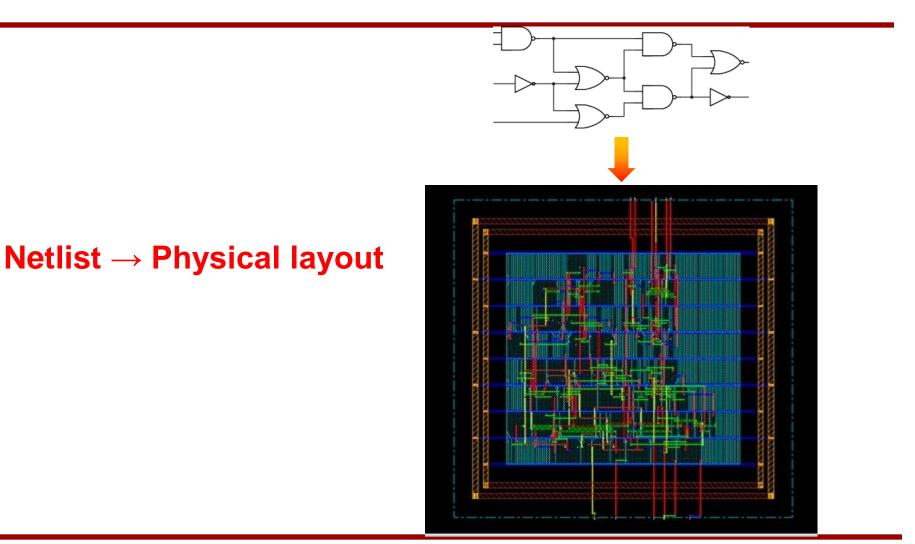
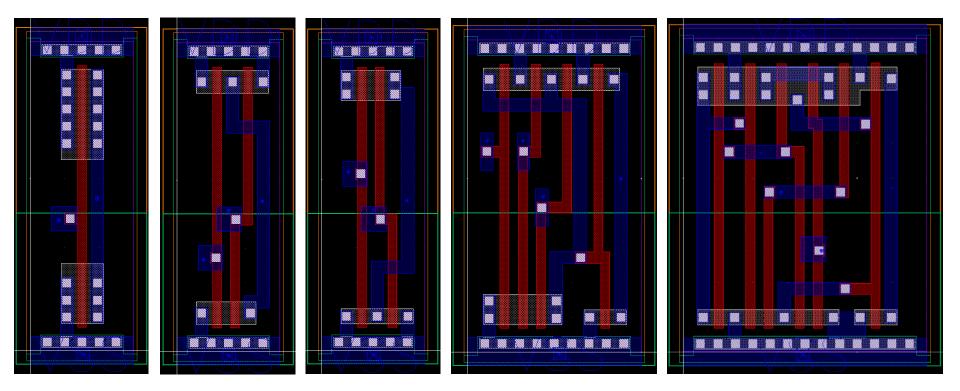

EE434 ASIC & Digital Systems


Partha Pande School of EECS Washington State University pande@eecs.wsu.edu

> Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu

Lecture 7

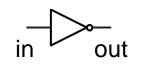
VLSI Design

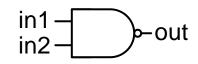


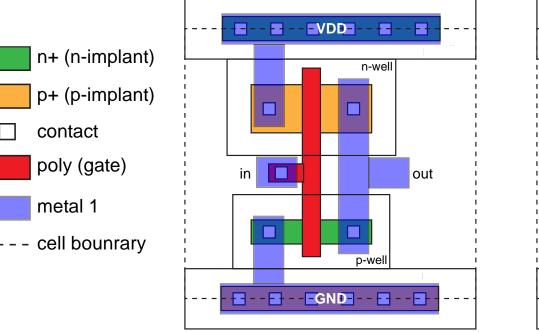
Standard Cell-Based VLSI Design

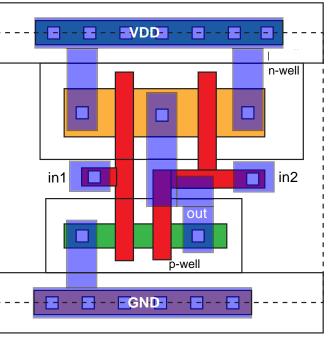
- Inputs
 - Netlist (.v)
 - Design constraints
 - Timing (.sdc)
 - Power
 - Area
 - ...
 - Physical library of standard cells (.lef)
 - Timing/power library (.lib)
 - Capacitance tables, signal integrity information
- Outputs
 - gdsii

