer
Departments of Electrical Engineering & Computer Science
University of Southern California
Los Angeles, California 90007

Summary

In this paper we present a class of min-cut place-
ment algorithms for solving some assignment prob-
lems related to the physical implementation of elec-
trical circuits. We discuss the need for abandoning
classical objective functions based upon distance, and
introduce new objective functions based upon ''signals-
cut." The number of signals cut by a line ¢ isa lower
bound on the number of routing tracks which must
cross ¢ in routing the circuit. Three specific objec-
tive functions are introduced and the relationship be-
tween one of these and a classical distance measure
based upon half-perimeter is presented.

Two min-cut placement algorithms are presented.
They are referred to as Quadrature and Slice /Bisec-
tion. The concepts of a block and cut line are intro-
duced. These two entitiesare the major constructs
in developing any new min-cut placement algorithm.

Mostofthe concepts presented have been imple-
mented, and some experimental results are given.

I. Introduction

This paper deals with a classical problem encoun-
tered in the physical implementation of circuit cards
or chips, referred to as the placement problem. The
problem is defined, semi formally, as follows., Giv-
en a set of elements §={e;, e, ..., e,} and a set of
signals #={s,,5,...,8,}. We associate with each
element e€ 4§ a set of signals ,,, where o/, € /. Simi-
larly with each signal s€ / we associate a set of ele-
ments §,, where ¢,={e|s€ »,}. 4, is said to be a
signal net, We are also given a set of slots or loca-~
tions £={L,, L,..., Lp} , where pzn. The place-
ment problem is to assign each e, € § to a unique lo-
cation L, such that some objective is optimized. Nor-
mally each element is considered to be a point, and
if e, is assigned to location L, then its position is de-
fined by the coordinate values (x,,y,}. Usually a sub-
set of the elements in § are fixed, i.e., pre-assigned
to locations, and only the remaining elements can be
assigned to the remaining unassigned locations. Non
fixed elements are called moveable elements, and
those slots not pre-assigned elements are called open
slots,

Example placement problems deal with polycell
LSI chip design [2,4,5], PC card design, and assign-
ing functions to previously placed IC's,

For generality we will refer to the area (such as a
chip, card or board) containing the slots or locations
as the carrier.

After the elements are assigned to locations the
resulting circuit configuration is routed. The auto-
matic routing of 100% of the signals in ., is one of the

*-

This work was supported in part by the National
Science Foundation under Grant ENG74-18647,

main objectives of the physical implementation portion
of a design automation system.

Returning now tothe placement problem we see that
our actual goal is to assign each element to a location
in such a manner as to maximize the routability of the
resulting layout. However, this is a very intangible
goal, since it is highly dependent on a number of fac-
tors, one being the basic algorithmic method employed
by the router.

Let d, be an estimate of the total distance of route
required to interconnect net s, and set N,=2;d,. Then

vs
classical placement algorithms attempt to assign ele-
ments to locations such that N, is minimized. By so
doing it is felt that routability is increased.

Usually d, is either the length of a minimal spanning
tree (MST) for §,, one-half the perimeter of the mini-
mal enclosing rectangle, denoted by 3P, or the Steiner
distance. The corresponding total distances using the
MST, %P or Steiner length are denoted by N,(MST),
N,(P), and N,(S), respectively.

In the placement algorithm to be proposed in this
paper we suggest a new objective function. This ob-
jective was motivated by two observations, namely (1)
successful routing of a carrier is dependent on the den-
sity of interconnections on the carrier, and (2) some
areas of a carrier are more dense than others.

Let c be ahorizontal line crossing the surface of a
carrier. For an arbitrary signal s, if one or more
elements in §, are above ¢, and one or more elements
is §, are below ¢, then when routing signal net 8, at
least one connection must cross line c [9]. We say
that line ¢ is a cut line, ard c is said to cut signal s.
For a given plaement, the value of ¢, denoted by v(c),
is the total number of signals cut by c. In general, v(c)
is highly dependent on the location of ¢ as well as the
geometry of the carrier. In this paper we employ a
family Cyand C, of vertical and horizontal cut lines,
Our objective function is to minimize some function f
of the values of each cut line in¢, and ¢,. Placement
procedures which minimize the value of such a function
are called min-cut placement algorithms.

Druffel and Schmidt [1, 7] have briefly referred to a
placement procedure that falls into our category of
min-cut placement.

