EE434 ASIC & Digital Systems

Testing

Spring 2015 Dae Hyun Kim daehyun@eecs.wsu.edu

Introduction

- VLSI realization process
- Verification and test
- Ideal and real tests
- Costs of testing
- Roles of testing
- A modern VLSI device system-on-a-chip

VLSI Realization Process

Verification vs. Test

- Verification
 - Verifies correctness of design.
 - Performed by simulation, hardware emulation, or formal methods.
 - Performed once prior to manufacturing.
 - Responsible for quality of design.
- Test
 - Verifies correctness of manufactured hardware.
 - Two-part process:
 - 1. Test generation: software process executed once during design
 - 2. Test application: electrical tests applied to hardware
 - Test application performed on every manufactured device.
 - Responsible for quality of devices.

Problems of Ideal Tests

- Ideal tests detect all defects produced in the manufacturing process.
- Ideal tests pass all functionally good devices.
- Very large numbers and varieties of possible defects need to be tested.
- Difficult to generate tests for some real defects. *Defect-oriented testing is an open problem.*

Real Tests

- Based on analyzable fault models, which may not map on real defects.
- Incomplete coverage of modeled faults due to high complexity.
- Some good chips are rejected. The fraction (or percentage) of such chips is called the *yield loss.*
- Some bad chips pass tests. The fraction (or percentage) of bad chips among all passing chips is called the *defect level*.

Testing as Filter Process

Cost of Testing

- Design for testability (DFT)
 - Chip area overhead and yield reduction
 - Performance overhead
- Software processes of test
 - Test generation and fault simulation
 - Test programming and debugging
- Manufacturing test
 - Automatic test equipment (ATE) capital cost
 - Test center operational cost

Design for Testability (DFT)

- DFT refers to hardware design styles or added hardware that reduces test generation complexity.
- Motivation: Test generation complexity increases exponentially with the size of the circuit.
- Example: Test hardware applies tests to blocks A and B and to internal bus; avoids test generation for combined A and B blocks.

Cost of Manufacturing Testing in 2000

- 0.5-1.0GHz, analog instruments,1,024 digital pins: ATE purchase price
 - \$1.2M + 1,024 x \$3,000 = \$4.272M
- Running cost (five-year linear depreciation)
 - Depreciation + Maintenance + Operation
 - \$0.854M + \$0.085M + \$0.5M = \$1.439M/year
- Test cost (24 hour ATE operation)
 - \$1.439M/(365 x 24 x 3,600)
 - 4.5 cents/second

Roles of Testing

- Detection: Determination whether or not the *device under test* (DUT) has some fault.
- Diagnosis: Identification of a specific fault that is present on DUT.
- Device characterization: Determination and correction of errors in design and/or test procedure.
- Failure mode analysis (FMA): Determination of manufacturing process errors that may have caused defects on the DUT.

VLSI Testing Process and Equipment

- Motivation
- Types of Testing
- Test Specifications and Plan
- Test Programming
- Test Data Analysis
- Automatic Test Equipment
- Parametric Testing
- Summary

Motivation

- Need to understand some Automatic Test Equipment (ATE) technology
 - Influences what tests are possible
 - Serious analog measurement limitations at high digital frequency or in the analog domain
 - Need to understand capabilities for digital logic, memory, and analog test in System-on-a-Chip (SOC) technology
- Need to understand parametric testing
 - Used to take setup, hold time measurements
 - Use to compute *V_{IL}*, *V_{IH}*, *V_{OL}*, *V_{OH}*, *t_r*, *t_f*, *t_d*, *I_{OL}*, *I_{OH}*, *I_{IL}*, *I_{IH}*

Types of Testing

- Verification testing, characterization testing, or design debug
 - Verifies correctness of design and of test procedure usually requires correction to design
- Manufacturing testing
 - Factory testing of all manufactured chips for parametric faults and for random defects
- Acceptance testing (incoming inspection)
 - User (customer) tests purchased parts to ensure quality

Testing Principle

Automatic Test Equipment Components

- Consists of:
 - Powerful computer
 - Powerful 32-bit *Digital Signal Processor* (DSP) for analog testing
 - Test Program (written in high-level language) running on the computer
 - Probe Head (actually touches the bare or packaged chip to perform fault detection experiments)
 - Probe Card or Membrane Probe (contains electronics to measure signals on chip pin or pad)

Verification Testing

- Very expensive
- May comprise:
 - Scanning Electron Microscope tests
 - Bright-Lite detection of defects
 - Electron beam testing
 - Artificial intelligence (expert system) methods
 - Repeated functional tests

Characterization Test

- Worst-case test
 - Choose test that passes/fails chips
 - Select statistically significant sample of chips
 - Repeat test for every combination of 2+ environmental variables
 - Diagnose and correct design errors
- Continue throughout production life of chips to improve design and process to increase yield

Manufacturing Test

- Determines whether manufactured chip meets specs
- Must cover high % of modeled faults
- Must minimize test time (to control cost)
- No fault diagnosis
- Tests every device on chip
- Test at speed of application or speed guaranteed by supplier

Burn-In or Stress Test

- Process:
 - Subject chips to high temperature & over-voltage supply, while running production tests
- Catches:
 - Infant mortality cases these are damaged chips that will fail in the first 2 days of operation – causes bad devices to actually fail before chips are shipped to customers
 - Freak failures devices having same failure mechanisms as reliable devices

Incoming Inspection

- Can be:
 - Similar to production testing
 - More comprehensive than production testing
 - Tuned to specific systems application
- Often done for a random sample of devices
 - Sample size depends on device quality and system reliability requirements
 - Avoids putting defective device in a system where cost of diagnosis exceeds incoming inspection cost

Types of Manufacturing Tests

- Wafer sort or probe test done before wafer is scribed and cut into chips
 - Includes test site characterization specific test devices are checked with specific patterns to measure:
 - Gate threshold
 - Polysilicon field threshold
 - Poly sheet resistance, etc.
- Packaged device tests

Sub-Types of Tests

- *Parametric* measures electrical properties of pin electronics delay, voltages, currents, etc. fast and cheap
- Functional used to cover very high % of modeled faults test every transistor and wire in digital circuits – long and expensive – main topic of tutorial

Two Different Meanings of Functional Test

- ATE and Manufacturing World any vectors applied to cover high % of faults during manufacturing test
- Automatic Test-Pattern Generation World testing with verification vectors, which determine whether hardware matches its specification – typically have low fault coverage (< 70 %)

Test Specifications & Plan

- Test Specifications:
 - Functional Characteristics
 - Type of Device Under Test (DUT)
 - Physical Constraints Package, pin numbers, etc.
 - Environmental Characteristics supply, temperature, humidity, etc.
 - Reliability acceptance quality level (defects/million), failure rate, etc.
- Test plan generated from specifications
 - Type of test equipment to use
 - Types of tests
 - Fault coverage requirement

Test Programming

Test Data Analysis

- Uses of ATE test data:
 - Reject bad DUTS
 - Fabrication process information
 - Design weakness information
- Devices that did not fail are good only if tests covered 100% of faults
- Failure mode analysis (FMA)
 - Diagnose reasons for device failure, and find design and process weaknesses
 - Allows improvement of logic & layout design rules