- Standard cells
 - Pre-characterized cells

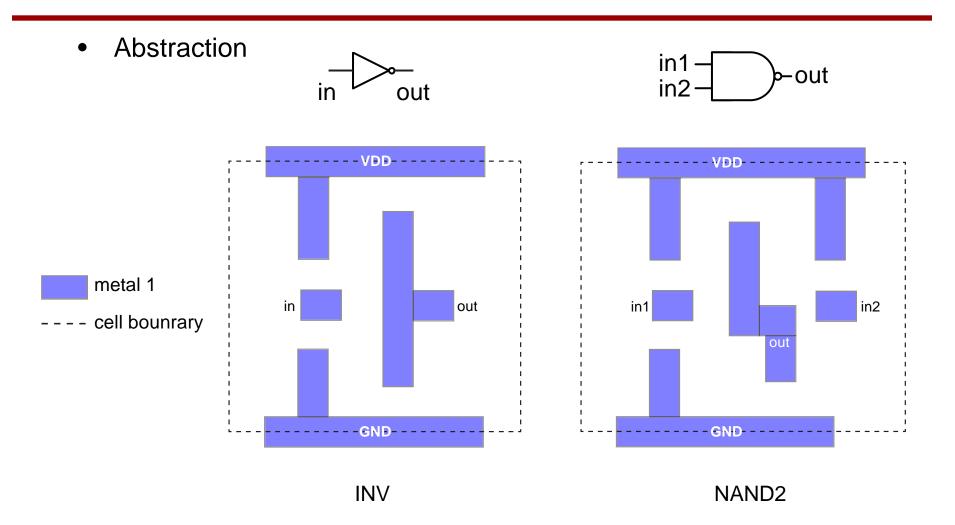

Standard Cell-Based VLSI Design


- Design steps
 - Floorplanning
 - Placement of standard cells
 - Routing
 - Signal
 - Power
 - Clock
 - Bus
 - Analysis
 - Timing
 - Power
 - Metal fill insertion
 - RC extraction

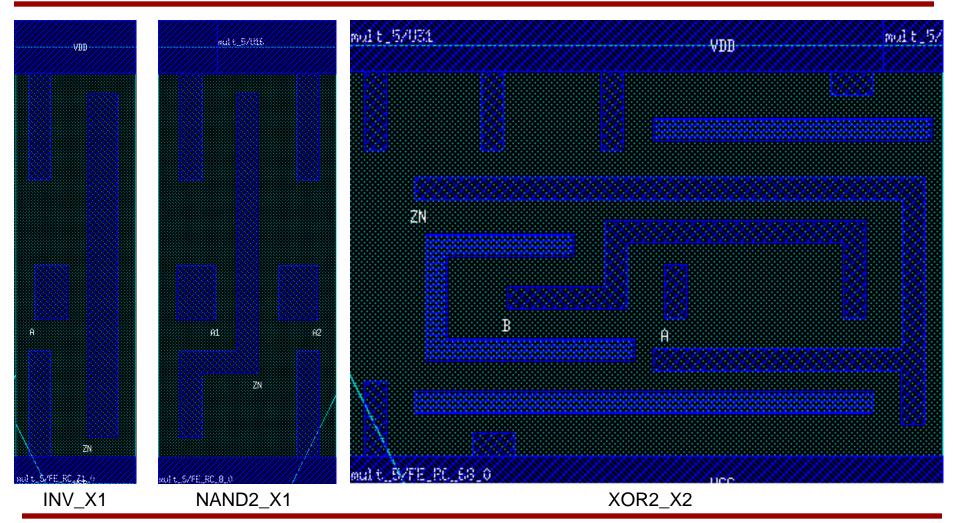

Standard Cell-Based VLSI Design


- Routing
 - Use Metal layers only (and via layers).
 - Do not use Poly and Contact layers.

• Design



INV


- Physical library (.lef)
 - Metal layers
 - Macros (standard cells)

Metal Layers

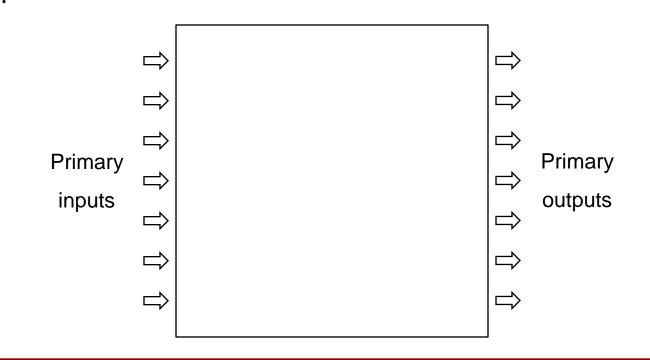
LAYER metall
TYPE ROUTING ;
SPACING 0.065 ;
WIDTH 0.07 ;
PITCH 0.14 ;
DIRECTION HORIZONTAL ;
OFFSET 0.095 0.07 ;
RESISTANCE RPERSQ 0.38 ;
THICKNESS 0.13 ;
HEIGHT 0.37 ;
CAPACITANCE CPERSQDIST 7.7161e-05
EDGECAPACITANCE 2.7365e-05 ;
END metall
LAYER vial
TYPE CUT ;
SPACING 0.08 ;
WIDTH 0.07 ;
RESISTANCE 5 ;
END vial