Also a brochure [6] describing a proprietory DA
system makes reference to using this concept for place-
ment.

11. Development of Objective Functions for
Min-Cut Placement Algorithms

A, Classical Objective Function

The first objective function one might consider is
the function

N_(0) =Zv(e) (1)

284

where the sum is over all c € cye, To evaluate the
properties of this function one must first define the lo-
cation of the cuts in ¢, and C,.

Consider a regular carrier geometry where ele-
ments are laid out in columns and rows, and where
the distance between each column and row is one unit.
We define a canonical set of cut lines as the collection
of cut lines between each row and each column. Then
the following result can be easily proven.

Theorem 1: Using a canonical set of cut lines, mini-
mizing the objective function N (g) == L v(c), where the
sum is taken over all cut lines, is equivalent to mini-
mizing the objection function N,(P) =Z}d., where the
sum is taken over all signal nets and the measure ta-
ken for d, is +P.» Hence, for an optimal placement
N,{0) = N,(P). Since minimizing the function N. (o) is
equivalent to minimizing the function N,(P), using the
function N, (g) would not lead to any new results which
could not be obtained by existing techniques.

B. Min-Max Objective Function

For some carrier technologies, such as polycell
LSI carriers, a suitable objective function is

Nc(rnNI)zmin(Max{v(cheC}) (2)

where C is a set of cut lines. This objective function
is most useful in trying to reduce the maximum track
usage in a channel. Such an objective function is dif-
ficult to satisfy, and will not be dealt with in this pa-
per.

C. Sequential Objective Function

We will next present an objective function, called a
sequential objective function and denoted by N.(S)),
whose near minimal value is relatively easy to achieve
and which also leads to good placements.

The form of this class of objective function is

Nc(sq) =minv(eir)|minv(cir_1)\. .e lminv(cil) (3)

where Cy7Cpes+,C is a given set of cut lines, (iv ig e,
i} is a permutation p on (1, 2,..., 1), "|" can be read
as ''subject to,'" and the expression for N, (8) is read
from left to right. Hence CyppCigrenes C‘r represents
an ordered sequence of cut lines, ¢, being the first
cut line processed and ¢, the last. By appropriate se-
lection of p we can specialize the placement algorithm
to fit a specific carrier geometry.

In the remainder of this paper we will discuss and
illustrate heuristic procedures for minimizing N.(S,),
as well as present several useful orderings for the cut
lines.

III, Basic Structure of Min-Cut Placement Algorithms

Consider the carrier shown in Fig.1, where some
arbitrary assignment of elements to slots has occur-
red. We refer to such an assignment of moveable
elements to slot locations as a temporary assignment,
denoted by T-assignment. A rectangular subarea A of
the board is shown along with a cut line c. Line c di-
vides A into areas A, and A,. Now, within 4,, i=1, 2,
we can re-assign some T-assigned elements located
in A, to be in A, and an equal number of T-assigned
elements in A, to be in A,. Assume we do this in such
a way so that the total number of signals on the carrier

285

crossing c¢ is minimized, subject of course to the con-
straint that elements not in A cannot be moved. This
new assignment of T-assigned elements is again con-
sidered to be aT-assignment.

ST T T T2

I R §

PR, SEDEIN EUpEpIp EpEEpppm—— T)

i R
el

Figure 1. Carrier and a Block

The original area A, along with the slots and ele-
ments within A is called a block, and is denoted by B.
Note that a cut line divides a block into two new blocks.
The process of dividing a block into two new blocks is
called block division. A moveable element is not con-
sidered placed until the block it is in has only one open
slot. At this time it is said to be placed or assigned to
that slot.

Let B be a set of disjoint blocks., Initially let the
entire carrier be block B,, and set 3 = {B1}' Then
one form of a min-cut placement algorithm for mini-
cut placement algorithm for minimizing N.(S)) is as
follows.

Algorithm 1: Cut oriented min-cut placement algor-
ithm for Nc(Sq).

1. Select a sequence (permutation p) for processing
the cut lines.

2. Select next cut line c in sequence to process.

3, Assume c cuts across a subset of blocks B'=
{Btl' By, ooy By }. Re-assign T-assigned elements
within these blocks such that v(c) is minimized.

4, In a natural way, from two new blocks from each of
the blocks cut by c.

