Homework Assignment 1

(Due Feb. 4th at the beginning of the class)

(1) [Static CMOS Circuit, 5 points] Draw a transistor-level schematic for the following function. Use six NMOS and six PMOS transistors.

$$
F=\overline{A \cdot B+A \cdot C+B \cdot D}
$$

(2) [Static CMOS Circuit, $\mathbf{5}$ points] Draw a transistor-level schematic for the above function. Use the smallest number of transistors.

$$
F=\overline{A \cdot(B+C)+B \cdot D} \operatorname{or} \overline{A \cdot C+B \cdot(A+D)}
$$

(3) [Static CMOS Circuit, $\mathbf{5}$ points] An NMOS logic array for a function is shown below. Construct the PMOS circuit to complete the function.

(4) [Static CMOS Circuit, 5 points] Draw a transistor-level schematic for the following function.

(5) [Logic Conversion, 5 points] The two-input AND and OR gates use six transistors, but the two-input NAND and NOR gates use four transistors, so NAND and NOR gates are preferred to AND and OR gates in the design of CMOS circuits. Convert the following logic $(F=A+B+C)$ into a new logic
using only INV, two-input NAND, and two-input NOR gates. Use the smallest number of transistors.

(6) [Static CMOS Circuit, $\mathbf{5}$ points] Draw a transistor-level schematic for a two-input $\operatorname{MUX}(F=\bar{S} \cdot A+S \cdot B)$.

	S	
	0	1
F	A	B

$$
F=\bar{S} \cdot A+S \cdot B=\overline{\overline{\bar{S} \cdot A+S \cdot B}}=\overline{(S+\bar{A}) \cdot(\bar{S}+\bar{B})}=\overline{\bar{S} \cdot \bar{A}+S \cdot \bar{B}+\bar{A} \cdot \bar{B}}
$$

(7) [CMOS gates, $\mathbf{5}$ points] What is the intended function of the circuit shown in the figure below? What is the output swing?

$$
\text { Out }=\text { Vin. Swing }=\left[V_{t p}, V_{D D}-V_{t n}\right] .
$$

(8) [HSPICE simulation, 10 points]

1. $(\mathrm{Wn}, \mathrm{Wp})=(90 \mathrm{~nm}, 140 \mathrm{~nm}): \mathbf{t f}=70 \mathrm{ps}, \mathbf{t r}=69 \mathrm{ps}$
2. $(\mathbf{W n}, \mathrm{Wp})=(180 \mathrm{~nm}, 280 \mathrm{~nm}): \mathbf{t f}=\mathbf{3 4} \mathbf{p s}, \mathbf{t r}=\mathbf{3 4} \mathbf{p s}$
3. $(\mathrm{Wn}, \mathrm{Wp})=(90 \mathrm{~nm}, 140 \mathrm{~nm})$, Cout=20fF: $\mathbf{t f}=\mathbf{1 3 7} \mathbf{p s}, \mathbf{t r}=138 \mathrm{ps}$
4. $(\mathrm{Wn}, \mathrm{Wp})=(90 \mathrm{~nm}, 140 \mathrm{~nm})$, Cout $=20 \mathrm{fF}, 50 \mathrm{ps}: \mathbf{t f}=137 \mathrm{ps}, \operatorname{tr}=136 \mathrm{ps}$