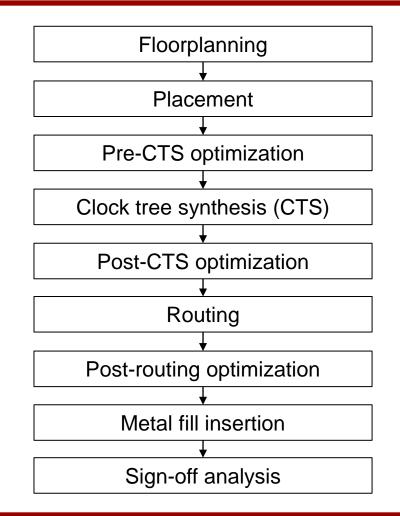
Macros (Standard Cells)

```
MACRO INV X1
  CLASS core :
  FOREIGN INV X1 0.0 0.0 ;
  ORIGIN 0 0 :
  SYMMETRY X Y :
  SITE FreePDK45 38x28 10R NP 162NW 340 ;
  SIZE 0.38 BY 1.4 ;
  PIN A
    DIRECTION INPUT :
    ANTENNAPARTIALMETALAREA 0.018375 LAYER metall :
    ANTENNAPARTIALMETALSIDEAREA 0.0728 LAYER metall :
    ANTENNAGATEAREA 0.05225 :
    PORT
     LAYER metall :
       POLYGON 0.06 0.525 0.165 0.525 0.165 0.7 0.06 0.7 ;
   END
  END A
  PIN ZN
    DIRECTION OUTPUT :
    ANTENNAPARTIALMETALAREA 0.1045 LAYER metall ;
    ANTENNAPARTIALMETALSIDEAREA 0.3107 LAYER metall :
    ANTENNADIFFAREA 0.109725 :
   PORT
     LAYER metall :
        POLYGON 0.23 0.15 0.325 0.15 0.325 1.25 0.23 1.25 :
    END
  END ZN
 PIN VDD
   DIRECTION INOUT ;
   USE power ;
    SHAPE ABUTMENT ;
   PORT
     LAYER metall :
       POLYGON 0 1.315 0.04 1.315 0.04 0.975 0.11 0.975 0.11 1.315 0.38 1.315 0.38 1.485 0 1.485 :
    END
  END VDD
  PIN VSS
    DIRECTION INOUT ;
   USE ground ;
   SHAPE ABUTMENT ;
    PORT
     LAYER metall :
        POLYGON 0 -0.085 0.38 -0.085 0.38 0.085 0.11 0.085 0.11 0.425 0.04 0.425 0.04 0.085 0 0.085
    END
  END VSS
END INV X1
```