5. If there are no more cut lines to process, or if
every block contains at most one moveable element,
then exjt, else return to step 2. ®

The sequence in which cut lines are to be processed
can be either fixed or adaptive.

Consider the carrier shown in Fig.2a along
with the five cut lines. Assume the lines are to be
processed in the sequence c,, ¢, Cg, Cp, C4 Starting
with the initial block 5, consisting of the entire car-
rier and all elements, we process B, with respect to
c,, hence minimizing v(c,). Block B, is now divided
into two new blocks, denoted by B, and B, (this is a new
block B,). Note that once an element has been assigned
to the left (right) of ¢, and B, is divided, the element
can never be moved to the other side of ¢, no matter
where subsequent cut lines occur. We now process
B, and B, (simultaneously) with respect to ¢,, produc-
ing the four blocks shown in Fig.2d. Next we process

Example:

0
o

C
1 21 3 !Cl
T I |
cy ! | 1
|- :
i
cs_-_l__ (__|___—_ 1
1T : B
I L | . 1
! | { |
(a) (b)
c4 Bl BZ
1 N P - .
5
B, B, 2B __.B,. |
(c) (d)
I(:2 :03
" 1
T
B I
1 By Byl B, | B2
B ! ;
3 ; . B3| Bg | Pa
B
5 I Bs| By | B
I +
|
(e) (f)

1 7 21710

o
w
o3}
o]
o

8 41711

(g)

Figure 2. Min-Cut Algorithm 1 Processing B, with
Respect to the sequence €1+ C4s Cgs €y Cy

cg which only intersects B, and B,. Note that even
though the moveable elements in B, and B, are only T-
assigned, the fact that we do not know optimal locations
for these elements is immaterial since they are above
c, hence can never be moved below c,. Therefore the
actual locations of these elements in B, and B, need not
be known when calculating the value of c.. Continuing
the processing of the cuts we obtain the resulting 12
blocks as shown in Fig.2g. ®

It is clear that this procedure realizes the objective
function N (S). In practice, it is not always desirableto
execute Algorithm 1 exactly as specified. This occurs
for the following two reasons. Consider Fig.2c. In
processing c, we must process B, and B, simultaneous-
ly. To reduce computation time it is advantageous to
process B, and B, sequentially, That is, first process
B, and then B, When processing B, we must ignore the
moveable elements in B, since they may have been ran-
domly assigned to slots. Once B, has been processed,
that is, T-assigned elements re-assigned above and
below c,,we can now use this information in processing
B,. Once the elements in B, have been re-assigned to
slots, we can now reprocess B, with respect to c, using
this information. Hence we can iteratively process B,
and B_ until no new T-assignments occur. At this time
the blocks can be divided. When dealing with large

blocks this scheme will significantly decrease compu-
tation time. This occurs because the process of T-as-
signing elements is of complexity G(n!) for a block of n
elements. Heuristic procedures for carrying out this
process are approximately of complexity 3(n3), Hence,
for example, rather than processing one block of n ele-
ments it is usually significantly faster to process, pos-
sibly several times, two blocks of size, say n/2.

In general, we have adapted the strategy of process-
ing a set ' of blocks sequentially, and iteratively, rather
than simultaneously. The disadvantage of this type of
processing is that we may achieve a local minimal
rather than a global minimal,

Another modification to the procedure just presented
deals with the problem of where to cut a block. One use-
ful criteria is to cut a block so that half of the open
slots are on either side of the cut line. This is called
bisecting. Again consider blocks B, and B, (Fig. 2¢).
Assume B, has many preassigned elements above c,
while B, does not. Then bisection of B, and B, cannot be
done by the same cut line. If we select different cut
lines for B, and B,,then we are no longer dealing with
the simple sequential objective function given by eq. (3).

We see that it is possible to dynamically select cut
lines as one proceeds, based upon the location of fixed
and open slots in the various blocks encountered. Next
we present a revised version of our initial algorithm
which allows for this dynamic handling of cut lines. For
this algorithm we can no longer write our objective
function in a simple concise form.

Algorithm 2:

ithm.

Block oriented min-cut placement algor-

1. Select next block B (or set of blocks 5’) for division.

2. Select cut lines for these blocks.

3. Re-assign moveable elements in B or B’* such that
the number of signals cut is minimized.

4. Subdivide blocks, forming a new set of blocks £.

5. 1If all blocks now contain a single moveable element
then exit, else returnto stepl. =

Block Selection

Blocks can be processed in any order. Two natural
orderings are referred to as depth first and breadth
first.

