EE434 ASIC & Digital Systems

Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

> Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu

Lecture 4

More on CMOS Gates

Ref: Textbook chapter 2

Some of the slides are adopted from Digital Integrated Circuits by Jan M Rabaey

CMOS Properties

- Full rail-to-rail swing; high noise margins
- Logic levels not dependent upon the relative device sizes; ratio less
- Always a path to Vdd or Gnd in steady state; low output impedance
- Extremely high input resistance; nearly zero steady-state input current
- No direct path between power and ground; no static power dissipation
- Propagation delay function of load capacitance and resistance of transistors
- N fan-in gates need 2N transistors

Special CMOS Design Styles

- Ratioed Logic (Pseudo-nMOS)
- Dynamic CMOS
- Domino Logic
- Multiple-Output Domino Logic
- Dual-Rail Logic
- Pass Transistor Logic
- Transmissions Gate Logic

Ratioed Logic

- Pseudo NMOS
	- Smaller area and load, but static power dissipation
	- Follow board notes

Pseudo-nMOS

Pseudo-nMOS

- More accurate computation
	- PMOS: Saturation
	- NMOS: Linear

- In static circuits at every point in time (except when switching) the output is connected to either GND or V_{DD} via a low resistance path.
	- fan-in of *n* requires 2*n* (*n* N-type + *n* P-type) devices
- Dynamic circuits rely on the temporary storage of signal values on the capacitance of high impedance nodes.
	- requires on $n + 2$ ($n+1$ N-type + 1 P-type) transistors

• $F = \overline{A \cdot B \cdot C}$

• Precharge

 \overline{III}

• Evaluation

Properties of Dynamic CMOS

- Logic function is implemented by the PDN only
	- number of transistors is $N + 2$ (versus 2N for static CMOS gates)
- Full swing outputs
- Non-ratioed sizing of the devices does not affect the logic levels
- **Faster switching speeds**
	- reduced load capacitance due to lower input capacitance (C_{in})
	- reduced load capacitance due to smaller output loading (Cout)

Properties of Dynamic CMOS

- Overall power dissipation usually higher than static CMOS
	- no static current path ever exists between V_{DD} and GND
	- no glitching
	- higher transition probabilities
	- extra load on Clk
- Needs a precharge/evaluate clock

• Charge sharing

• Charge sharing

• Charge sharing

$$
V_{out} = V_1 = V_2
$$

\n
$$
- Q = C_{out}V_{DD} = C_{out}V_f + C_1V_f + C_2V_f = (C_{out} + C_1 + C_2)V_f
$$

\n
$$
- V_f = (\frac{C_{out}}{C_{out} + C_1 + C_2})V_{DD}
$$

\n
$$
A = 1 + \frac{V_{out}}{C_{out} + C_1 + C_2}C_{out}
$$

\n
$$
B = 1 + \frac{V_{out}}{C_{out} + C_1 + C_2}C_{out}
$$

\n
$$
C = 0 + \frac{V_1 \uparrow \
$$

Mn $\stackrel{\longrightarrow}{\longrightarrow} C_3$

 \overline{III}

 $V_3 = 0$

- How to solve the charge sharing problem
	- Constraint: $C_{out} \gg C_1 + C_2$
	- Keeper

• How to solve the charge sharing problem

Precharge internal nodes using a clock-driven transistor (at the cost of increased area and power)

Domino Logic

Domino Logic

Domino Logic

Properties of Domino Logic

- Only non-inverting logic can be implemented
- Very high speed
	- static inverter can be skewed, only L-H transition
	- Input capacitance reduced

Multiple-Output Domino Logic (MODL)

- $f_1 = G$
- $f_2 = F \cdot G$

Dual-Rail Logic Network

• Differential Cascode Voltage Switch Logic (DCVSL)

Dual-Rail Logic Network

Differential Cascode Voltage Switch Logic (DCVSL) \bullet

Pass Transistor Logic

- **N transistors**
- **No static consumption**

Pass Transistor Logic

Example \bullet

Issues with Pass Transistor Logic

- Threshold drop
- Capacitive feed through
- Charge sharing
- Follow board notes

Pass Transistor Logic

Capacitive Feedthrough \bullet

Transmission Gate Logic

- **The control signal S turns the transfer gates on and off depending on its value.**
- **When s=1, the upper transfer gate is on and that allows A to follow to the output**

• **Implement the Multiplexer with static CMOS and compare with this**

Transmission Gate Logic