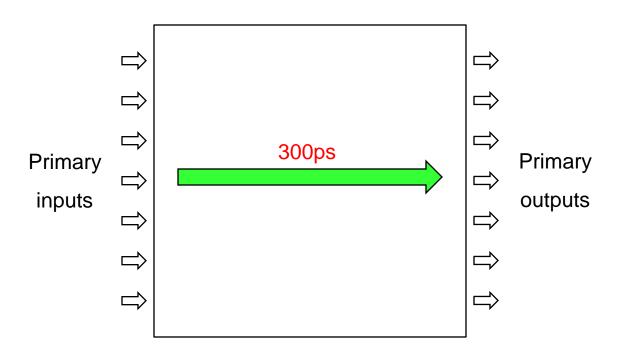

Timing/Power Library (.lib, .db)

```
cell (INV_X1) {
                                                         pin (ZN) {
     drive_strength : 1;
                                                           direction
                                                                                : output;
                                                           related_power_pin
                                                                                  "VDD":
     area
                         : 0.532000;
                                                           related_ground_pin :
                                                                                  "vss";
     pg_pin(VDD) {
                                                           max_capacitance
                                                                                : 60.730000;
       voltage_name : VDD;
                                                           function
                                                                                  "!A":
        pg_type
                         : primary_power:
                                                           timing () {
                                                                                   "A";
                                                             related_pin
     pg_pin(VSS) {
                                                                                  : negative_unate:
                                                              timing_sense
       voltage_name : VSS:
                                                             cell_fall(Timing_7_7) {
    index_1 ("0.00117378,0.00472397,0.0171859,0.0409838,0.0780596,0.130081,0.198535");
    index_2 ("0.365616,1.897810,3.795620,7.591250,15.182500,30.365000,60.730000");
        pg_type
                         : primary_ground:
                                                                values ("0.00334769,0.00529785,0.00763425,0.0122592,0.0214710,0.0398747,0.0766650"
     cell_leakage_power
                                     : 14.353185:
                                                                         0.00461096,0.00678237,0.00912396,0.0137631,0.0229885,0.0413991,0.0781923
                                                                         "0.00565781,0.00963029,0.0133910,0.0192072,0.0284937,0.0468495,0.0836153"
                                                                         "0.00501217,0.0107451,0.0162361,0.0248924,0.0380191,0.0575991,0.0941587"
     leakage_power
                                                                        "0.00228759,0.00977055,0.0169885,0.0284204,0.0459573,0.0721436,0.111006"
                            "!A":
       when
                                                                        "-0.00275926,0.00641510,0.0153503,0.0295626,0.0514378,0.0844139,0.133051
                                                                         "-0.0102639.0.000468768.0.0110680.0.0280603.0.0542902.0.0939467.0.152970");
        value
                         : 10.102224:
                          {
"A":
      leakage_power
                                                              internal_power () {
       when
                                                                related_pin
                                                                fall_power(Power_7_7) {
        value
                         : 18.604146:
                                                                  index_1 ("0.00117378,0.00472397,0.0171859,0.0409838,0.0780596,0.130081,0.198535");
                                                                  index_2 ("0.365616,1.897810,3.795620,7.591250,15.182500,30.365000,60.730000");
                                                                  values ("-0.000035,-0.000051,-0.000070,-0.000108,-0.000184,-0.000336,-0.000640"
"-0.000086,-0.000101,-0.000121,-0.000159,-0.000235,-0.000387,-0.000690"
     pin (A) {
                                                                           "-0.000255,-0.000278,-0.000300,-0.000338,-0.000413,-0.000565,-0.000869",
        direction
                                    input:
                                                                           "0.287831,0.148648,0.030826,-0.000677,-0.000757,-0.000907,-0.001210", \
                                    "VDD":
        related_power_pin
                                                                           "0.971887,0.823874,0.649421,0.408881,0.159170,-0.001443,-0.001744"
                                    "vss"
       related_ground_pin
                                                                           "1.891282,1.764827,1.588497,1.264991,0.830546,0.422656,0.157359"
        capacitance
                                   1.700230;
                                                                           "3.063886, 2.982289, 2.822534, 2.481577, 1.897972, 1.212948, 0.642966");
       fall_capacitance
                                 : 1.549360:
        rise_capacitance
                                 : 1.700230:
```