These orderings can be realized by storing new
blocks on a stack. Breadth first is realized with a
first-in first-out stack. In breadth first we normally
process one or more blocks at a time, while in depth
first we process only one block at a time.

Selection of Cut Lines

Normally the location of each allowable cut line can
be specified in advance, e.g., between rows and/or
columns of slots. The actual problem of selecting a
cut line is thus in determining in what sequence to pro-
cess these lines. The selection criteria is usually a
furction of the carrier geometry and predicted routing
density. For fixed ordering we have found that two
types of cut lines are quite effective; they are referred
to as a slice cut and a bisection cut. A slice cut c of a
block B is a cut line which isolates a fixed number (K)
of slots of B to one side of ¢ and the remaining slots to

*
The blocks in B’ are sequentially processed, and if
desired, iteratively processed.

286

the other side of c. A bisection cut c of a block is a
cut line which tends to evenly divide the unassigned
elements in B to either side of c. By 'tends to'" we
mean that there exists no other cut line ¢/ which more
closely divides the unassigned elements.

IV. Two Fixed Sequential Min-Cut
Placement Algorithms

In this section we will describe two specific min-
cut placement procedures corresponding to Algorithm
2, They differ in the order in which blocks are pro-
cessed and the type of cut lines employed. We refer
to these algorithms as Quadrature placement and
Slice/Bisection placement.

A, Quadrature Placement Procedure

In this procedure the original block (carrier) B, is
first bisected by a vertical cut line producing two new
blocks B, and B,. These two blocks are then cut by
horizontal bisecting cut lines thus forming up to four
blocks. These blocks are then cut by vertical bisect-
ing cut line. This process is repeated, alternating
between vertical and horizontal cut lines, until each
element is placed. Note that this procedure pro-
cesses blocks breadth first. The quadrature place-
ment algorithm is designed for carriers having a high
density of routing in their center. By first processing
cut lines in the center of the carrier we attempt to
push interconnections away from this region, and
hence produce a placement which can be routed with a
more uniform density,

B. Slice/Bisection Placement Procedure

In this procedure (see Fig.3), we first divide the
initial set of n elements into a set of K and n-K ele-
ments, where K> 0. Again v(c) is minimized. These
K elements represent the bottom row or slice of com-
ponents on a carrier. This procedure is repeated on
the remaining (n-K) elements, again dividing them
into a set of K elements, and a set of (n-2K) elements.
This process is repeated until all elements have been
assigned to a row. The elements are then assigned
to columns via vertical bisecting.

[+

- —— 4

\
LSlice of size K

Figure 3. Slice/Bisection Placement Scheme —
Growing Horizontal Slices

This téchnique is best suited to carriers where
there is a high interconnect density at the terminals.

V. Formalization and Implementation Aspects
of Min-Cut Placement Procedures

A. A Block

In this section we present a more detailed version
of the placement procedures described in Sec.IV.
Recall that the basic structure behind a min-cut
placement procedure is that of a block. Intuitively a
block is a section of a carrier containing some fixed

287

(assigned) elements and some moveable (unassigned)
elements. A block can be divided (partitioned) by a
cut line into two blocks. Formally, a block B, con-
sists of a 7-tuple (Z,, FE, FLOC,, f;, ME,, ALOC,, F,)
defined as follows:

1, z,=(X!, X, Y, Y}) - the coordinates defining the
physical boarders associated with B, (see Fig.1).

2. FE, - a finite set of fixed elements located within
zZ,.

3. F‘LOCl — a set of locations each of which is within
z,, where |FE,| = |FLOC,].

4. f, - a function assigning each element in FE, to a
unique element in FLOC,.

5. ME, - a set of moveable (unassigned) elements in
B,.

6. A‘I..OCi — a set of available locations in Z, for plac-
ing the elements in ME,. We assume that ‘ME1| =
|ALOC1 | . If there are actually more locations
than elements, then dummy elements are defined.
(Contrary to the previous discussion, we do not
actually employ a mapping of elements in ME, to
elements in ALOC,, i.e. we just think of the move-
able elements and available locations as two sets.)

