EE434
ASIC & Digital Systems

Partha Pande

School of EECS
Washington State University
pande@eecs.wsu.edu

Spring 2015
Dae Hyun Kim
daehyun@eecs.wsu.edu



Lecture 4

More on CMOS Gates

Ref: Textbook chapter 2

Some of the slides are adopted from Digital Integrated Circuits
by Jan M Rabaey




CMOS Properties

Full rail-to-rail swing; high noise margins

Logic levels not dependent upon the relative device sizes; ratio less
Always a path to Vdd or Gnd in steady state; low output impedance
Extremely high input resistance; nearly zero steady-state input current
No direct path between power and ground; no static power dissipation

Propagation delay function of load capacitance and resistance of
transistors

N fan-in gates need 2N transistors




Special CMOS Design Styles

Ratioed Logic (Pseudo-nMOS)
Dynamic CMOS

Domino Logic

Multiple-Output Domino Logic
Dual-Rail Logic

Pass Transistor Logic

Transmissions Gate Logic



Ratioed Logic

 Pseudo NMOS
— Smaller area and load, but static power dissipation
— Follow board notes
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Pseudo-nMOS
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Pseudo-nMOS

« More accurate computation
— PMOS: Saturation
— NMOS: Linear
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Dynamic CMOS

 In circuits at every point in time (except when switching) the
output is connected to either GND or V via a low resistance path.

— fan-in of n requires 2n (n N-type + n P-type) devices

circuits rely on the temporary storage of signal values on the
capacitance of high impedance nodes.

— requires on n + 2 (n+1 N-type + 1 P-type) transistors



Dynamic CMOS

Clk —

Two phase operation
Precharge (CLK =0)
Evaluate (CLK =1)

Clk —

Out



Dynamic CMOS

« Operation

CK
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Mn: OFF

Evaluate
Mp: OFF
Mn: ON

Precharge

Evaluate
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Dynamic CMOS
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Dynamic CMOS

« Precharge
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Evaluation

CK=1

Dynamic CMOS
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Properties of Dynamic CMOS

Logic function is implemented by the PDN only
— number of transistors is N + 2 (versus 2N for static CMOS gates)

Full swing outputs
Non-ratioed - sizing of the devices does not affect the logic levels
Faster switching speeds

— reduced load capacitance due to capacitance (C;)
— reduced load capacitance due to smaller output loading (Cout)
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Properties of Dynamic CMOS

* Overall power dissipation usually higher than static CMOS
— no static current path ever exists between V; and GND
— no glitching
— higher transition probabilities
— extra load on Clk

» Needs a precharge/evaluate clock
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Dynamic CMOS

Charge sharing
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Dynamic CMOS

« Charge sharing

—| Mp —
Vout = Vpp
A=0 = = Cout
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Dynamic CMOS

« Charge sharing
- Vout = Vl = Vz
= Q= CoutVpp = CoueVs + C1Vy + CoVy = (Coue + C1 + C2)Vs

Cou
- Vf — ( : )VDD
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Dynamic CMOS

 How to solve the charge sharing problem
— Constraint: C,,; » C; + C,

— Keeper
Keeper
/
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Dynamic CMOS

 How to solve the charge sharing problem

Clk M, M, J— Clk
....... ; Out
A
B
Clk —1[M,

Precharge internal nodes using a clock-driven transistor
(at the cost of increased area and power)
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CK

Domino Logic
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CK

Domino Logic
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Domino Logic

Example

- Sum = a®bBc bjDT)):)’S”m

0 I b— —b €= —¢
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Properties of Domino Logic

Only non-inverting logic can be implemented

Very high speed
— static inverter can be skewed, only L-H transition
— Input capacitance reduced
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Multiple-Output Domino Logic (MODL)

e f1=6G
e fb=F-G
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Dual-Rail Logic Network

« Differential Cascode Voltage Switch Logic (DCVSL)

VDD
f f
X1 — X1
X;— Logic tree — X,
X3— —X3
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Dual-Rail Logic Network

Differential Cascode Voltage Switch Logic (DCVSL)

f a-b
X1 — X, _ _
le— Logic tree —X_: a%[ :"_b
X3 — — X3 T/IT
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Pass Transistor Logic

* N transistors
* No static consumption

Out
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Example

Pass Transistor Logic

—F=A-B

—F=A+B
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Vidd

Issues with Pass Transistor Logic

Threshold drop
Capacitive feed through
Charge sharing

Follow board notes
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Pass Transistor Logic

« Capacitive Feedthrough
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Transmission Gate Logic

* The control signal S turns the
transfer gates on and off depending
on its value.

« When s=1, the upper transfer gate is

M2
_ on and that allows A to follow to the
S — F output

M1

B

|
S

* Implement the Multiplexer with static CMOS and compare with this
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Transmission Gate Logic
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