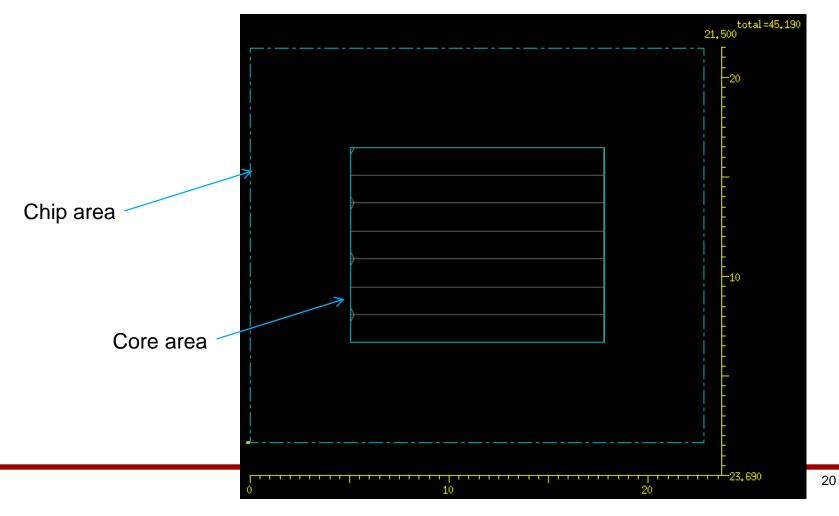

Capacitance Table

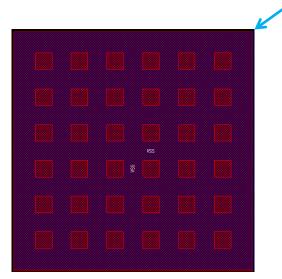

BASIC_CAP	TABLE				
мі — —	-				
width(um)	space(um)	Ctot(Ff/um)	Cc(Ff/um)	Carea(Ff/um)	Cfrg(Ff/um)
0.070	0.052	0.1986	0.0723	0.0311	0.0115
0.070	0.065	0.1705	0.0509	0.0311	0.0143
0.070	0.200	0.1179	0.0115	0.0311	0.0319
0.070	0.335	0.1150	0.0030	0.0311	0.0388
0.070	0.470	0.1148	0.0009	0.0311	0.0409
0.070	0.605	0.1147	0.0002	0.0311	0.0416
0.070	0.740	0.1147	0.0001	0.0311	0.0417
0.070	0.875	0.1147	0.0000	0.0311	0.0418
0.210	0.052	0.2642	0.0727	0.0934	0.0127
0.210	0.065	0.2358	0.0512	0.0934	0.0155
0.210	0.200	0.1828	0.0115	0.0934	0.0331
0.210	0.335	0.1798	0.0030	0.0934	0.0401
0.210	0.470	0.1796	0.0009	0.0934	0.0422
0.210	0.605	0.1796	0.0002	0.0934	0.0428
0.210	0.740	0.1796	0.0001	0.0934	0.0430
0.210	0.875	0.1796	0.0000	0.0934	0.0431
1.000	0.052	0.6285	0.0727	0.4449	0.0191
1.000	0.065	0.6002	0.0512	0.4449	0.0219
1.000	0.200	0.5471	0.0115	0.4449	0.0396
1.000	0.335	0.5442	0.0030	0.4449	0.0465
1.000	0.470	0.5440	0.0009	0.4449	0.0487
1.000	0.605	0.5440	0.0002	0.4449	0.0493
1.000	0.740	0.5440	0.0001	0.4449	0.0495
1.000	0.875	0.5440	0.0000	0.4449	0.0495
9.000	0.052	4.3181	0.0727	4.0043	0.0842
9.000	0.065	4.2898	0.0512	4.0043	0.0870
9.000	0.200	4.2367	0.0115	4.0043	0.1047
9.000	0.335	4.2338	0.0030	4.0043	0.1116
9.000	0.470	4.2336	0.0009	4.0043	0.1138
9.000	0.605	4.2335	0.0002	4.0043	0.1144

EXTENDED	CAP	TABLE						
# Lef Fil	e: .	./lef/Nangate	DpenC	ellLibra	ry_PDKvl	_3_v2	009_07.	lef
# SolverE	xe:	coyote						
# Solver	Туре	e: coyote						
1	.03	10		10		1		1
	1	0.37		0.13		3.9		Θ
	0	Θ		0		7		4
	2	7		2		Θ		Θ
	0	Θ		140		1540		700
	420	280		140		130		65
	140	70		140		240		430
	620	1000		2140		Θ		0.07
Θ	.77	0.35		0.21		0.14		0.07
	065	0.0325		2987013			4.76	19048
7.1428		14.285714	15	.384615				0.07
	035	0.07		0.12	-	.215		0.31
	0.5	1.07		2000	6.64702			7
	0	1.2987013		8571429	4.761			28571
14.285		15.384615		.769231			2.1518	
7.27608e	-06	1.4757835e-05						
	7	Θ	1.	2987013	2.857	1429	4.76	619048