7. F, - a flag which indicates whether or not a block
has been processed. This flag is used when a set
of blocks must be iteratively processed.

A vertical cut line ¢ of block B is said to define two
pseudo blocks B’ and B” where B’ and B” are defined
as follows. Inthis definition ¢ has x-coordinate X,,
where X,= X, = X,

1. 2'=(X, X, Yy, Yy) and Z7 = (X,, X5, Y5, Yo).

2. FE' (FE”) is the subset of elements in FE to the
left (right) of c.

3., FLOC’ (FLOC") is the subset of slots in FLOC to
the left (right) of c.

4. £’/ (f”) is the restriction of f to the domain FE/ (FE”).

5. ME’ (ME”) is the subset of elements in ME to the
left (right) of c.

6. ALOC! (ALOC”) is the subset of locations in ALOC
to the left (right)of c.

7. FLAG’ (FLAG”) - flags associated with B’ and B’
initially set to O.

B’ and B” are said to be pseudo blocks since their
moveable elements can be re-assigned from B’ to B”
and vice versa. That is, they can be re-assigned
from one side of ¢ to the other.

A vertical assignment of a block B consists of

a. determining a vertical cut line ¢ for B;

b. constructing pseudo blocks B’ and B”; and

c. assigning the elements of ME to ME’ and ME”
such that some objective is minimized, such as the
number of signals cut by c.

A vertical assignment of a set of blocks 8= B,, B,
ceey Bn} consists of a vertical assignment of each B, ep.

A vertical bisection assignment is a vertical assign-
ment generated by a vertical bisection cut line.

B. Partitioning

The key problem in carrying out a vertical assign-
ment is that of assigning the elements in ME to the
sets ME’ and ME’ such that we minimize the number
of signals cut by c. This problem is a generalization
of the following partitioning problem. Given a graph G
having n nodes, partition the set of nodes of G into two

disjoint sets N, and N, of nodes having n, and n, ele-
ments respectively, where n,+n,=n, and such that the
number of edges between N, and N, is minimal.
Kernighan and Lin [3] have described a heuristic pro-
cedure which appears to produce very fine results for
n large. Their procedure starts with an initial (arbi-
trary) partition of N into sets N, and N,, and computes
sets Ac N, and Bc N, |A| =|B| such that interchang-
ing A and B reduces the number of edges between the
resulting set of nodes to a minimum, The resulting
partition of N is thus N{ =N, -A+B and Ni= N,-B+A,
where "='" and "+" refer to set operations., The pro-
cedure can then be repeated starting with N} and N

as the initial partition. This iterative procedure is
halted according to some user specified termination
rule.

To apply the Kernighan-Lin procedure to our prob-
lem we must extend it two ways, First instead of
cutting an edge between two nodes we must deal with
cutting signals between sets of nodes., This extension
is quite trivial to implement and has been previously
discussed by Schweikert and Kernighan [87]. The
second extension required is that we must restrict
some elements in N, and N, to be unavailable for in-
terchange. These elements in N, and N, correspond
to our fixed elements. The extension of the Kernighan
Lin procedure which includes these two generaliza-
tions is referred to as the Generalized Kernighan-Lin
procedure, denoted by GK-L. We define a GK-L sub-
routine as follows:

Subroutine GK-L (F/, F*, M/, M", M*, M*%¥),

Input parameters: Fixed set of elements F’ and F”
and moveable set of elements M’ and M”,

Output parameters: Two moveable sets of elements
M* and M*%, whre M¥*, M¥¥*g M’y M”,M* | M **=
M/UM’, M¥nM#*=¢, and |M’|=|M*| and {M" |=
{M#k]|,

Function: M#* and M#** are computed using the gen-
eralized Kernighan-Lin procedure such that the
number of signals between the set of elements
{F’,M*} and { F", M**} is minimal, where the
initial partition is {F/, M’} and {F",M"].

We can now employ the GK-L subroutine to compute
a vertical bisection assignment for a set of blocks B/=
{BuBg ., Bq} c 8. Next we describe a heuristic
procedure for creating this assignment where the ob-
jective is to minimize the total number of signals cut.
This procedure has two modes of operation, namely
iterative or noniterative. In the iterative mode the
blocks in B’ are repeatedly processed until no new
reductions in the cut values occurs,

Algorithm 3: Vertical-Bisection Assignment

Step 1: For i=1,2,...,q set F, =0, ard construct a
vertical bisect line ¢, for B,, If ¢, does not exist, so
note. The x-coordinate of ¢, is X}. Set FIRST=1.
Read in MODE (iterative or non-iterative).

