EE434
 ASIC \& Digital Systems

Partha Pande School of EECS
Washington State University
pande@eecs.wsu.edu

Spring 2015
Dae Hyun Kim
daehyun@eecs.wsu.edu

Lecture 1

Course Overview \& Introduction to VLSI

Theme of the Course

- How to design and analyze a complex application-specific integrated circuit (ASIC)
- At the end of this semester, you will be able to
- Understand how a VLSI chip works
- Design complex digital VLSI circuits and systems
- Understand basic theories behind VLSI
- Analyze VLSI circuits and systems

Target of the Course

- We will follow a bottom-up approach
- We are not going to discuss much about devices
- Rather we will learn more system level issues, both design and analysis
- But to appreciate the problems related to the design of a big digital system we need to learn about circuits and gates

Broad Categories

- Three broad topics
- Circuit Design Styles
- CMOS and other circuit families, delay, power, clock, interconnects
- Implementation Methods
- Custom \& Semicustom design
- Standard cell-based design
- FPGAs
- Physical design of CMOS VLSI circuits and systems
- Verilog
- Design
- Analysis
- Optimization

Schedule

- Week 1 (1/12,14,16): Introduction to VLSI
- Week $2(1 / 21,23)$: CMOS transistors, switches, gates
- Week 3 ($1 / 26,28,30$): CMOS inverter, combinational logic
- Week $4(2 / 2,4,6)$: CMOS design styles, sequential logic
- Week 5 ($2 / 9,11,13$): Characterization and performance estimation
- Week 6 ($2 / 18,20$): Characterization and performance estimation (continued)
- Week 7 (2/23,25,27): Midterm 1, layout, simulation, optimization
- Week $8(3 / 2,4,6)$: Interconnects
- Week $9(3 / 9,11,13)$: Timing analysis
- Week 10: Break
- Week 11 (3/23,25,27): Memory
- Week 12 (3/30,4/1,3): Design methodologies (Full-custom, FPGA, ...)
- Week 13 (4/6,8,10): Midterm 2, Verilog, synthesis, timing and power analysis
- Week 14 (4/13,15,17): Verilog, datapath design, synthesis
- Week 15 (4/20,22,24): Physical design, arithmetic units
- Week 16 (4/27,29,5/1): Project presentation

References

- FPGA-BASED System Design by Wayne Wolf, Prentice Hall, 2004, ISBN 0-13-142461-0
- Analysis and Design of Digital Integrated Circuits by Hodges, Jackson, and Saleh, 3/E, 2003, McGraw Hill, ISBN 0072283653
- CMOS VLSI Design: A Circuits and Systems Perspective by Weste and Harris, 4/E, 2010, Addison-Wesley, ISBN 0321547748
- Digital Integrated Circuits by Rabaey, Chandrakasan, and Nikolic, 2E, 2003, Prentice Hall, ISBN 0130909963
- Introduction to VLSI Circuits and Systems by Uyemura, 1E, 2001, Wiley, ISBN 0471127043
- CMOS Logic Circuit Design by Uyemura, 1999, Springer, ISBN 0387781641
- Application-Specific Integrated Circuits by Smith, 1997, AddisonWesley, ISBN 0201500221
- Extra reading materials will be supplied in the class

Assignments

- There will be several homework assignments
- Due dates will be mentioned when handed out
- Late submissions are not allowed
- Lab and HW are very important parts of this course
- Lab assignments will involve Verilog RTL coding
- No worries! You will learn Verilog step by step.
- You will learn Synopsys and Cadence tools
- No worries! Detailed tutorials will be provided.
- EME 205 is the lab for this course
- You will be allowed to work any time in the lab
- TA will be available only in fixed hours

Course Website

- Important announcements will be posted in the course website
- www.eecs.wsu.edu/~ee434

Discrete Components vs. VLSI

What is an ASIC?

- Application Specific Integrated Circuits
- Integrated Circuits
- All components, passive and active are integrated on a single semiconductor substrate
- Higher speed
- Lower power
- Physically smaller
- Integration reduces manufacturing cost

Yield

- Defects

Yield $=1 / 4$

Yield $=19 / 24$

Yield

- $\operatorname{Cost}($ die $)=\frac{\operatorname{Cost}(\text { wafer })}{\# \text { good dies per wafer }}=\frac{\operatorname{Cost}(\text { wafer })}{(\# \text { dies per wafer) })(\text { die yield })}$
- Yield $=\frac{\text { \# good dies per wafer }}{\text { total \# dies per wafer }}$
- \# dies per wafer $=\frac{\pi(\text { wafer diameter } / 2)^{2}}{\text { die area }}-\frac{\pi(\text { wafer diameter })}{\sqrt{2 \cdot d i e ~ a r e a}}$
- \# dies per unit wafer area $=\frac{1}{\text { die area }}-\frac{\sqrt{2}}{(\text { wafer radius }) \sqrt{\text { die area }}}$

Yield

- Need for larger wafer size

Wafer size

From: http://www.sandpile.org

Technology Scaling

- Integration of more transistors in the same area
- Higher yield
- Lower cost
- More functionality
- Lower power consumption
- Parasitic RC?