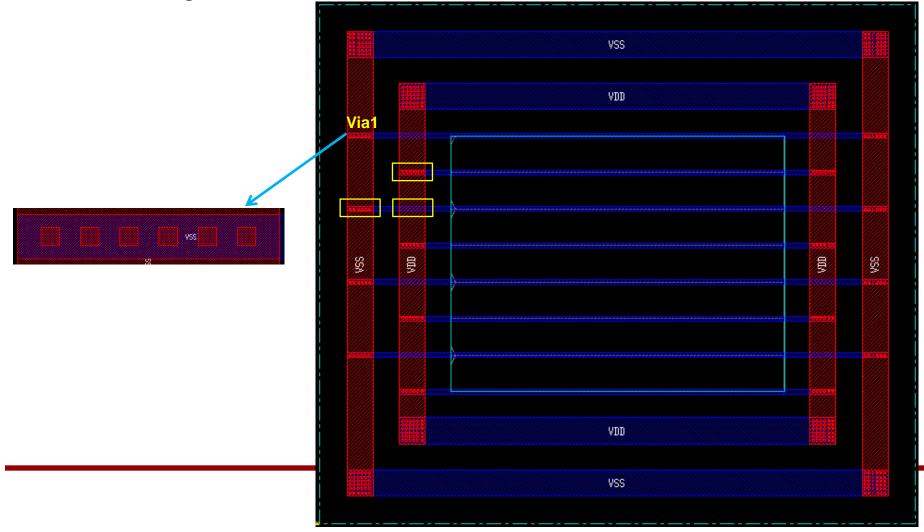

Design Constraints

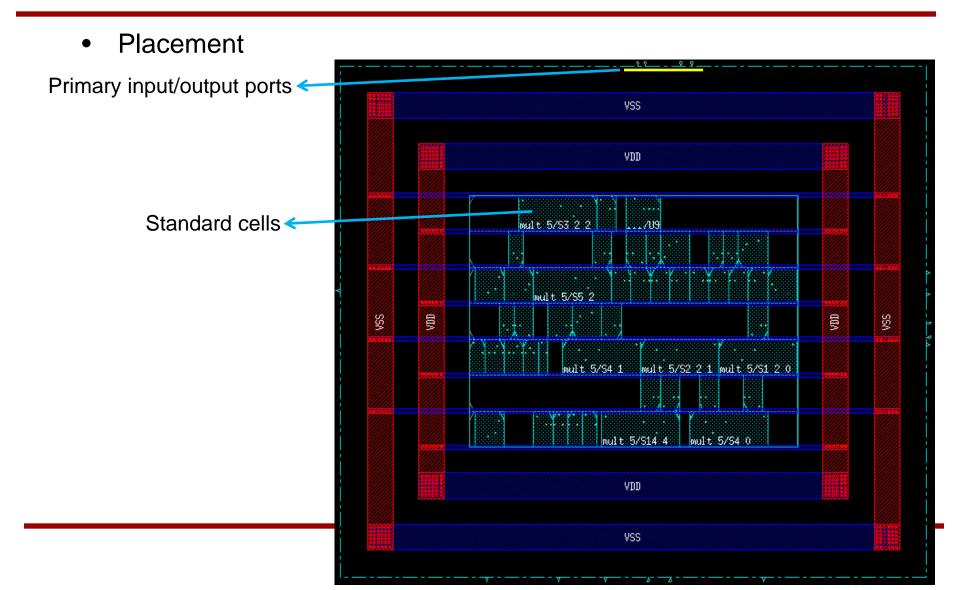
- Load cap
- Input/output delay
- Clock frequency
- ...

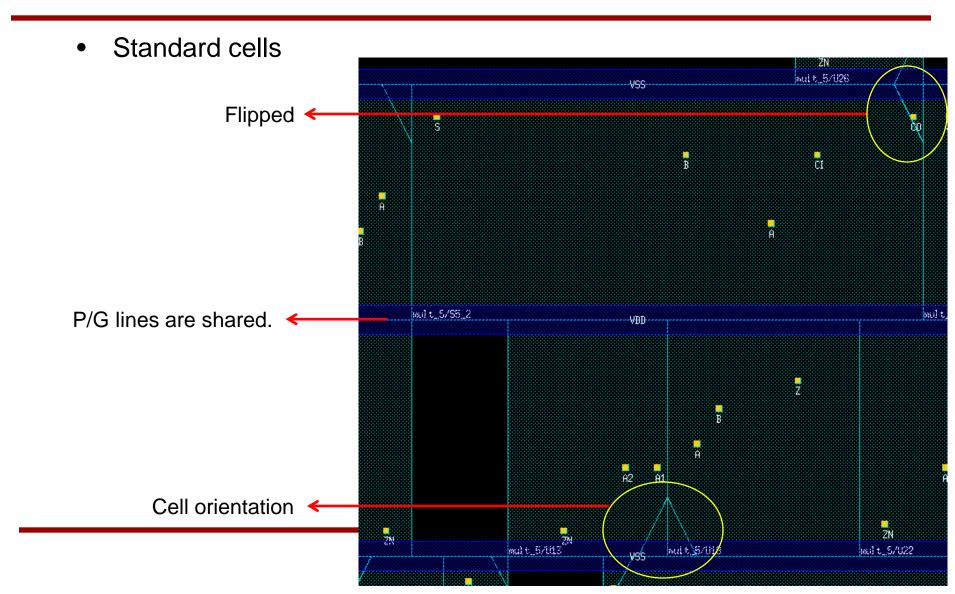



- A 4-bit multiplier
 - Combinational logic
 - Timing constraints

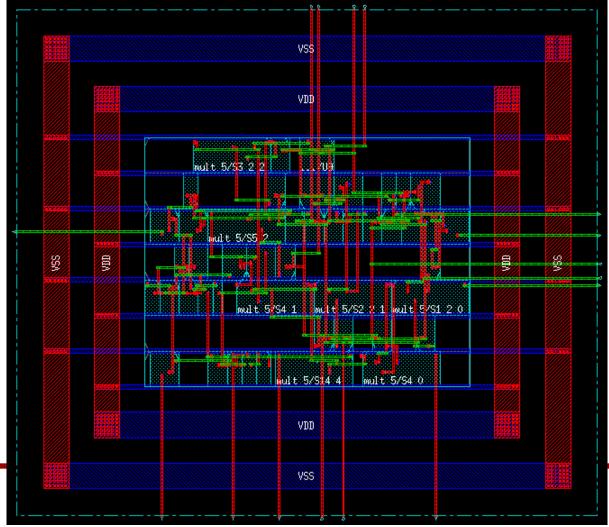
• Design space (Core utilization: 60%)