Step 2: For i=1,2,...,q do the following: (V bisec-
tion assignment of B,)

Step 2.1: If c, exists go to step 2.2, else set F;=2
and return to step 2.1 for next i.

Step 2, 2: (Construction of F’ and F”)
a) For each fixed element e in any block of 3 to
the left (right) of X!, put e into F' (F’).

b) For each block B, such that Xi= X} (X! = Xi), put
all moveable elements into F’ (F”). .

c) For every block B, such that F, # 0 and X} cuts
(intersects) B,, if X! =X} set all elements in
MEj into ¥/, otherwise set all elements in ME;’
into F”,

Step 2.3: If FIRST=1 go to step 2.4 else go to step
2.5,

Step 2.4: (Constructionof initial M’ and M*) Par-
tition ME, into disjoint sets having | ALOC{| and

| ALOC/! | elements each, and assign these ele-
ments to M’ and M” respectively using an initial
partition algorithm. * Go to step 2.6,

Step 2.5: (Construction of M’ and M”) Set M’ = ME/
and M"=ME”. (Here we use the old value of ME'
and ME” for the initial value of M’ and M”.)

Step 2. 6: Call subroutine GK-L (F/, F" M/ ,M", M*,
M),

Step 2.7: Set ME{ =M* and ME; = M** (i.e. and
""optimal'' assignment of ME, has been made such
that v{c,) is minimized). Set F,=1 if M*=M’, else
F,=2, (F=2 implies a new assignment of B, has
been computed, i.e. M* # M/, while F, =1 implies
no new assignment has occurred.

Step 3: MODE = iterative?

Yes: Set FIRST=0. If F, =2 for some i, set F=0
for all i and go to step 2, otherwise EXIT.

No: EXIT.

This procedure is finite since whenever a block is
processed, either v(c) is reduced or else M/ =M*,
Since v(c) cannot be indefinitely reduced, eventually
Mf =Mk for all i and we exit the procedure.

Once B’ has been processed by Algorithm 3, each
pseudo block is made into a block. For example, the
pseudo block Bf defined by the 7-tuple ((X}, X}, Y}, Y}),
FE], FLOC!, f/, ME|, ALOC/, F,) now defines a new
block By, defined by the parameters (X, X"e, Y, YY) =
(X4, X8, Y4, Y}), FE,;= FE{, FLOC;= FLOC/, etc. We re-
fer to the process of defining pseudo blocks as real
blocks as block division. Hence, by carrying out block
assignment followed by block division a set #’={B,, B,,
.+.+,B } is transformed into a new set of blocks d(#’) =
{B),B),...,B!}, where m=2q. Note that since some
blocks do not have a bisect line, m can be less than 2q.

In a completely analogous manner to the preceding
discussion, we can define the corresponding block as-
signment and division procedures for horizontal cut
lines.

C. Placement Algorithms

The procedures for vertical and horizontal bisection
or slice assignment followed by block division make up
the main routines in our Quadrature and Slice/Bisection
placement algorithms.

As an example, consider the set of blocks & = {Bl,
B, ...,B,} shown in Fig.4a. If we vertically slice as-
sign B, and then divide the resulting block we obtain the

o -
This is a constructive partitioning procedure which
procudes much better final results than when a ran-
dom assignment is used.

288

set of blocks 8={B,, B,, ..., B,,,] shown in Fig. 4b.

We call this process a vertical slice division of A.
Note that the vertical slice assignment of B, can be
obtained by a simplified form of Algorithm 3, namely
by setting 5= B, employing a slice cut rather than a
bisectional cut, and by setting the MODE to non-itera-
tive.

cessfully routed). This same card was then processed
using automatic placement. The initial random place-
ment used by the system has a half-perimeter of 888,
Three different runs are documented in Table 1. The
first employs the min-cut placement algorithm once on
the IC's. Run 2 employs this algorithm twice on IC's
and once on the elements. Run 3 employs this proced-
ure three times on the IC's and twice on the elements.