MOS Transistor Scaling (1974 to present)

Scaling factor $\mathbf{s}=\mathbf{0} .7$ per node ($0.5 \times$ per 2 nodes)

Technology Node set by $1 / 2$ pitch (interconnect)

Gate length (transistor)

Ideal Technology Scaling (constant field)

Quantity	Before Scaling	After Scaling
Channel Length	L	$L^{\prime}=L^{*}$ S
Channel Width	W	$\mathrm{W}^{\prime}=\mathrm{W}^{*} \mathrm{~s}$
Gate Oxide thickness	$\mathrm{t}_{0 \mathrm{x}}$	$\mathrm{t}^{\prime}{ }_{\text {x }}=\mathrm{t}_{0 \mathrm{ox}}{ }^{*} \mathrm{~s}$
Junction depth	x_{j}	$x_{j}^{\prime}=x_{j}{ }^{*} \mathrm{~s}$
Power Supply	$\mathrm{V}_{\text {dd }}$	$\mathrm{V}_{\mathrm{dd}}{ }^{\prime}=\mathrm{Vdd}$ * s
Threshold Voltage	$V_{\text {th }}$	$\mathrm{V}_{\text {th }}=\mathrm{V}_{\text {th }}{ }^{*} \mathrm{~s}$
Doping Density, p $\mathrm{n}+$	$\begin{aligned} & N_{A} \\ & N_{D} \end{aligned}$	$\begin{aligned} & N_{A^{\prime}}=N_{A} / \mathrm{s} \\ & N_{D^{\prime}}=N_{D} / \mathrm{S} \end{aligned}$

Technology Scaling (Device)

- Area: W• $L \rightarrow s^{2} W \cdot L$
- Capacitance

$$
-W \cdot L \cdot c_{o x}=(W \cdot L) \cdot \frac{\varepsilon_{o x}}{t_{o x}} \rightarrow\left(s^{2} W L\right) \cdot \frac{\varepsilon_{o x}}{s \cdot t_{o x}}=(s W L) \cdot \frac{\varepsilon_{o x}}{t_{o x}}
$$

- Transistor delay

$$
\begin{aligned}
- & t_{p} \propto \frac{C_{L} V_{D D}}{k\left(V_{D D}-V_{T}\right)^{2}} \rightarrow \frac{\left(s C_{L}\right)\left(s V_{D D}\right)}{\left(\mu \cdot c_{o x} \cdot \frac{W}{L}\right)\left(s V_{D D}-s V_{T}\right)^{2}}=\frac{\left(s C_{L}\right)\left(s V_{D D}\right)}{\left(\mu \cdot \frac{\varepsilon_{o X}}{s \cdot t_{o x}} \cdot \frac{s W}{s L}\right)\left(s V_{D D}-s V_{T}\right)^{2}}= \\
& s\left(\frac{C_{L} V_{D D}}{k\left(V_{D D}-V_{T}\right)^{2}}\right)
\end{aligned}
$$

- Power consumption
$-P \propto \alpha f C_{L} V_{D D}{ }^{2} \rightarrow \alpha\left(\frac{f}{s}\right)\left(s C_{L}\right)\left(s^{2} V_{D D}{ }^{2}\right)=s^{2}\left(\alpha f C_{L} V_{D D}\right)$
- Power / Area = 1

Technology Scaling (Interconnect)

- Width: $\mathrm{W} \rightarrow \boldsymbol{s} W$
- Thickness: $\mathrm{t} \rightarrow \mathrm{st}$
- Spacing: $d \rightarrow s d$
- Length: $l \rightarrow s l$

- Resistance: $\rho \frac{l}{t w}=\rho \frac{s l}{(s t)(s w)}=\frac{1}{s} \rho \frac{l}{t w}$
- Capacitance: $\varepsilon \frac{t l}{d}=\varepsilon \frac{(s t)(s l)}{s d}=s \varepsilon \frac{t l}{d}$
- Interconnect delay: $\propto R C=1$

Technology Scaling

Moore's Law

■ Number of transistors per chip would double every 18 months.

MPU Trends - Moore's Law

More MPU Trends

Source: Intel

MPU Clock Frequency Trend

What about power in the future?

Power Projections Too High!

Recent Trends

- 1.5 GHz Itanium chip (Intel), 410M tx, $374 \mathrm{~mm}^{2}$, 130W@1.3V
- 1.1 GHz POWER4 (IBM), 170M tx, 115W@1.5V
- if these trends continue, power will become unmanageable
- 150 Mhz Sony Graphics Processor, 7.5 M tx (logic) +280 M tx (memory) $=288 \mathrm{M} \mathrm{tx}, 400 \mathrm{~mm}^{2} 10 \mathrm{~W} @ 1.8 \mathrm{~V}$
- if trend continues, most designs in the future will have a high percentage of memory
- Single-chip Bluetooth transceiver (Alcatel), 400mm², 150mW@2.5V
- required 30 designers over 2.5 years (75 person-years)
- if trend continues, it will be difficult to integrate larger systems on a single chip in a reasonable time
- Intel's 80-core chip
- In 65-nm technology with 80 single-precision, floating point cores delivers performance in excess of a teraflops while consuming less than 100 w
- Tilera Corporation (Dedicated Multi-core company)
- Multi-core design will dominate

Technology Nodes 1999-2019

```
1999}20001 2004 2007 2010 2013 2016 2019
```



```
180 nm 130 nm 90 nm 65 nm 45 nm 32 nm 22 nm 16 nm
```



```
\[
\begin{array}{lll}
\mathrm{N}-1 & \mathrm{~N} & \mathrm{~N}+1
\end{array}
\]
```

Two year cycle between nodes until 2001, then 3 year cycle begins.

Intel Pentium (IV) microprocessor

Design Abstraction Levels

ASIC Realization Process

Customer's need

Determine requirements

Write specifications

Design synthesis and Verification
Test development
Fabrication
Manufacturing test
Chips to customer