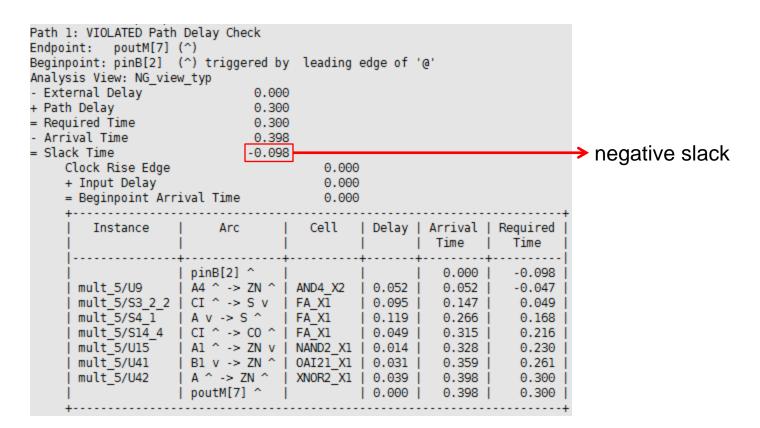



• Power/ground rings

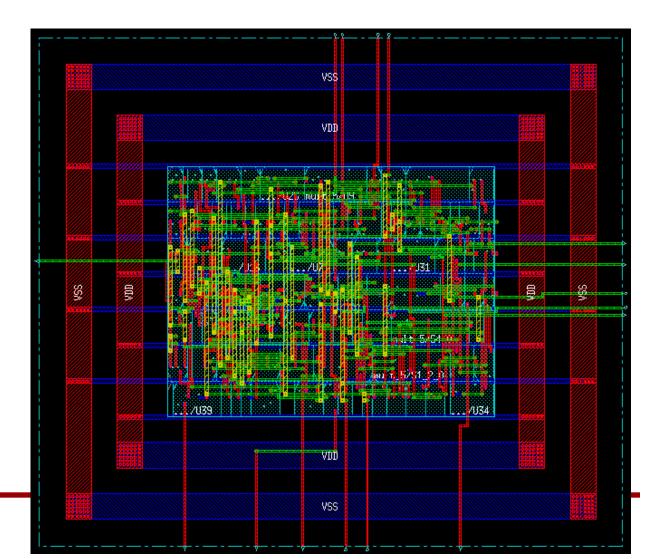


Via1		VSS		
	Metal 1	VID		
Metal	2			
←	<u>}</u>			
1um SS				SSV
t 1um	/			
1um	·			
		VDD	J	
		VSS		


• Power/ground lines



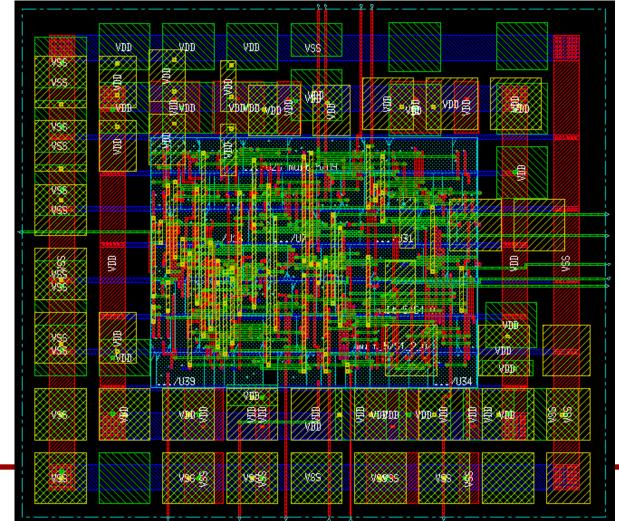
• Trial route (automatically performed after placement)


Timing analysis (Pre-CTS / setup time)

• Optimization

[optDesign Final Summary									
	+ Setup mode		all	+ r	eg2reg	in2reg	- +	reg2out	in2out	+ clkgate
positive slack <	W NS (n TNS (n Violating Pat All Pat	s): hs:	0.000		N/A N/A N/A N/A	N/A N/A N/A N/A		N/A N/A N/A N/A	0.004 0.000 0 8	N/A N/A N/A N/A
	++ 			+ Re	al	+ 	+ 	Total	+ L [+
	DRVs + 	Nr	nets(ten	ns)	Wors	st Vio		Nr nets(te	ermis)	
	max_cap max_tran max_fanout max_length		0 (0) 0 (0) 0 (0) 0 (0)			.000 .000 0 0		0 (0) 0 (0) 0 (0) 0 (0)		
ſ	++ Density: 97.441%				+				•••••	

• Routing


• Routing

• Timing analysis (Post-Route / setup time)