!
1
|
l
Pa | Baat| oo | B2 | By
|
H
1
X
0 (a)
Bun1 Bacif | B2 | B
(b)
Figure 4. Development of a Slice

(a) Before Slice
(b) After Slice

VI. Experimental Results

Some of the concepts described in this paper have
been implemented, and in this section we will briefly
describe a few of the results obtained.

The programs are written in PL/I and run on an
IBM 370/165.

All the problems to be discussed in this section
deal with the placement and routing of PC cards.
The carriers are 5" ¢ 5', consist of 5 columns and 10
rows of 14 or 16 pin IC DIPS, and have two signal
layers for interconnection. We thus have a density of
2 IC's/in®% Routing is carried out on 25 mil centers,
hence a very high routing density exists,

The physical design of the card is usually carried
out inthe following order. All steps not modified by
the work '"manual' are done automatically,

The process begins with an initial assignment of
logic functions (elements) to IC's. This step can be
done either manually by the logic designer or auto-
matically by a constructive assignment algorithm.
After this step we iteratively use the min-cut place-
ment procedures to first place IC packages and then
re-assign elements to packages. The same program
can carry out both functions. At the conclusion of this
step a constructive placement procedure is employed
to assign each element assigned to an IC to the opti-
mal portion of an IC. This step is then followed by a
constructive procedure which assigns signal nets to
IC pins. Finally the card is automatically routed via
a Lee type routing algorithm.’

In Table 1 we summarize the results for three
""difficult' cards using our slice/bisection algorithm.
For card no. 1 we see that the given manual place-
ment has a half-perimeter (N, (P)) of 838 (inches), and
when routed produced 37 failures (signal nets not suc-

289

Manual Placement Automatic Placement
Automatic Routing and Routing
of # of
Py 1
Card P Failures P Failures
1 838 37 Run#l 658 19
Run#2 646 15
Run #3 634 11
2
- 554 5
289 nets 28
3 655 35 616 6
233 nets

Table 1: Placement/Routing Experimental
Results

Finally, cards 2 and 3 show similar improvement
in routing due to this placement program.

To process a board through initial placement of
elements to packages, two passes through IC place-
ment and one pass through element re-assignment,
gate to IC portion assignment, and IC pin assignment,
requires, on the average, 50 CPU seconds at a prime
time cost of $25 per minute.

We have found from experience that if 3P is less
than 620, we obtain almost no failures. Hence we
usually iterate the element - IC placement procedure
until either we reach a 1P value of less than 620, or
else if we see that no significant improvement in the
placement is possible. We then go into our routing
phase.

We have also carried out numerous experiments
dealing with the order in which cut lines should be pro-
cessed, and have found that Quadrature is usually the
best technique for our board geometry, where we first
carry out a vertical cut (perpendicular to the I/O con-
nector).

. References

1. L. E. Druffel, D.C. Schmidt, and R. A. Wagner,
"A simple,efficient design automation processor,'
Proc, 11th Design Automation Workshop, June 1974,
pp. 127-136.

2. B.W. Kernighan, D.G. Schweikert, and G. Persky,
""An optimal chamnel routing algorithm for polycell
layouts of integrated circuits," Proc. D, A, Work-
shop, 1973, pp. 50-59.

3. B.W. Kernighan and S. Lin, '"An efficient heuristic

procedure for partitioning graphs," Bell Sys. Tech, J.,

vol. 49, February 1970, pp. 291-308,

R. L. Mattison, "Design automation of MOS art-
work," Computer, vol, 7, January 1974, pp.21-27.

G. Persky, D.N. Deutsch, and D.G. Schweikert,
"LTX-a system for the directed automatic design
of LSI circuits,'' Proc. Design Automation Confer-
ence, June 1976, pp. 399-407.

"PRANCE," (brochure), Automated Systems, Inc.,
999 Sepulveda Blvd., El Segundo, Calif. 90245.

D.C. Schmidt and L., E. Druffel, "An iterative al-
gorithm for placement and assignment of integrated
circuits," Proc., 12th Design Automation Confer-
ence, June 1975, pp. 361-368.

D. G. Schweikert and B. W, Kernighan, "A proper
model for the partitioning of electrical circuits,"
Proc. Design Automation Workshop, June 1972,
pp. 56-62.

I.E. Sutherland and D. Oestreicher, '"How big
should a printed circuit board be?' IEEE Trans.
on Computers, vol. C-22, May 1973, pp. 536-541.

290