· · · ·			,		
Path 1: MET Path Delay Che Endpoint: poutM[7] (v)	eck				
Beginpoint: pinB[1] (v) t	triggered by le	enhe nnihe	of 'a'		
Analysis View: NG view typ		during edge	0. 6		
- External Delay	, 0.000				
	0.300				
+ Path Delay					
= Required Time	0.300				
- Arrival Time	0.298				
= Slack Time	0.002	0.000			
Clock Rise Edge		0.000			
+ Input Delay	- ·	0.000			
= Beginpoint Arrival	lime	0.000			
Instance	Arc	Cell	Delav	Arrival	Required
Instance			betay	Time	Time
	pinB[1] v			0.000	0.002
mult 5/U6	A2 v -> ZN ^	NAND2 X2	0.014	0.014	0.017
mult 5/FE RC 68 0	A ^ -> ZN ^	XNOR2 X2	0.034	0.049	0.051
mult 5/FE RC 69 0	A^-> ZN v	INV XI	0.011	0.060	0.063
mult 5/S1 2 0	CI v -> CO v	FA X1	0.072	0.132	0.134
	A v -> CO v	FA X1	0.081	0.213	0.216
mult 5/FE RC 0 0	A1 v -> ZN ^	NAND2 X2	0.018	0.231	0.233
mult 5/FE RC 2 0	A^-> ZN v	INV X2	0.011	0.242	
mult 5/U15	Al v -> ZN ^	_	0.012	0.254	
mult 5/U41	B1 ^ -> ZN v	_		0.268	
mult 5/FE RC 34 0	Al v -> ZN ^			0.282	
mult 5/FE RC 33 0	A ^ -> ZN v	0AI21 X1	0.015		
	poutM[7] v		0.000	0.298	
+					+

• Metal fill insertion

• Timing analysis (Post-fill / setup time)

		• •	/		
Path 1: MET Path Delay Endpoint: poutM[7] (\					
			af 101		
Beginpoint: pinB[1] (\		eading edge	01 @		
Analysis View: NG_view_					
- External Delay	0.000				
+ Path Delay	0.300				
= Required Time	0.300				
- Arrival Time	0.298				
= Slack Time	0.002				
Clock Rise Edge		0.000			
+ Input Delay		0.000			
= Beginpoint Arriv	/al Time	0.000			
+					•••••+
Instance	Arc	Cell	Delay	Arrival	Required
				Time	Time
	+	+	++	++	+
	pinB[1] v			0.000	0.002
mult_5/U6	A2 v -> ZN ^	NAND2_X2	0.014	0.014	0.017
mult 5/FE RC 68	0 A ^ -> ZN ^	XNOR2 X2	0.034	0.049	0.051
mult 5/FE RC 69	0 A ^ -> ZN v	INV XI	0.011	0.060	0.063
mult 5/S1 2 0		FA X1	0.072	0.132	0.134
mult 5/S4 0	A v -> CO v	FA X1	0.081	0.213	0.215
mult 5/FE RC 0 0) A1 v -> ZN ^	NAND2 X2	0.018	0.231	0.233
mult_5/FE_RC_2_0		INV XZ	0.011	0.242	0.244
mult_5/U15	A1 v -> ZN ^	-		0.254	
mult 5/U41	B1 ^ -> ZN v	-			
	0 A1 v -> ZN ^	· · · · · · · · · · · · · · · · · · ·			
mult 5/FE RC 33	• • • • • • • • • • • • • • • • • • •	0AI21_X1			
	poutM[7] v		0.000		
+					

• Sign-off analysis

Startpoint: pinB[3] (input port) Endpoint: poutM[7] (output port) Path Group: **default** Path Type: max		
Point	Incr	Path
<pre>input external delay pinB[3] (in) FE_RC_72_0/ZN (NAND2_X2) FE_RC_73_0/ZN (INV_X4) FE_RC_22_0/ZN (INV_X1) FE_RC_22_0/ZN (INV_X1) FE_RC_20_0/ZN (NAND2_X1) FE_RC_18_0/ZN (NAND2_X1) FE_RC_17_0/ZN (NAND2_X1) FE_RC_16_0/ZN (NAND2_X2) FE_RC_51_0/ZN (NAND2_X2) FE_RC_51_0/ZN (OAI21_X2) FE_RC_83_0/ZN (OAI21_X2) FE_RC_83_0/ZN (OAI21_X1) FE_RC_81_0/ZN (INV_X2) FE_RC_2_0/ZN (INV_X2) FE_RC_2_0/ZN (INV_X2) U15/ZN (NAND2_X2) FE_RC_34_0/ZN (NAND2_X1) FE_RC_33_0/ZN (OAI21_X1) poutM[7] (out) data arrival time max_delay output external delay data required time</pre>	0.00 0.00 & 0.01 & 0.01 & 0.01 & 0.02 & 0.00 &	0.09 r 0.11 f 0.13 r 0.15 f 0.17 r 0.19 f 0.20 r 0.22 f 0.24 r 0.25 f 0.28 r 0.29 f
data required time data arrival time		0.30 -0.31
slack (VIOLATED)		-0.01

33

- Delay calculation
 - Elmore delay
 - Look-up table
 - Asymptotic waveform evaluation (AWE)
- Timing analysis
 - Setup time
 - Hold time